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Abstract: Concurrency control is one of the main issues in the studies of real-time database systems. 
Optimistic concurrency control algorithms have the attractive properties of being non-blocking and 
deadlock-free. However, they have the problems of late conflict detection and transaction restarts. 
Although the number of transaction restarts is reduced by dynamic adjustment of serialization order in 
real-time database systems, they are still some unnecessary transaction restarts. In this study, we 
propose a new method called Transaction Finish Degree (TFD) and a new Multiversion Optimistic 
Concurrency Control algorithm based on TFD (MVOCC-TFD), which can reduce the number of 
unnecessary restarts. Theoretical analysis and experimental results demonstrate that the new algorithm 
can outperform the previous ones. 
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INTRODUCTION 

 
Real-Time Database Systems (RTDBS) are 

transaction processing systems that attempt to satisfy 
the timing constraints associated with each incoming 
transaction. In RTDBS, the primary performance 
criterion is timeliness level, not average response time 
or throughput. Thus, scheduling of transactions is 
driven by priority considerations rather than fairness 
considerations. Many researches have been devoted to 
design appropriate concurrency control algorithms for 
RTDBS. Most concurrency control algorithms for 
RTDBS are based on one of the following basic 
concurrency control mechanisms: locking[1-3] or 
optimistic concurrency control[4-6]. 

Optimistic concurrency control protocols have the 
nice properties of being non-blocking and deadlock-
free. These properties make them especially attractive 
for RTDBS. As conflict resolution between transactions 
is delayed until transactions are close to completion, 
there will be more information available for making the 
choice in resolving the conflict. However, the problem 
with optimistic concurrency control protocols is the late 
conflict detection, which leads to huge overhead 
because some near-to-complete transactions have to be 
restarted.  So it is important to design new methods to 
minimize the number of transaction restarts. The OCC-
DA[7],  OCC-TI[8] and OCC-DAT[9,10] concurrency 
control protocols are based on Dynamic Adjustment of 
Serialization Order (OCC-DASO), avoiding some 
unnecessary restarts. Hence, the number of transaction 

restarts with these protocols is smaller than that with 
other optimistic concurrency control protocols, such as 
OCC-BC[11],  OCC-WAIT[7] and WAIT-X[1,7]. 
Unfortunately, there are still some unnecessary restarts 
with these protocols, especially the near-to-complete 
transaction restarts. 

In this study, we propose a new method, called 
Transaction Finish Degree (TFD), which can further 
avoid the near-to-complete transaction restarts. Based 
on TFD, we also develop a multiversion optimistic 
concurrency control protocol, called MVOCC-TFD. 
With the new protocol, the number of transaction 
restarts is smaller than that with OCC-DASO. 
 

PROBLEMS WITH OCC-DASO 
 

In this section, we will motivate our work by 
illustrating the problems associated with OCC-DASO 
algorithms. The validation algorithm of OCC-DASO 
can be simply written as: 
 

RS(Tv) ∩WS(Ta)≠Ø, Tv→Ta, 
WS(Tv) ∩RS(Ta)≠Ø, Ta→Tv, 

WS(Tv) ∩WS(Ta)≠Ø, Tv→Ta . 
 
Although these algorithms provide dynamic 

adjustment execution order to decrease the number of 
unnecessary transaction restarts, they do not resolve the 
problem of near-to-finished transaction restarts and can 
not work under serious conflicts condition.  

We will use two examples to illustrate such 
problems. Before that, we first introduce a set of  
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notations. We use ri[x] and wi[x] to denote read and 
write operation, respectively, on data object x by 
transaction Ti and let di, ci and vi denote deadline, 
commitment and validation of transaction Ti. Each 
Transaction T has a Read Set, RS(T) and a Write Set, 
WS(T), when T starts its execution. 

Fig. 1:  OCC-DASO data conflict decision 
 
Example 1: Consider transactions T1 and T2, 
T1: r1[a]w1[b]w1[c]r1[d] 
T2: r2[b]r2[c]. 
H1: r1[a] w1[b] r2[b] w1[c]r2[c]v2 c2 r1[d]v1 c1. 

The execution profile of two concurrently 
executing transactions, T1 and T2, is shown in Fig. 1. T1 
has a start time st1 and deadline d1, similarly T2 has a 
start time st2 and deadline d2. Suppose at time t = v2, 
when transaction T1 is close to completion, transaction 
T2 reaches its validation point and detects a conflict 
with T1. Following the OCC-DASO algorithms, the 
serialization order is adjusted as T2T1, and then 
transaction T1 has no chance of meeting its deadline.  
 
Example 2: Consider transactions T1 and T2, 
T1: r1[a]w1[b]w1[c] 
T2: r2[b]r2[c]w2[a] 
H1: r1[a] w1[b] r2[b] r2[c] w2[a]v2 w1[c]v1. 

The validation transaction T2 has serious conflict 
with active transaction T1 for RS(T2) ∩ WS(T1)≠Ø and 
WS(T2) ∩RS(T1) )≠Ø. The OCC-DASO algorithms 
can not deal with this condition. 

The above examples show the problems of OCC-
DASO algorithms. To overcome these problems, we 
propose a new method, which can resolve the problem 
of near-to-complete transaction restarts and handle the 
serious conflict transaction scheduling problem as well. 
 

A NEW REAL-TIME MULTIVERSION 
CONCURRENCY CONCTROL PROTOCOL 

 
As explained in the previous sections, although the 

OCC-DASO algorithms highlight some major strengths 
of optimistic concurrency control in real-time database 
systems, there remains potential for improving its 
performance. In this section, we present a new 
multiversion optimistic concurrency control algorithms 
based on the transaction finish degree, called MVOCC-
TFD.  

 
Transaction finish degree and multiversion: The 
objectives of concurrency control in RTDBS are to 
avoid inconsistent retrievals and to preserve the correct 
state of the database. Serializability is the definition of 
correctness for concurrency control in database systems. 
To describe serializability, we use similar definitions as 
presented in[12]. 
 
Definition 1: A Multiversion(MV) History H is serial 
if for any two transactions, Ti and Tj, that appear in H, 
either  all  of  Tis  operations  precede  all  of  Tjs or 
vice versa. 
 
Definition 2: A serial MV history H is 1-serial (or one-
copy serial) iff for all i, j and some data item x, if Ti 
reads the value of x created by Tj, then i = j, or Tj is the 
last transaction preceding Ti that writes into any version 
of x. 
 
Definition 3: An MV history H is one-copy serializable 
(or 1SR) if its committed projection, C(H), is 
equivalent to a 1-serial MV history, where C(H) is the 
history obtained from H by deleting all operations that 
do not belong to committed transactions in H. 

In addition, we introduce the concept of transaction 
finish degree and its relevant properties. A set of 
notations are used in the following definitions.  
 
st: Starting time of a transaction  
 t: Current time 
ft: Estimated accomplishing time of a transaction 
dt: Deadline of a transaction  
Ty: Validation transaction 
 
Definition 4: Value function V(T) is the value of 
system about current time when a transaction 
accomplished. Formally, V(T)=c(w1(t-st)-w2dt), where 
w1 and w2 are the weights.  

According to the value function, Critical attribute 
(Ca) of a transaction may be higher, normal or lower. If 
V(T)≥C1, then Ca is higher, else if C1>V(T) >C2, Ca is 
Normal,  otherwise  Ca is Lower. C1, C2 is the 
threshold value. 
 
Definition 5: Deferrable time (sdt) is the time interval 
between deadline and estimated accomplishing time of 
a transaction. Formally, sdt = dt – ft. All the operations 
of a validation transaction have been accomplished at 
validation time, hence, sdtv = dtv – t. 
 
Definition 6: At current time t, the finished ratio of 
transaction  T,  FR(T),  is   defined   by  the  ratio  of  
the  time  interval  between  deadline  and  t and the 
time  interval  between  t  and  staring time. Formally, 
FR(T) = (dt- t)/(t-st).  
 

T1 

T2 st1 

st2 d2 

d1 

t 
c1 
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Definition 7: Conflict transactions set CTS(Tv) 
contains all transactions which have conflicts with Tv. 
The conflict transactions set can be divided into two 
classes in terms of their relative deadline to that of Tv, 
namely CHS(Tv) and CLS(Tv) 
 

CHS(Tv) = {T | T∈ CTS(Tv), dtT < dtTv } and 
         CLS(Tv) = {T | T∈ CTS(Tv), dtT ≥ dtTv } 
 
Definition 8:  Transaction Finish Degree (TFD) of Tv 
is the ratio of FR(Tv) to FR(Ta), where, Ta ∈ CHS(Tv). 
 
Definition 9: For any given transactions Ti and Tj (i ≠j), 
Ti is serious conflict with Tj if  
 

RS(Ti) ∩WS(Tj) ≠Ø and 
                        WS(Ti) ∩RS(Tj) ≠Ø 
 
MVOCC-TFD protocol: Our protocol is based on 
OCC-DASO and we assume that each transaction must 
meet the following three conditions. 
 

• A real-time transaction can commit wile it 
does not conflict with other transaction.  

• A real-time transaction T misses its deadline 
iff  sdtT ≤ 0 

• A transaction can be delayed to commit after 
validation phase. 

 
We designed four rules based on the notion of TFD, 
as presented below. 
 
• R1. For each transaction T, its read set RS(T) 

and its write set WS(T) are declared when it 
starts. 

• R2. The validation phase is divided into 
preparation phase and adjustment phase. In 
preparation phase, TFD values are computed 
and serious conflict is checked. The reordering 
of transaction commitment is performed in 
adjustment phase. 

• R3. If TFDv>1, there is no serious conflict and 
the active transaction Ta is near-to-completed, 
then commitment order is adjusted to Ta, Tv.    

• R4. If TFDv≤1, there is no serious conflict and 
the active transaction Ta is not near-to-
completed, then Ca of the validation 
transaction and the active conflict transaction 
must be checked. If Cav≥Caa, then the 
commitment order is adjusted to Tv, Ta, else Ta, 
Tv. 

• The next two rules describe how the serious 
conflict is resolved by multiversion method. 

• R5. If Tv is serious conflict with active 
transaction   Ta   and   RS(Tv)∩RS(Ta)=Ø,  
then  Tv   reads   the   data   item version  

 
written by transaction Ta and Tv  commits 
immediately after Ta. 

 
• R6. If Tv is serious conflict with active 

transaction Ta and RS(Tv) ∩ RS(Ta)≠Ø, we 
assume the interaction set is RR={x|x∈WS(Tk), 
Tk∈CTS(T)}, then Tk is adjusted to the last 
transaction preceding Tv and Ta. According to 
the relation of Tv and Ta, transactions can be 
continuously   committed   as Tk, Ta,  Tv  or  Tk, 
Tv, Ta. 

 
Correctness and properties 
Lemma 1: The MVOCC-TFD protocol does not 
further delay the commitment of validation transaction 
than the OCC-DASO. 
 
Proof: The MVOCC-TFD protocol differs from OCC-
DASO method in the introduction of TFD and serious 
conflict checking. By definition of TFD, the active 
transactions whose deadline earlier than that of 
validation transaction are first considered. Further, the 
new protocol can resolve the serious conflict problem 
while the OCC-DASO method cannot. Therefore, the 
commitment of validation transaction is not being 
delayed by MVOCC-TFD protocol. 
 
Lemma 2: MVOCC-TFD is a protocol in favor of 
near-to-complete transaction. 
 
Proof: According to R3 of the MVOCC-TFD protocol, 
the near-to-complete transaction is committed first.  
Therefore, the protocol is in favor of the transaction 
that is near to completion. 
 
Lemma 3: All the transactions which can be scheduled 
by OCC-DASO can be scheduled by MVOCC-TFD. 
 
Proof: Since the MVOCC-TFD protocol is based on 
the OCC-DASO method, the new protocol contains the 
three validation rules of OCC-DASO method. 
 
Theorem 1: MVOCC-TFD can avoid more 
unnecessary restarts than OCC-DASO. 
 
Proof: First, by lemma 1, the commitment of validation 
transaction is not being delayed by MVOCC-TFD 
protocol. Then, by lemma 3, if OCC-DASO needs not 
restart transactions, then MVOCC-TFD can also avoid 
restarts in the same context. Moreover, MVOCC-TFD 
can avoid the serious conflict transaction restarts, 
which cannot be avoided by OCC-DASO. 
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Theorem 2: For each execution generated by 
MVOCC-TFD protocol, there is an equivalent 
execution result of a serialization. 
 
Proof: If there is no serious conflict among the 
transactions, the theorem can be supported by the OCC-
DASO serialization theory. Otherwise, if the serious 
conflict occurs among transactions, we consider two 
cases covered by R6 and R7. The read and write 
operations of the transactions are restricted by 
multiversion theory. Therefore, its committed 
projection is equivalent to a 1-serial MV history and 
thus the algorithm can produce serializable histories. 
 

Examples: We will use the two examples show how 
MVOCC-TFD protocol can avoid unnecessary restarts. 
For   example    1,    we   first   compute   the   value   
of TFD.  
TFD = 2

1

FR(T )
FR(T )

= 
2

2

1

1

dt t
t st

dt t
t st

−
−

−
−

> 1, T1 ∈ CHS(T2).  
 
Following the MVOCC-TFD protocol, the commitment 
order is T1,T2. Hence, 
H:  r1[a] w1[b] r2[b] w1[c]r2[c]v2 r1[d]v1 c1 v2 c2. 

There is no transaction restart and both 
transactions can meet their deadlines.  

For example 2, the MVOCC-TFD protocol can 
schedule T1 and T2 correctly after checking the TFD 
and the interaction set of T1 and T2. 
 

PERFORMANCE EVALUATION 
 

In this section, we present simulation results to 
show the performance of our protocol MVOCC-TFD 
compared with three other concurrency control 
protocols.  
 
Simulation model: We have carried out a set of 
experiments in order to demonstrate feasibility of our 
algorithms in practice. RTMMDBTP is architecture for 
real-time, main-memory database management systems. 
This platform consists of a main-memory database and 
optimistic concurrency control protocols. All 
experiments were conducted on the RTMMDBTP 
prototype database and were executed on a 2.8GHz 
Pentium4 processor with 512MB main memory using 
Windows2000 operating system. In this study, a 
transaction is discarded immediately after it misses its 
deadline. All parameters are shown in Table 1. 
 

 
Table 1:  Parameters 
Parameter Description Value 

DBSize Number of data objects in database 9000 
ArrRate Average arrival rate of transactions 100-500 
Deadline All transactions are firm transactions Firm 
CPUTime CPU computation time 10ms 
MinSlack  Minimum slack factor 2 
MaxSlack Maximum slack factor 4 
WOP  Write only probability  0-100% 
ROP  Read only probability 0-100% 
 

The primary performance metric is the percentage 
of transactions which miss their deadlines, denoted as 
Miss Ratio (MR). We will compare the MR of 
MVOCC-TFD protocol with that of OCC-DA, OCC-TI 
and OCC-DATI protocols. We use the following 
formula for deadline-assignment to a transaction: 

 
Deadline = st(T) + et(T)*lock_factor(T), where  
 

• st(T) and et(T) denote the starting time and 
estimated execution time, respectively  

• lock_factor(T) = 1 − (the number of data items 
accessed by T) / (the total number of data 
items needed by T) 

 

 
 

Fig. 2: Fraction of 10% write transaction 
 

 
 

Fig. 3: Fraction of 40% write transaction 
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Performance analysis: In the first set of experiments, 
a fixed fraction of write transactions has been used 
while varying the arrival rate from 100 to 500 
transactions per second. In Fig. 2 and Fig. 3, the 
fraction of write transactions is 10 and 40%.  

From results in Fig. 2 and Fig. 3, we can conclude 
that the more transactions arrived per second, the 
higher transaction restarts ratio. We can also observe 
that the restarts ratio is higher when increasing the 
fraction of write transactions. Since OCC-DA and 
OCC-TI do not have effective methods to manage write 
operations, they are adversely affected when the write 
transactions fraction is increased. Thanks for 
introducing timestamps; the OCC-DATI protocol can 
reduce write conflicts to some extent. The MVOCC-
TFD protocol outperforms all the other protocols. It can 
reduce the unnecessary restarts of near-to-completed 
transactions because of the multiversion mechanism. 

   
 

Fig. 4: Arrival rate 200 trans/s 
 

  
 

Fig. 5: Arrival rate 300 trans/s 
 

In the second serials of experiments, a fixed arrival rate 
of transactions has been used with the fraction of write   
transactions varying from 10 to 100%. Figure 4 and 5 show     
that the performance of MVOCC-TFD is better than 
OCC-DA, OCC-TI and OCC-DATI protocol. When 
there are read only transactions, all four protocols can  

 
schedule effectively. While increasing the write 
transactions, the performance of MVOCC-TFD is 
better than others. 
 

CONCLUSIONS 
 

Although the number of transaction restarts is 
reduced by dynamic adjustment of serialization order, 
there are still some unnecessary restarts. In this study, 
we propose a new method called transaction finish 
degree and a new optimistic concurrency control 
protocol MVOCC-TFD. It reduces the number of near-
to-completed transactions restart. In addition, by 
adopting multiversion mechanism, MVOCC-TFD 
resolved the serious conflict problem which cannot be 
handled by OCC-DASO. Furthermore, a wealth of 
detailed experiments show the number of transaction 
restarts with MVOCC-TFD is less than that with OCC-
DASO. To conclude, our proposed MVOCC-TFD 
protocol outperforms OCC-DASO. 

The described in this study can be extended in 
several   ways.   First,   we   have   not   considered    
the nested transactions and distributed requirements, 
although these may be possible from the application 
specification. Second, we have restricted ourselves by 
not distinguishing temporal and non-temporal data 
management. By exploiting the semantic information in 
transactions and the type of data they access, the 
protocol could be extended to provide a higher degree 
of concurrency. Finally, in this study, we considered 
the problem of real-time concurrency control in a 
database system. There are other issues need to be 
considered in designing a comprehensive RTDBS, 
including architectural issues, recovery and data models. 
We will integrate these issues in our future research 
plan. 
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