
Journal of Computer Science 2 (3): 276-282, 2006 
ISSN 1549-3636 
© 2006 Science Publications 

Corresponding Author: Hasan Al-Sakran, Information Technology College/MIS Department, Yarmouk University/Irbed 
/Jordan, Tel: 962-2-7211111, Fax: 962-2-7274725 

276 

 
Software Cost Estimation Model Based on Integration of Multi-agent 

and Case-Based Reasoning 
 

Hasan Al-Sakran 
Information Technology College, MIS Department, Yarmouk University, Irbed, Jordan 

 
Abstract: Accurate software cost estimation is a vital task that affects the firm's software investment 
decisions before committing required resources to that project or bidding for a contract. This study 
proposes an improved Case-Based Reasoning (CBR) approach integrated with multi-agent technology 
to retrieve similar projects from multi-organizational distributed datasets. The study explores the 
possibility of building a software cost estimation model by collecting software cost data from 
distributed predefined project cost databases. The model applying CBR method to find similar projects 
in historical data derived from measured software projects developed by different organizations.  
 
Key words: Mobile agent, COCOMO, CBR, magnitude of relative error 

 
INTRODUCTION 

 
 Software becomes increasingly expensive to 
develop and is a major cost factor in any information 
system budget. The accuracy of estimation of software 
project cost has a direct and significant impact on the 
quality of the firm’s software investment decisions.  
Management carefully considers costs and benefits of 
software before committing the required resources to 
that project or bidding for a contract. Accurately 
estimating a new software project is still a goal of every 
project manager. Unfortunately such preliminary 
estimation is difficult to measure because there is little 
information about the project at an early stage.  
 Over- or under-estimation of software costs may 
result in costly errors such as projects are rejected as 
too expensive; projects may omit important features; 
projects are abandoned. Accurate project estimation can 
reduce these unnecessary costs and increase the 
organization's efficiency and effectiveness. 
 Most of today's software cost estimation models are 
built on using data from projects of single organization. 
Using such data has well known benefits such as ease 
of understanding and controlling of collected data.  But 
different researchers have reported contradictory results 
using different software cost estimation modeling 
techniques. Myrtveit and Srensrud[1] state that it is still 
difficult to generalize many of the obtain results. This is 
due to the characteristics of the datasets being used and 
datasets’ small size. The fact, that many studies rely on 
using organization-specific datasets, makes the results 
more biased because the data at hand are specific to a 
given organization. Briand[2] found that cost estimation 
models using single-company dataset do not perform 
significantly better than models using multi-companies 
dataset. Characteristics of the datasets being used play a 
major role. 

 It has been established that relying on organization-
specific datasets leads to poor software cost predictions 
due to the following problems[3, 4]: 
 
* It's too expensive to collect data on previous 

projects from single organization. 
* Information about older projects may no longer be 

valid or appropriate due to the new technologies 
that organization is using. 

* It's difficult to ensure consistency of the collected 
data. 

 
 Massively collected data about software projects 
present an interesting aspect of software cost 
estimation. One purpose of this research is to address 
the issues of the dataset characteristics and usage of a 
large number of datasets. This study is based on 
selecting and using a large number of datasets coming 
from distributed software project databases of different 
organizations of comparable domains. This approach 
supports the fast construction of cost estimation models, 
it also helps organizations, who do not have their own 
data or expertise, to access external data come from 
similar types of projects to build their own cost 
estimation model; provides larger and up to date project 
datasets. 
 Recent research has demonstrated the potential of 
the use of Artificial Intelligence (AI) methodology to 
estimate the cost of software to provide both 
consistency and more accurate estimates. This study 
presents an alternative approach of software cost 
estimation based upon an AI methodology, namely 
Case Based Reasoning (CBR), similar to the one 
applied by Shepperd et al.[5],  combined with mobile 
agent technology.  The CBR approach makes use of 
previous experience to solve newly encountered 
problems. The past experience is recorded in a case 
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base database. When a new problem emerges, the CBR 
system retrieves projects from the database to find 
similar cases to the current problem and the closest 
match is modified to fit the new problem. The modified 
case also will be stored in the case base as a learned 
case to save the experience and can be reused in the 
future. 
 In CBR problem-solving is seen as a process, 
which involves the retrieval of similar prior cases from 
case bases using mobile agent methodology and the 
adaptation of retrieved cases’ solutions to fit the new 
problem’s requirements.  
 
Related work: Several different directions in the 
research on the estimation of software development 
cost emerged during the last two decades.  Some 
potential solutions of the above problem have been 
developed based on algorithmic models (e.g. 
Constructive Cost Model (COCOMO, COCOMO II[6, 7], 
Function Points, Price-to-win and SLIM[8]), expert 
judgment and estimation by analogy. Most of the 
algorithmic software estimation models are based on 
analytical methods and derived from the statistical or 
numerical analysis of historical projects data. 
 The general form of equation used by COCOMO and 
Function Points methods can be represented as: 
 

yxSE = , 
 
 Where, E is effort, S is size measured as number of 
lines of code or function points, x is a productivity 
parameter and y is economics of scale parameter. 
COCOMO model provides three equations according to 
the project development mode (embedded, semi-
detached and organic). Their parameters need to be 
adjusted to local circumstances. 
 The released version of COCOMO II has been used 
to conduct empirical analysis of the model.  The general 
form of equation used by COCOMO II is: 
 

∏×�×= + EMSXE SFB][
, 

 
 Where, X is baseline multiplicative constant, B is 
baseline exponential constant, SF are scale factors 
(understanding product objectives, flexibility, team 
coherence, etc.), EM are effort multipliers (software 
reliability, database size, reusability, complexity, etc.) 
 None of mentioned above methods have been 
shown to be convincing or consistent in solving the 
problem. Some of these algorithmic methods may lead 
to relative errors as high as 600%[9]. The prediction 
accuracy is measured based on standard metrics such as 
Magnitude of Relative Error (MRE). MRE is defined 
as: 

actual

estimatedactual

Effort
EffortEffort

MRE
−=

 

 If the value of MRE is large, then the model over-
estimates the cost, while a large negative value would 
indicate, that the model under-estimates the software 
cost. 
 Researchers have begun to turn their attention to 
non-algorithmic methods and in particular, to a set of 
approaches based on expert judgment, rule based, 
neural networks and case based reasoning. 
 Expert judgment methods rely on the use of human 
expertise to estimate software cost[10]. These techniques 
are useful in the absence of quantified empirical data 
and are based on prior knowledge of experts in the 
field. Instead of starting estimating software cost from 
scratch, software managers rely on their past 
experiences and understanding of the problem. They 
attempt to find past cases similar to the new project and 
to adapt old estimations to fit the new situation. 
However, this human-based approach lacks a consistent 
and systematic procedure for cost estimation and as a 
result, might lead to over- or under-estimation of the 
cost of the software project. The major drawback of this 
method is that an estimate is only as good as the 
expert’s opinion. 
 The rule based systems can be used for estimation 
when no further rules are fired up from known or new 
facts. This technique has been adopted from the 
Artificial Intelligence domain where a known fact fires 
up rules, which in turn may assert new facts. Kellner 
and etc. Kellner, Madachy and Raffo [11] developed a 
rule based system to estimate the cost of software. 
 In the last decade, significant effort has been put 
into the development of software estimation models 
using neural networks[12]. Neural networks are based on 
the principle of learning from example; no prior 
information is specified. Neural network estimation 
models must be trained by providing them with 
historical project data input values (project size, 
complexity, skill levels, etc) and automatically 
adjusting their algorithmic parameter values until it is 
very good at predicting results for the training data set. 
These models suffer from the same kinds of statistical 
problems with the training data as the algorithmic 
techniques. Very large data sets are needed to 
accurately train neural networks. 
 Estimation by analogy based on the comparison of 
the software under consideration with similar projects.  
 There is no single best software cost estimation 
model, but CBR method is rated among the best 
methods in a variety of circumstances[13]. Experiment 
showed that CBR approach provides better accuracy 
than algorithmic methods. CBR systems deal only with 
those problems that occur in practice, while algorithmic 
system must handle all possible problems. CBR 
solutions are derived from form of reasoning which 
close to the human problem solving as opposed to rule 
based or neural nets. CBR can operate in circumstances 
where it is not possible to generate an algorithmic 
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model (no statistically significant relationships could be 
found).  
 
Case based reasoning: Case Based Reasoning (CBR) 
has been attracting much attention recently as a 
paradigm with a wide variety of applications. In this 
study, issues related to construction of a cost estimation 
model and composition of a case, where subcases are 
distributed across different distributed databases, are 
discussed.  
 CBR is an AI methodology combined with 
database of cases related to the topics under 
consideration for re-using past experience. In this 
approach, a reasoner tries to remember previous cases 
similar to the current one and uses them to solve the 
current problem. The CBR systems store therefore 
numerous cases related to the matters considered. Often 
the past experiences provide important clues or direct 
answers to the current problem. 
  CBR technique was described by Aamodt and Plaza[14] 
as combination of the following four processes and 
shown in Fig. 1. 
 
* Retrieve previously experienced case or cases 

related to the current problem.  
* Re-use this or these case(s) in one way or another. 
* Revise the solution based on re-using previous 

cases. 
* Retain the new solution (as a new case) by adding 

it into the existing case-based database. In such a 
way, a CBR system will gradually grow larger and 
become a precious resource. 

 

 
Fig.1: The CBR cycle 
 
Case-based reasoning has several advantages:  
 
* Many early studies showed that CBR presented 

better prediction accuracy than other models. 
* CBR method reflects the same method that human 

experts use when making estimates by applying 
analogical reasoning. 

* CBR can handle both quantitative and qualitative 
data  

* CBR systems can use existing solution and adapt it 
to the current situation. 

* CBR systems can be implemented very quickly. 
* CBR is simple and flexible, compared to 

algorithmic models. 

* To add new knowledge to CBR system, a user only 
needs to add new cases to the system. 

* CBR can effectively support all the steps in the 
software cost estimation process from storing past 
cases, retrieving similar cases to adapting the 
retrieved case for the new project. 

* CBR approach takes advantages of expert prior 
knowledge 

* CBR systems can handle failed cases. (Identify 
potentially high risk situations. 

 
 Recent research by Shepperd's group[5] has created 
a new automated approach to use CBR in software cost 
estimation. The approach is very successful in 
providing accurate estimates. 
 In order to find a case from a large number of 
cases, the similarity of cases should be analyzed. The 
establishing similarity of cases is the basis of CBR and 
case searching. Similarity of cases is influenced by a set 
of attributes which make the case different from others. 
These attributes are the key attributes of a case. The 
cases which have one or more similar key attributes are 
similar. Every key attribute of cases represents the 
cases from a specific perspective. Project size, target 
platform, quality of system requirements are some of 
the attributes that can act as key attributes. One of the 
more likely used key attributes is the project size which 
represents the number of lines of code the project will 
have. It can be estimated using different techniques 
such as Genetic Programming and Neural Networks[15].  
Some attributes, such as development environment, 
application type, business area type and others, can act 
as sub-key attributes.  
 Case searching model is used to compare and filter  
the cases from the case base to find similar cases. The 
case searching model is based on the key and sub-key 
attributes. To make the case searching model more 
effective, case index reflecting the main feature of the 
cases is build. This index is recommended especially 
when the volume of the case base is large. 
 
Mobile agent: Mobile agents can be defined as 
autonomous, problem-solving computational entities 
capable of effectively performing operations in 
dynamic unpredictable environments. Such 
environments are known as multi-agent systems. 
Agents interact and maybe cooperate with other agents. 
They are capable of exercising control over their 
actions and interactions. Using mobile agent technology 
solves the problem of heterogeneity of networks, low 
bandwidth of communication channels, reduces 
network traffic by processing data locally instead of 
transmitting the data over a network. It could accelerate 
development with agent components and enhance 
modularity, reusability, flexibility and reliability.  
 A mobile agent consists of two different parts: the 
code   itself,   which   composes   of the instructions that  
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define the behavior of the agent and its intelligence and 
the current state of execution of the agent. At least three 
major requirements have to be fulfilled for a mobile 
agent to perform its job. They are common execution 
language across heterogeneous networks, for example 
Java; transference of agents across networks through a 
communication mechanism, for example MAP, TCP/IP, 
HTTP, or SMTP; protection of agents against hostile 
server and agent server from malicious agent. Agent 
may protect their data and information by using 
encryption/decryption techniques. 
 A multi-agent system is composed of   intelligent 
agents working towards finding most similar cases. 
Agents access case bases to retrieve the best matching 
case. In such a system, each of the agents may not be 
individually capable of finding the best similar case. 
Each agent may retrieve the best local cases, which, 
when assembled, may not result in the best overall case 
in terms of global measures. But cooperation among 
them may lead to achievement of the final goals of 
finding the most similar case or cases. That means the 
cost prediction of a project does not just rely on few 
projects stored locally, but affected by larger size of 
data (distributed datasets). 
The main characteristics of Intelligent Agents within 
CBR environment are: 
 
* Autonomy: the ability of agents to make 

independent decision; 
* Ability to autonomously learn from experience; 
* Goal-driven: that is the provision of detailed 

knowledge so that goals can be achieved; 
* Mobility: it allows the routing of agents through a 

distributed system; 
* Reactivity: reacting to changes in the environment; 
* Ability to cooperate: a group of agents work 

together to achieve a common goal; 
* Ability to communicate: the agents must to be able 

to communicate with other agents and/or user. 
 
 Agents require knowledge of the current situation, 
skills to accomplish tasks and make decisions on how 
to act. 
 Each client agent will search in a local case base. 
And each one is associated with a set of constraints 
representing the requirements of the software cost 
estimation model. Client agents use a centralized search 
mechanism to find an optimal or partially optimal 
projects to a given problem instance. Candidate projects 
are stored at the data structure of the agent. 
 The client agents can be simply divided into three 
types of agents: 
 
* Interface agents: to communicate with the client 
* Mobile information agents: to collect information 

from distributed information resources. 
* Task agents: to solve the problem by selecting the 

best solution from the accumulated information 
collected by the mobile information agents.  

Adaptation of CBR and mobile agent approaches to 
cost estimation model: The complementary properties 
of CBR and mobile agent can be advantageously 
combined to solve the software cost estimation 
problem, where any single technique fails to provide a 
satisfactory solution. The mobile agent can be effective 
in addressing the problem of getting data from different 
companies. Within this approach, CBR software cost 
estimation process consists of the following 
components: 
 
* Formal case representation: past cases should be 

classified by their attributes and focus on a specific 
group of cases relevant to the current situation.  

* Identification of project attributes for which an 
estimate is required. These attributes are used as 
basis for finding similar past projects of known 
costs.  

* Hierarchical case indexing: construction of an 
efficient case indexing technique to reduce search 
time for retrieving similar cases.  The closeness 
between a past case and a new one is assessed 
based on similarity metric for accurate case 
matching. 

* Knowledge - based cost estimate adaptation: search 
for the relevant knowledge in case and if there is no 
complete match between the retrieved case(s) and 
the new one, revision of the existing solution to fit 
new problem.  

 
 The most important software cost factors 
(attributes) to be considered in CBR method are: 
 
* Project size (the size of source code measured in 

number of lines of codes, number of HTML pages, 
or functions points) 

* Organization type (Manufacturing, banking, 
services, administration); 

* Target platform (mainframe, Network, PC, etc.); 
* Quality of system requirements; 
* Development type (new development, 

redevelopment, enhancement); 
* Business area type ( engineering, sales, legal, 

inventory);  
* Application type (transaction system, office 

automation, management information system, 
executive information system); 

* Project security ( need for security); 
* Complexity of the software; 
* Staff experience, availability and skills; 
* Development environment; 
* Others (the volume of documentation, the number 

of developers, the number of different files created, 
the number of bugs reported and so on). 

 
 Case representation scheme is dependent on the 
case size and the complexity of the attributes describing 
the case. A case of the software cost estimation system 
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consists mainly of three parts: the description part, 
solution parts and the relationship part. The description 
part contains the attributes values describing the 
behaviors of the case, while the solution part contains 
the solutions. The relationship part describes the 
relationship information among cases. Multiple cases 
can be use to represent a single problem. 
 When the number of cases in case-base is very 
large, it is important to formulate indexing technique 
that helps locate similar cases close to each other 
efficiently. David W. Patterson and others in[16] propose 
two efficient indexing schemes designed for use in 
CBR systems. The first one is based on a matrix of 
cases indexed by their attribute values. The second one 
is an extension of the first one by combining the matrix 
with an additional tree-like indexing structure. The 
strength of these techniques lies in its ability to improve 
retrieval efficiency over time by reusing previously 
encountered solutions.  
 CBR solves the software cost estimation problem 
in the following way. The attributes or features of the 
current problem (project) are identified. Then the 
current problem is matched against the cases (projects) 
in the case base (using the most important attributes) 
and most similar cases (with known cost) are ranked. 
The most similar case from these ranked cases is 
retrieved. Searching for similar case is not only by the 
features in the description part but also by the relation 
among cases. 
  If the retrieved case completely matches the 
current problem, it is used to suggest a solution, which 
is reused and tested for success. If partial match occurs, 
then the proposed solution is revised and adapted to fit 
new needs[17]. Retrieving a case starts with identifying a 
set of relevant descriptors (cost factors), such as  
software size (number of lines of code), function points, 
security needs, use of software tools, etc. and ends 
when a best matching case has been selected. The final 
solution becomes a new case in the case base library.  
The degree of similarity in CBR is assessed by means 
of a matching function such as the Nearest Neighbor 
(NN) matching function[18]: 
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Where N is the new case (new project), P is the 
previous case (previous project), n is the number of 
features in each case, i is an individual feature from 1 to 
n, f is a match function for attribute a in cases N and P 
and wa is the weight of the a-th attribute which reflects 
the relative importance of that attribute. 
 It is possible that more than one case will have the 
same value of similarity coefficient or the values of 
similarity coefficients for different cases can be very 
close. To select the most suitable case from these 

candidate cases, the system, through the task agent, will 
suggest the best case to choose. 
 The overall framework of the proposed system is 
presented in Fig. 2. It is composed of three different 
major components: front end user machine, back end 
server and the software cost estimation servers on the 
web. The system has a number of agents. Each agent is 
designed to represent a specific functional unit. This 
requires three different agent types, one mobile and two 
static (interface agent, task agent and mobile 
information agent). 
 The client at the front end user machine interacts 
with the system through a web browser. The back end 
server has a CBR database storing the previous 
projects, task manager agent and   mobile information 
agent. The mobile information agent will visit the 
software cost estimation servers on the web. Each time 
a client conduct a search, searching criteria will be 
generated at the back end server and sent by task agent 
as a data, stored in the mobile information agent, into 
the web. The mobile information agent will roam the 
web searching for the required information based on the 
given criteria. When information is found, the mobile 
information agent will send it back to the task agent at 
the back end server where it will be filtered and then 
presented to the user. The information mobile agent 
searches case base for the most similar project 
according to the similarity metric and uses it as a 
candidate project. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Architecture of the software cost estimation 

model 
 
 The process of estimation of software cost by CBR 
and multi-agent consists of the following steps: 
After the client communicates with the system through 
interface agent, each client agents should execute the 
following algorithms: 
Each mobile information agent executes: 
  
Do local retrieval: Select projects of the same types, 
similar application domains, size, etc. (to be defined by 
the client) from CBR database. 
The task agent executes: 
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* Receive candidate projects from each mobile 
information agent; 

* Merge candidate projects; 
* Choose best project(s). 
 
 If a project is retrieved, then the attributes that do 
not match the attributes of the current project will be 
grouped as a new project and these unmatched 
attributes are used to do the retrieval again. This 
process will be repeated until all attributes are collected 
and the task manager will merge the collected projects. 
If there are many projects which have the same amount 
of attributes, the one which is the most similar (the 
nearest neighbor)[19] to the current project will be 
selected by the task agent. 
 A prototype of the software cost estimation system 
is implemented using Java so that the system can run on 
heterogeneous platforms and a CBR inference engine. 
The implementation consists of the server side and the 
client side connected through the Internet. The server 
side consists of the server agents and CBR database. 
The client side consists of a browser that has support 
for XML and Java applets. Internet information server 
and servlets are used for the web servers (Java Servlet 
Class running in server). MS-SQL is used for database 
programming. Communication between agents 
established through Java Agent Development. The 
software agents communicate with each other in XML 
messages. 
  Request for similar projects is constructed at the 
client interface agent. The main attributes of the new 
project are entered. The task agent of the back end 
server will do data analysis for this request though 
conducting case identification using CBR database. The 
system is connected to the database by JDBC to access 
the data for initial reference of similar cases. The 
mobile information agents will carry the main attributes 
and their values and then search for similar projects in 
different web servers. The response results will be 
forwarded back to the task agent to choose the best 
matching project. The final result will be presented to 
the client though his agent browser.  
 

CONCLUSION 
 
 Software cost estimation is an important and hard 
management task. This is due to the lack of information 
on making decisions in the early phases of the project 
development.  
 In this study, a new hybrid software cost estimation 
model, which integrates case-based reasoning and 
multi-agent technology, has been presented. The study 
described the application of cased-based reasoning to 
estimating the cost for developing software project 
using multi-organization databases integrated with 
mobile agent technology. The major property of CBR is 
saving the previous experience into case base and re-
use past solved problems in order to propose solutions 

to new problems later. The experience of a solved 
problem can be stored into the case base. 
  Large collected software cost data from different 
sources present an interesting aspect of cost estimation 
model, which may behave better than models developed 
on projects coming from single database. The proposed 
system may be used to produce estimates for new 
projects by software organizations that do not have 
historical projects cost data or just starting up their 
software business. 
 Future work primarily involves conducting 
experiments on sensitive empirical data coming from 
different sources using the proposed integrated 
approach of CBR and multi-agent techniques. 
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