
Journal of Computer Science 1 (4): 471-476, 2005
ISSN 1549-3636
© Science Publications, 2005

Corresponding Author: Han Qi-Long, Department of Computer Science, Harbin Institute of Technology, Harbin 150000,
China Phone: 86-451-13936101522

471

Real-time Optimistic Concurrency Control based on Transaction Finish Degree

1Han Qilong , 1,2Hao Zhongxiao
1Department of Computer Science, Harbin Institute of Technology, Harbin 150000, China

2Department of Computer Science and Technology, Harbin University of Science and Technology,
Harbin 150080, China

Abstract: Concurrency control is one of the main issues in the studies of real-time database systems.
Optimistic concurrency control algorithms have the attractive properties of being non-blocking and
deadlock-free. However, they have the problems of late conflict detection and transaction restarts.
Although the number of transaction restarts is reduced by dynamic adjustment of serialization order in
real-time database systems, they are still some unnecessary transaction restarts. In this study, we
propose a new method called Transaction Finish Degree (TFD) and a new Multiversion Optimistic
Concurrency Control algorithm based on TFD (MVOCC-TFD), which can reduce the number of
unnecessary restarts. Theoretical analysis and experimental results demonstrate that the new algorithm
can outperform the previous ones.
 Key words: real-time database, concurrency, scheduling algorithm, transaction finish degree

INTRODUCTION

Real-Time Database Systems (RTDBS) are

transaction processing systems that attempt to satisfy
the timing constraints associated with each incoming
transaction. In RTDBS, the primary performance
criterion is timeliness level, not average response time
or throughput. Thus, scheduling of transactions is
driven by priority considerations rather than fairness
considerations. Many researches have been devoted to
design appropriate concurrency control algorithms for
RTDBS. Most concurrency control algorithms for
RTDBS are based on one of the following basic
concurrency control mechanisms: locking[1-3] or
optimistic concurrency control[4-6].

Optimistic concurrency control protocols have the
nice properties of being non-blocking and deadlock-
free. These properties make them especially attractive
for RTDBS. As conflict resolution between transactions
is delayed until transactions are close to completion,
there will be more information available for making the
choice in resolving the conflict. However, the problem
with optimistic concurrency control protocols is the late
conflict detection, which leads to huge overhead
because some near-to-complete transactions have to be
restarted. So it is important to design new methods to
minimize the number of transaction restarts. The OCC-
DA[7], OCC-TI[8] and OCC-DAT[9,10] concurrency
control protocols are based on Dynamic Adjustment of
Serialization Order (OCC-DASO), avoiding some
unnecessary restarts. Hence, the number of transaction

restarts with these protocols is smaller than that with
other optimistic concurrency control protocols, such as
OCC-BC[11], OCC-WAIT[7] and WAIT-X[1,7].
Unfortunately, there are still some unnecessary restarts
with these protocols, especially the near-to-complete
transaction restarts.

In this study, we propose a new method, called
Transaction Finish Degree (TFD), which can further
avoid the near-to-complete transaction restarts. Based
on TFD, we also develop a multiversion optimistic
concurrency control protocol, called MVOCC-TFD.
With the new protocol, the number of transaction
restarts is smaller than that with OCC-DASO.

PROBLEMS WITH OCC-DASO

In this section, we will motivate our work by
illustrating the problems associated with OCC-DASO
algorithms. The validation algorithm of OCC-DASO
can be simply written as:

RS(Tv) ∩WS(Ta)≠Ø, Tv→Ta,
WS(Tv) ∩RS(Ta)≠Ø, Ta→Tv,

WS(Tv) ∩WS(Ta)≠Ø, Tv→Ta .

Although these algorithms provide dynamic

adjustment execution order to decrease the number of
unnecessary transaction restarts, they do not resolve the
problem of near-to-finished transaction restarts and can
not work under serious conflicts condition.

We will use two examples to illustrate such
problems. Before that, we first introduce a set of

J. Comp. Sci., 1 (4): 471-476, 2005

 472

notations. We use ri[x] and wi[x] to denote read and
write operation, respectively, on data object x by
transaction Ti and let di, ci and vi denote deadline,
commitment and validation of transaction Ti. Each
Transaction T has a Read Set, RS(T) and a Write Set,
WS(T), when T starts its execution.

Fig. 1: OCC-DASO data conflict decision

Example 1: Consider transactions T1 and T2,
T1: r1[a]w1[b]w1[c]r1[d]
T2: r2[b]r2[c].
H1: r1[a] w1[b] r2[b] w1[c]r2[c]v2 c2 r1[d]v1 c1.

The execution profile of two concurrently
executing transactions, T1 and T2, is shown in Fig. 1. T1
has a start time st1 and deadline d1, similarly T2 has a
start time st2 and deadline d2. Suppose at time t = v2,
when transaction T1 is close to completion, transaction
T2 reaches its validation point and detects a conflict
with T1. Following the OCC-DASO algorithms, the
serialization order is adjusted as T2T1, and then
transaction T1 has no chance of meeting its deadline.

Example 2: Consider transactions T1 and T2,
T1: r1[a]w1[b]w1[c]
T2: r2[b]r2[c]w2[a]
H1: r1[a] w1[b] r2[b] r2[c] w2[a]v2 w1[c]v1.

The validation transaction T2 has serious conflict
with active transaction T1 for RS(T2) ∩ WS(T1)≠Ø and
WS(T2) ∩RS(T1))≠Ø. The OCC-DASO algorithms
can not deal with this condition.

The above examples show the problems of OCC-
DASO algorithms. To overcome these problems, we
propose a new method, which can resolve the problem
of near-to-complete transaction restarts and handle the
serious conflict transaction scheduling problem as well.

A NEW REAL-TIME MULTIVERSION
CONCURRENCY CONCTROL PROTOCOL

As explained in the previous sections, although the

OCC-DASO algorithms highlight some major strengths
of optimistic concurrency control in real-time database
systems, there remains potential for improving its
performance. In this section, we present a new
multiversion optimistic concurrency control algorithms
based on the transaction finish degree, called MVOCC-
TFD.

Transaction finish degree and multiversion: The
objectives of concurrency control in RTDBS are to
avoid inconsistent retrievals and to preserve the correct
state of the database. Serializability is the definition of
correctness for concurrency control in database systems.
To describe serializability, we use similar definitions as
presented in[12].

Definition 1: A Multiversion(MV) History H is serial
if for any two transactions, Ti and Tj, that appear in H,
either all of Tis operations precede all of Tjs or
vice versa.

Definition 2: A serial MV history H is 1-serial (or one-
copy serial) iff for all i, j and some data item x, if Ti
reads the value of x created by Tj, then i = j, or Tj is the
last transaction preceding Ti that writes into any version
of x.

Definition 3: An MV history H is one-copy serializable
(or 1SR) if its committed projection, C(H), is
equivalent to a 1-serial MV history, where C(H) is the
history obtained from H by deleting all operations that
do not belong to committed transactions in H.

In addition, we introduce the concept of transaction
finish degree and its relevant properties. A set of
notations are used in the following definitions.

st: Starting time of a transaction
 t: Current time
ft: Estimated accomplishing time of a transaction
dt: Deadline of a transaction
Ty: Validation transaction

Definition 4: Value function V(T) is the value of
system about current time when a transaction
accomplished. Formally, V(T)=c(w1(t-st)-w2dt), where
w1 and w2 are the weights.

According to the value function, Critical attribute
(Ca) of a transaction may be higher, normal or lower. If
V(T)≥C1, then Ca is higher, else if C1>V(T) >C2, Ca is
Normal, otherwise Ca is Lower. C1, C2 is the
threshold value.

Definition 5: Deferrable time (sdt) is the time interval
between deadline and estimated accomplishing time of
a transaction. Formally, sdt = dt – ft. All the operations
of a validation transaction have been accomplished at
validation time, hence, sdtv = dtv – t.

Definition 6: At current time t, the finished ratio of
transaction T, FR(T), is defined by the ratio of
the time interval between deadline and t and the
time interval between t and staring time. Formally,
FR(T) = (dt- t)/(t-st).

T1

T2 st1

st2 d2

d1

t
c1

c2

time

J. Comp. Sci., 1 (4): 471-476, 2005

 473

Definition 7: Conflict transactions set CTS(Tv)
contains all transactions which have conflicts with Tv.
The conflict transactions set can be divided into two
classes in terms of their relative deadline to that of Tv,
namely CHS(Tv) and CLS(Tv)

CHS(Tv) = {T | T∈ CTS(Tv), dtT < dtTv } and
 CLS(Tv) = {T | T∈ CTS(Tv), dtT ≥ dtTv }

Definition 8: Transaction Finish Degree (TFD) of Tv
is the ratio of FR(Tv) to FR(Ta), where, Ta ∈ CHS(Tv).

Definition 9: For any given transactions Ti and Tj (i ≠j),
Ti is serious conflict with Tj if

RS(Ti) ∩WS(Tj) ≠Ø and
 WS(Ti) ∩RS(Tj) ≠Ø

MVOCC-TFD protocol: Our protocol is based on
OCC-DASO and we assume that each transaction must
meet the following three conditions.

• A real-time transaction can commit wile it
does not conflict with other transaction.

• A real-time transaction T misses its deadline
iff sdtT ≤ 0

• A transaction can be delayed to commit after
validation phase.

We designed four rules based on the notion of TFD,
as presented below.

• R1. For each transaction T, its read set RS(T)

and its write set WS(T) are declared when it
starts.

• R2. The validation phase is divided into
preparation phase and adjustment phase. In
preparation phase, TFD values are computed
and serious conflict is checked. The reordering
of transaction commitment is performed in
adjustment phase.

• R3. If TFDv>1, there is no serious conflict and
the active transaction Ta is near-to-completed,
then commitment order is adjusted to Ta, Tv.

• R4. If TFDv≤1, there is no serious conflict and
the active transaction Ta is not near-to-
completed, then Ca of the validation
transaction and the active conflict transaction
must be checked. If Cav≥Caa, then the
commitment order is adjusted to Tv, Ta, else Ta,
Tv.

• The next two rules describe how the serious
conflict is resolved by multiversion method.

• R5. If Tv is serious conflict with active
transaction Ta and RS(Tv)∩RS(Ta)=Ø,
then Tv reads the data item version

written by transaction Ta and Tv commits
immediately after Ta.

• R6. If Tv is serious conflict with active

transaction Ta and RS(Tv) ∩ RS(Ta)≠Ø, we
assume the interaction set is RR={x|x∈WS(Tk),
Tk∈CTS(T)}, then Tk is adjusted to the last
transaction preceding Tv and Ta. According to
the relation of Tv and Ta, transactions can be
continuously committed as Tk, Ta, Tv or Tk,
Tv, Ta.

Correctness and properties
Lemma 1: The MVOCC-TFD protocol does not
further delay the commitment of validation transaction
than the OCC-DASO.

Proof: The MVOCC-TFD protocol differs from OCC-
DASO method in the introduction of TFD and serious
conflict checking. By definition of TFD, the active
transactions whose deadline earlier than that of
validation transaction are first considered. Further, the
new protocol can resolve the serious conflict problem
while the OCC-DASO method cannot. Therefore, the
commitment of validation transaction is not being
delayed by MVOCC-TFD protocol.

Lemma 2: MVOCC-TFD is a protocol in favor of
near-to-complete transaction.

Proof: According to R3 of the MVOCC-TFD protocol,
the near-to-complete transaction is committed first.
Therefore, the protocol is in favor of the transaction
that is near to completion.

Lemma 3: All the transactions which can be scheduled
by OCC-DASO can be scheduled by MVOCC-TFD.

Proof: Since the MVOCC-TFD protocol is based on
the OCC-DASO method, the new protocol contains the
three validation rules of OCC-DASO method.

Theorem 1: MVOCC-TFD can avoid more
unnecessary restarts than OCC-DASO.

Proof: First, by lemma 1, the commitment of validation
transaction is not being delayed by MVOCC-TFD
protocol. Then, by lemma 3, if OCC-DASO needs not
restart transactions, then MVOCC-TFD can also avoid
restarts in the same context. Moreover, MVOCC-TFD
can avoid the serious conflict transaction restarts,
which cannot be avoided by OCC-DASO.

J. Comp. Sci., 1 (4): 471-476, 2005

 474

Theorem 2: For each execution generated by
MVOCC-TFD protocol, there is an equivalent
execution result of a serialization.

Proof: If there is no serious conflict among the
transactions, the theorem can be supported by the OCC-
DASO serialization theory. Otherwise, if the serious
conflict occurs among transactions, we consider two
cases covered by R6 and R7. The read and write
operations of the transactions are restricted by
multiversion theory. Therefore, its committed
projection is equivalent to a 1-serial MV history and
thus the algorithm can produce serializable histories.

Examples: We will use the two examples show how
MVOCC-TFD protocol can avoid unnecessary restarts.
For example 1, we first compute the value
of TFD.
TFD = 2

1

FR(T)
FR(T)

=
2

2

1

1

dt t
t st

dt t
t st

−
−

−
−

> 1, T1 ∈ CHS(T2).

Following the MVOCC-TFD protocol, the commitment
order is T1,T2. Hence,
H: r1[a] w1[b] r2[b] w1[c]r2[c]v2 r1[d]v1 c1 v2 c2.

There is no transaction restart and both
transactions can meet their deadlines.

For example 2, the MVOCC-TFD protocol can
schedule T1 and T2 correctly after checking the TFD
and the interaction set of T1 and T2.

PERFORMANCE EVALUATION

In this section, we present simulation results to
show the performance of our protocol MVOCC-TFD
compared with three other concurrency control
protocols.

Simulation model: We have carried out a set of
experiments in order to demonstrate feasibility of our
algorithms in practice. RTMMDBTP is architecture for
real-time, main-memory database management systems.
This platform consists of a main-memory database and
optimistic concurrency control protocols. All
experiments were conducted on the RTMMDBTP
prototype database and were executed on a 2.8GHz
Pentium4 processor with 512MB main memory using
Windows2000 operating system. In this study, a
transaction is discarded immediately after it misses its
deadline. All parameters are shown in Table 1.

Table 1: Parameters
Parameter Description Value

DBSize Number of data objects in database 9000
ArrRate Average arrival rate of transactions 100-500
Deadline All transactions are firm transactions Firm
CPUTime CPU computation time 10ms
MinSlack Minimum slack factor 2
MaxSlack Maximum slack factor 4
WOP Write only probability 0-100%
ROP Read only probability 0-100%

The primary performance metric is the percentage
of transactions which miss their deadlines, denoted as
Miss Ratio (MR). We will compare the MR of
MVOCC-TFD protocol with that of OCC-DA, OCC-TI
and OCC-DATI protocols. We use the following
formula for deadline-assignment to a transaction:

Deadline = st(T) + et(T)*lock_factor(T), where

• st(T) and et(T) denote the starting time and
estimated execution time, respectively

• lock_factor(T) = 1 − (the number of data items
accessed by T) / (the total number of data
items needed by T)

Fig. 2: Fraction of 10% write transaction

Fig. 3: Fraction of 40% write transaction

J. Comp. Sci., 1 (4): 471-476, 2005

 475

Performance analysis: In the first set of experiments,
a fixed fraction of write transactions has been used
while varying the arrival rate from 100 to 500
transactions per second. In Fig. 2 and Fig. 3, the
fraction of write transactions is 10 and 40%.

From results in Fig. 2 and Fig. 3, we can conclude
that the more transactions arrived per second, the
higher transaction restarts ratio. We can also observe
that the restarts ratio is higher when increasing the
fraction of write transactions. Since OCC-DA and
OCC-TI do not have effective methods to manage write
operations, they are adversely affected when the write
transactions fraction is increased. Thanks for
introducing timestamps; the OCC-DATI protocol can
reduce write conflicts to some extent. The MVOCC-
TFD protocol outperforms all the other protocols. It can
reduce the unnecessary restarts of near-to-completed
transactions because of the multiversion mechanism.

Fig. 4: Arrival rate 200 trans/s

Fig. 5: Arrival rate 300 trans/s

In the second serials of experiments, a fixed arrival rate
of transactions has been used with the fraction of write
transactions varying from 10 to 100%. Figure 4 and 5 show
that the performance of MVOCC-TFD is better than
OCC-DA, OCC-TI and OCC-DATI protocol. When
there are read only transactions, all four protocols can

schedule effectively. While increasing the write
transactions, the performance of MVOCC-TFD is
better than others.

CONCLUSIONS

Although the number of transaction restarts is
reduced by dynamic adjustment of serialization order,
there are still some unnecessary restarts. In this study,
we propose a new method called transaction finish
degree and a new optimistic concurrency control
protocol MVOCC-TFD. It reduces the number of near-
to-completed transactions restart. In addition, by
adopting multiversion mechanism, MVOCC-TFD
resolved the serious conflict problem which cannot be
handled by OCC-DASO. Furthermore, a wealth of
detailed experiments show the number of transaction
restarts with MVOCC-TFD is less than that with OCC-
DASO. To conclude, our proposed MVOCC-TFD
protocol outperforms OCC-DASO.

The described in this study can be extended in
several ways. First, we have not considered
the nested transactions and distributed requirements,
although these may be possible from the application
specification. Second, we have restricted ourselves by
not distinguishing temporal and non-temporal data
management. By exploiting the semantic information in
transactions and the type of data they access, the
protocol could be extended to provide a higher degree
of concurrency. Finally, in this study, we considered
the problem of real-time concurrency control in a
database system. There are other issues need to be
considered in designing a comprehensive RTDBS,
including architectural issues, recovery and data models.
We will integrate these issues in our future research
plan.

REFERENCES

1. Kao, B. and H. Garcia-Molina, 1995. An overview
of real-time database systems. Advances in Real-
Time Systems. Prentice Hall, pp: 463-486.

2. Huang, J., J. Stankovic, K. Ramamritham and D.
Towsley, 1991. On using Priority inheritance in
real-time databases. In Proc. of the 12th IEEE
Real-Time Systems Symposium. IEEE Computer
Society Press, San Antonio, Texas, USA,
pp: 210-221.

3. Lam, K.W. and S.L. Hung, 1997. Integrated
concurrency control protocol for hard real-time
database systems. Computers and Digital
Techniques, 7: 214-218

J. Comp. Sci., 1 (4): 471-476, 2005

 476

4. Chiu, A ， B. Kao and K. Yiu Lam, 1997.

Comparing two-phase locking and optimistic
concurrency control protocols in multiprocessor
Parallel and Distributed Real-Time Systems, 4:
141-148.

5. Huang, J., J. A. Stankovic and K. Ramamritham,
1991. Experimental evaluation of real-time
optimistic concurrency control schemes. In Proc.
the 17th VLDB Conf., pp: 35~46.

6. Lee, B. and Hwang, 2002. Optimistic concurrency
control based on timestamp interval for broadcast
environment. In Proc. the 6th East European
Conference in Advances in Databases and
Information Systems.

7. Haritsa, J. R., M. J. Carey and M. Livny, 1990.
Dynamic real-time optimistic concurrency control.
In Proc. 11th Real-Time Symposium, pp: 94-103

8. Lee, J., 1994. Concurrent Control Algorithms for

Real-time Database Systems, PhD thesis, Faculty
of the School of Eng. and Applied Sci., Univ.
Virginia.

9. Lindstrom, J., 2003. Optimistic concurrency
control methods for real-time database systems.
Ph.D Thesis. Univ. Helsinki, Finland.

11. Haritsa, J. R., M. J. Carey and M. Livny, 1990. On
being optimistic about real-time constraints. In:
Proc. 9th ACM Symposium on Principles of
Database Systems, pp: 331-343.

10. Konana, P., J. Lee and S. Ram, 1997. Updating
timestamp interval for dynamic adjustment of
serialization order in optimistic concurrency
control-time interval protocol. Inform. Processing
Lett.,63: 189-193.

12. Bernstein, P. A., V. Hadzilacos and N. Goodman,
1987. Concurrency control and Recovery in
Database Systems. Addison-Wesley.

