
Journal of Computer Science 1 (4): 454-460, 2005
ISSN 1549-3636
© Science Publications, 2005

Corresponding Author: Adel Smeda LINA, Université de Nantes 2, Rue de la Houssinière, BP 92208, 44322
Nantes Cedex 03, France, Tel: +332 51125963 Fax: +332 51125812

454

Meta Architecting: Towered a New Generation of Architecture Description Languages

Adel Smeda, Tahar Khammaci and Mourad Oussalah

LINA, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 03, France

Abstract: The techniques of meta-modeling and meta-levels have become a mature concept and have
been largely used to solve real problems in programming languages, distributed environments,
knowledge representation, or data bases. In this article it is shown how the same techniques can be
applied in component-based software architecture. It also shown the need to propose mechanisms of
reflexivity within the domain of software architecture meta-modeling. The outcome of this is a
meta-meta-architecture with a minimal core whose finality is to define meta-components,
meta-connectors and meta-architectures. Call this meta-meta-architecture MADL (Meta Architecture
Description Language).

Key words: Software architecture, component-based systems, architecture description languages,

metamodeling

INTRODUCTION

In the domain of Knowledge Representation[1] one
speaks about meta-knowledge to evoke knowledge
relating to knowledge, or meta-model for a model
representing a model, etc. In the context of software
architecture[2] meta-modeling is an act of modeling that
is applied to an architecture. The result of such an act of
modeling, i.e. the use of an architecture A to establish
an abstraction of a system S, is called the Architecture
(A) of the system S. Similarly, the meta-architecture of
an architecture is itself an architecture, which does not
model a final application but an architecture. When the
act of modeling is applied to software architectures, it is
called meta-architecting. A meta-architecture is thus a
formal or semiformal Architecture Description
Language (ADL)[3] that permits to describe particular
systems, called architectures. Meta-Architecture (MA)
itself is an architecture and thus in a more general way
a system, which can be described. One then can define
the architecture of a meta-architecture by the
meta-meta-architecture (M2A). As in any recurring
modeling, it is advisable to stop by a reflexive
architecture, i.e. auto-described architecture. The
number of levels imports little, but it seems that three
levels of modeling are sufficient within the domain of
software architecture engineering where the M2A serves
as an auto-modeler and as a modeler of ADLs.

In object-oriented modeling, this self-modeling is
generally implemented by the concept of meta-class
which guarantees the homogeneity of the concepts and
the extensibility of the system. It is a question of
conceiving an architecture by itself or using an
architecture to define or conceive another architecture.

Meta-architecting of an architecture can be a tool
to define, comment, document, compare architectures,
in particular semiformal architectures. It is about
describing an architecture by its conceptual diagram,
resulting of a step of specification using a
meta-architecture that most of the time itself is a
semiformal. This diagram then constitutes a
document of explanation and/or documentation of
the architecture.

Meta-architecting can also be a means of
formalization for semiformal architectures. Formal
ADLs are based on mathematical theories ensuring
obtaining exact specifications[4]. However the
formalisms of these ADLs can discourage the
designers. In additional, formal ADLs are not easily
comprehensible for non trained designers, thus it is very
useful to transfer a semiformal specification to a formal
specification. The approach consists of specifying, once
and for all, the concepts of semiformal architecture
in a formal specification. One then obtains a
meta-architecture of the semiformal architecture which
can then be directly used.

For brevity, it can say that meta-architecting is a
good way to:

• Standardize: Architectures are based on
well-defined semantics. These semantics are
provided by means of meta-architectures.
Each architecture must conform to a
meta-architecture, which specifies a specific
way to define architectures. Describing
different architectures using the same meta-
architecture confers on the meta-architecture a
role of standardization for at least the
architecture that it describes.

J. Comp. Sci., 1 (4) :454-460, 2005

 455

Fig. 1: Applying the four layers of OMG in software architecture

Fig. 2 : The MADL model

• Compare: Meta-architecting is a good tool to
compare various architectures. Indeed,
describing various architectures with the same
formalism, facilitates their comparison and
analysis.

• Define and integrate several architectures,
therefore, supports and makes the interchange
of architectures among ADLs easier.

• Map ADLs into other modeling techniques,
e.g. UML[5].

MADL: Meta Architecture Description Language :
In object-oriented modeling, self-modeling is generally
implemented by the concept of meta-class which
guarantees the homogeneity of the concepts and the
extensibility of the system. It is a question of
conceiving an architecture by itself or using an
architecture to define or conceive another architecture.
Meta-architecting of an architecture is a technique to
define, comment, document, compare architectures, in
particular semiformal architectures. It is about
describing an architecture by its conceptual diagram,

J. Comp. Sci., 1 (4) :454-460, 2005

 456

resulting of a step of specification using a
meta-architecture that most of the time itself is a
semiformal. MADL is intended to be a meta-mate-
architecture that defines meta-architecture. It is based
on the Y architecture, hence we have three main
elements in MADL: meta-component, meta-connector
and meta-configuration (or meta-architecture).

The four abstraction layers of software
architecture : The four metamodeling layers of OMG
(application layer, model layer, meta-model layer and
meta-meta-model layer[7]) can be applied in software
architecture and the outcome of this is an architecture
with four levels of abstraction represents the different
architecture levels, starting from the definition of the
meta-meta-architecture to the application level.
Consequently, one can see four abstraction levels in
software architecture: meta-meta-architecture level,
meta-architecture level, architecture level and
application level (Fig. 1)

Meta-meta-Architecture level (M2A): Provides the
minimal elements of architectural modeling. It is
represented by three basic elements: Meta-component,
Meta-connector and Meta-architecture. These three
elements are the base for defining different meta-
architectures. A meta-meta-architecture conforms to
itself (instance of itself). The basic concepts of a meta
ADL are represented in this level.

Meta-Architecture level (MA): Provides the basic
modeling elements for an Architecture Description
Language (ADL): Component, Connector,
Architecture, Ports, Roles, etc. These elements are the
base for defining different architectures. Meta-
architectures conform to meta-meta-architectures. In the
scope of a conformity relation, each element of MA is
associated with an element of M2A. For example, in
Fig. 1 component is associated with meta-component.

Architecture level (A): In this level, various types of
components, connectors and architectures are
described. Architectures conform to meta-architectures
(ADLs), therefore, each element of A is associated with
an element of MA. For example, in Fig. 1, Client and
Server are components, RPC is a connector and Client-
Server is a configuration.

Application level (A0): Allows us to describe
applications. An application is seen as an assembly of
instances of types of components, connectors and
architectures. Applications conform to architectures.
Each element of A0 is associated with an element of A.
For example in Fig. 1, CL1 is an instance of client, S1
is an instance of server, RPC1 is an instance of RPC
and C-S is an instance of client-server.

The structure of MADL: The meta-meta-architecture
must be a minimal generic core whose finality is to
define meta-meta-architecture elements, which define
type elements for meta-architectures. It introduces the
concepts: meta-components, meta-connectors and meta-
architectures needed to manipulate and to define
architectural concepts (structural and behavioral). It is
organized these meta-concepts in a meta-meta-
architecture called MADL (Fig. 2).

MADL is organized in three packages: Meta-Meta-
Architecture package, Meta-Architecture package and
Architecture package.

Meta-meta-architecture package : To define an
architecture we need a meta-architecture and to define a
meta-architecture we need a meta-meta-architecture,
therefore, Meta-meta-architecture package composed of
Meta-architecture package and Architecture package.
Meta-meta-architecture package holds all the concepts
needed to define meta-architectures and architectures.
Meta-meta-architecture does not conform to another
architecture, but acts as its own meta-architecture.
Similarly, each element of Meta-meta-architecture has
to be associated with another element of Meta-meta-
architecture, to respect the auto-conformity relation. For
brevity, Meta-meta-architecture is an instance of itself.

Meta-architecture package : To define architectures
we need a meta-architecture, so Meta-architecture
classifies and defines architectures. Architectures
contains components and connectors, therefore, Meta-
component and Meta-connector are parts of Meta-
architecture (hence, each component and connector of
level MA must be a part of an architecture of level
MA). Meta-architecture is an Architecture, that is why
Meta-architecture inherits Architecture. To permits
architectures of level MA to have interfaces Meta-
architecture is composed of Meta-interface. Meta-
architecture conforms to the definition of Meta-meta-
architecture, i.e. it is an instance of Meta-meta-
architecture. Meta-architecture is composed of the
following meta-elements:

• Meta-component. It is a meta architectural
element that classifies and defines constructs
of computation and state for level MA. Meta-
component is nothing but a component, so it
inherits component. Meta-component is a part
of (has a composite relation with) the package
Meta-architecture. To respect the reflexivity
principle, which MADL is based on, Meta-
component is an instance of itself.

• Meta-connector. It is a meta architectural
element that classifies and defines constructs
of interactions among components of level
MA. Meta-connector is a part of (has a
composite relation with) the package
Meta-architecture.

J. Comp. Sci., 1 (4) :454-460, 2005

 457

• Meta-interface. It is a meta architecture
element that classifies and defines interfaces.
It is a part of (has a composite relation with)
the package Meta-component, Meta-connector
and Meta-architecture, therefore defines
interfaces for component, connectors and
architectures of architectures of level MA. It is
assigned an interface to Meta-architecture in
order to make it feasible for architectures for
level MA to interact with each other, to have a
composition relation with each other, or even
to inherit each other.

Architecture package : In order to respect software
architecture definitions including components are parts
of architectures, MADL component is a part of MADL
Architecture (i.e. Component is part of architecture).
The main principle of MADL, which says everything is
a component is applied to Architecture, so Architecture
inherits Component. Consequently, architectures for
level MA behave like components, i.e. can interact with
each other, have a composition relation with each other
and inherit each other. Architecture is an instance of
Meta-architecture.
Component. It is an abstract class that classifies and
defines all MADL elements and entities. As a result, all
elements of MADL inherit Component, either directly
or indirectly (the principle of everything is a
component). Components and connectors of level MA
can be generalizable and specializable elements, they
can also be composed of other elements, this justifies
the inheritance relation and the composition relation
between component and itself (to allow elements of
level MA to engage in an inheritance relation and
composition relation). Component is a part of
architecture, therefore, each Component and connector
of level MA must be part of an architecture. Component
is an instance of Meta-component.

We can also count four types of relation among
elements in MADL, instance of, association, composed
of and inheritance:

• Instance of, when an element conforms to the
definition of another element. It defines the
association between an element (or an
architecture) and its meta. For example,
component is an instance of Meta-component,
Architecture is an instance of Meta-
architecture. To respect the reflexive
principle, on which MADL is based,
architecture is an instance of meta-
architecture, component is an instance of
meta-component and meta-component is an
instance of itself, so all the instantiation
relations ends in meta-component. The
principle is also applied to meta-meta-
architecture which is an instance of itself.

• Association, when an element has an
association with another element. For
example, the association between Meta-
component and Meta-connector, the
multiplicity is set to 1..*, so components of
level MA can engage in more than one
association at the same time.

• Composed of, when an element is composed
of another element. For example, Meta-
architecture is composed of one or more Meta-
component, one or more Meta-connector and
zero or one Meta-interface.

• Inheritance, when an element inherits another
element. For example, Meta-component,
Meta-connector and Meta-interface inherit
component.

All these relations are nothing but instances of

Meta-Connector, i.e. are implemented using specific
types of connectors, in order for the model to utilize
merely architectural elements. For example, inheritance
is achieved by a specific connector that implements the
inheritance relation between two elements, the roles of
this connector (the interfaces of the connector) connect
the two parties (the super element and the sub-element)
and the glue, which defines the behavior of the
connector, insures that the sub-element is identical
(from the same type) to the super element.

Defining MAs using MADL : To define a new meta-
architecture (new ADL) we instantiate MADL and a
new model conforms to the definition of MADL is
obtained. Each meta-architecture element is an instance
of a MADL element, elements and notations related to
computation are instances of Meta-component,
elements and notations related to interaction and
communication are instances of either Meta-connector
or Meta-component depending on their role and
definition (are they intended to be explicitly or
implicitly defined). For example, components,
configurations and properties are instances of Meta-
component, meanwhile, constraints, bindings and
attachments are instances of Meta-connector. In this
section we give two examples of instantiating ADLs
from MADL, COSA[7] and Acme[8].

COSA: COSA is a meta architecture that respects the
definitions and the regulations imposed by MADL. It is
a component-object based modeling notations based on
separating components from their interactions. The
architectural model of a system provides a high level
model of the system in terms of components that do the

J. Comp. Sci., 1 (4) :454-460, 2005

 458

Fig. 3 : The COSA model

Fig. 4 : Instantiating the component part of COSA from MADL

J. Comp. Sci., 1 (4) :454-460, 2005

 459

Fig. 5: Instantiating Acme from MADL

computation and connectors that causally connect the
components. Figure 3 presents a meta-model of COSA,
the key entities of the COSA are:

• Components. Encapsulate computation.
Connectors. Encapsulate interactions and

 communications among the
components.

• Configuration. Define the topological structure of
 the architecture.

• Ports. Are components interfaces.
• Roles. Are connector interfaces.
• Services. Present the functionality of the entities

(components, connectors).

The key associations are:

• Attachments. Link a port to a role.
• Bindings. Link two ports or tow roles together.
• Uses. Link a services (or services) to port/role

(or ports/roles).

Instantiating COSA from MADL : Figure 4 shows
how COSA is instantiated from MADL. The figure
shows only the part related to components. As can be
concluded from the figure, each MA notation is an
instance of MADL notations. For example components
and configurations are instances of Meta-component,
connector, binding, attachment, are instances of Meta-
connector, while interfaces such as ports and roles are
instances of the Meta-interface. The meta-architecture
itself is an instance of the met-meta-architecture (M2A).

Acme : Other models can be easily instantiated from
MADL. As an example, we chose Acme, because it
considers most of architecture description concepts and
notations. Acme has resulted from a careful
consideration of issues in and notations for modeling
architectures. As such, it can be viewed as the starting
point for studying existing ADLs and developing new
ones. However, Acme represents the least common
denominator of existing ADLs rather than a definition

J. Comp. Sci., 1 (4) :454-460, 2005

 460

of an ADL. Architectural structure is defined in Acme
using seven types of entities: components, connectors,
systems, ports, roles, representations and rep-maps.

Instantiating Acme from MADL : As it can be
concluded from Fig. 5, all notations of the model Acme
are just instances of MADL notations. For instance,
components are instances of Meta-component, while
connectors, bindings and attachments are instances of
Meta-component. Moreover, systems and styles
(styles are just instances of systems) are instances of
Meta-architecture.

CONCLUSIONS

In this article we have shown how techniques of
meta-modeling can be applied in software architecture.
We have also shown the need to propose mechanisms
of reflexivity within the domain of software
architecture meta-modeling. Next we have presented a
meta-meta-architecture dedicated to software
architecture, then we have shown how to use it to
instantiate meta-architectures. Our approach shows that
meta-meta-architecting can be a good tool of
documenting, analyzing, comparing and unifying
ADLs. Present proposal is directed to the context of the
recent research work, in which software architecture is
oriented more and more toward the OMG group
works[6]. Thus, the introduction of software architecture
concepts in UML 2.0[9] is considered as a sign of this
orientation and it gives an indication for the possibility
to define (component based) software architectures in a
way that refinement to adapted executive platforms is
much easer.

REFERENCES

1. Oussalah, M. Component-oriented KBS.

Proceedings of 14th Intl. Conf. Software Eng.
and Knowledge Eng. (SEKE’02) Ischia, Italy,
pp: 73-76.

2. Dewayne, E. P. and L. W. Alexander, 1992.
Foundations for the study of software architecture.
ACM SIGSOFT Software Eng., Notes, 17: 40-52.

3. Medvidovic, N. and R. N. Taylor, 2000. A
Classification and Comparison Framework
for Software Architecture Description
Languages. IEEE Transactions on Software
Eng., 26: 70-39.

4. Allen, R.J., R. Douence and D. Garlan, 1998.
Specifying and analyzing dynamic software
architectures. Proc. 1998 Conf. Fundamental
Approaches to Software Eng., Lisbon, Portugal.

5. Ivers, J., P. Clements, D. Garlan, R. Nord,
B. Schmerl and J.R. Silva, 2004. Documenting
Component and Connector Views with UML 2.0,
Technical Report CMU/SEI2004-TR-008.

6. OMG-MOF, 2004. Meta Object Facility (MOF)
Specification, Version 1.4, February 2004,
www.omg.org/docs/pas/04-02-01.pdf

7. Smeda, A., M. Oussalah and T. Khammaci, 2004.
A Multi-paradigm approach to describe complex
software system. WSEAS Trans. on Computers,
4: 936-941.

8. Garlan D., R. Monroe and D. Wile., 2000. Acme:
Architectural Description of Component-Based
Systems. In Foundations of Component-Based
Systems (L. Gary and S. Murali), Cambridge
University Press: 47-68.

9. Object Management Group. UML 2.0
Superstructures Specification: Final Adopted
Specification. http://www.omg.org/docs/ptc/03-08-
02.pdf, August 2003.

