
Journal of Computer Science 2 (3): 276-282, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Hasan Al-Sakran, Information Technology College/MIS Department, Yarmouk University/Irbed
/Jordan, Tel: 962-2-7211111, Fax: 962-2-7274725

276

Software Cost Estimation Model Based on Integration of Multi-agent

and Case-Based Reasoning

Hasan Al-Sakran
Information Technology College, MIS Department, Yarmouk University, Irbed, Jordan

Abstract: Accurate software cost estimation is a vital task that affects the firm's software investment
decisions before committing required resources to that project or bidding for a contract. This study
proposes an improved Case-Based Reasoning (CBR) approach integrated with multi-agent technology
to retrieve similar projects from multi-organizational distributed datasets. The study explores the
possibility of building a software cost estimation model by collecting software cost data from
distributed predefined project cost databases. The model applying CBR method to find similar projects
in historical data derived from measured software projects developed by different organizations.

Key words: Mobile agent, COCOMO, CBR, magnitude of relative error

INTRODUCTION

 Software becomes increasingly expensive to
develop and is a major cost factor in any information
system budget. The accuracy of estimation of software
project cost has a direct and significant impact on the
quality of the firm’s software investment decisions.
Management carefully considers costs and benefits of
software before committing the required resources to
that project or bidding for a contract. Accurately
estimating a new software project is still a goal of every
project manager. Unfortunately such preliminary
estimation is difficult to measure because there is little
information about the project at an early stage.
 Over- or under-estimation of software costs may
result in costly errors such as projects are rejected as
too expensive; projects may omit important features;
projects are abandoned. Accurate project estimation can
reduce these unnecessary costs and increase the
organization's efficiency and effectiveness.
 Most of today's software cost estimation models are
built on using data from projects of single organization.
Using such data has well known benefits such as ease
of understanding and controlling of collected data. But
different researchers have reported contradictory results
using different software cost estimation modeling
techniques. Myrtveit and Srensrud[1] state that it is still
difficult to generalize many of the obtain results. This is
due to the characteristics of the datasets being used and
datasets’ small size. The fact, that many studies rely on
using organization-specific datasets, makes the results
more biased because the data at hand are specific to a
given organization. Briand[2] found that cost estimation
models using single-company dataset do not perform
significantly better than models using multi-companies
dataset. Characteristics of the datasets being used play a
major role.

 It has been established that relying on organization-
specific datasets leads to poor software cost predictions
due to the following problems[3, 4]:

* It's too expensive to collect data on previous

projects from single organization.
* Information about older projects may no longer be

valid or appropriate due to the new technologies
that organization is using.

* It's difficult to ensure consistency of the collected
data.

 Massively collected data about software projects
present an interesting aspect of software cost
estimation. One purpose of this research is to address
the issues of the dataset characteristics and usage of a
large number of datasets. This study is based on
selecting and using a large number of datasets coming
from distributed software project databases of different
organizations of comparable domains. This approach
supports the fast construction of cost estimation models,
it also helps organizations, who do not have their own
data or expertise, to access external data come from
similar types of projects to build their own cost
estimation model; provides larger and up to date project
datasets.
 Recent research has demonstrated the potential of
the use of Artificial Intelligence (AI) methodology to
estimate the cost of software to provide both
consistency and more accurate estimates. This study
presents an alternative approach of software cost
estimation based upon an AI methodology, namely
Case Based Reasoning (CBR), similar to the one
applied by Shepperd et al.[5], combined with mobile
agent technology. The CBR approach makes use of
previous experience to solve newly encountered
problems. The past experience is recorded in a case

J. Computer Sci., 2 (3): 276-282, 2006

 277

base database. When a new problem emerges, the CBR
system retrieves projects from the database to find
similar cases to the current problem and the closest
match is modified to fit the new problem. The modified
case also will be stored in the case base as a learned
case to save the experience and can be reused in the
future.
 In CBR problem-solving is seen as a process,
which involves the retrieval of similar prior cases from
case bases using mobile agent methodology and the
adaptation of retrieved cases’ solutions to fit the new
problem’s requirements.

Related work: Several different directions in the
research on the estimation of software development
cost emerged during the last two decades. Some
potential solutions of the above problem have been
developed based on algorithmic models (e.g.
Constructive Cost Model (COCOMO, COCOMO II[6, 7],
Function Points, Price-to-win and SLIM[8]), expert
judgment and estimation by analogy. Most of the
algorithmic software estimation models are based on
analytical methods and derived from the statistical or
numerical analysis of historical projects data.
 The general form of equation used by COCOMO and
Function Points methods can be represented as:

yxSE = ,

 Where, E is effort, S is size measured as number of
lines of code or function points, x is a productivity
parameter and y is economics of scale parameter.
COCOMO model provides three equations according to
the project development mode (embedded, semi-
detached and organic). Their parameters need to be
adjusted to local circumstances.
 The released version of COCOMO II has been used
to conduct empirical analysis of the model. The general
form of equation used by COCOMO II is:

∏×�×= + EMSXE SFB][
,

 Where, X is baseline multiplicative constant, B is
baseline exponential constant, SF are scale factors
(understanding product objectives, flexibility, team
coherence, etc.), EM are effort multipliers (software
reliability, database size, reusability, complexity, etc.)
 None of mentioned above methods have been
shown to be convincing or consistent in solving the
problem. Some of these algorithmic methods may lead
to relative errors as high as 600%[9]. The prediction
accuracy is measured based on standard metrics such as
Magnitude of Relative Error (MRE). MRE is defined
as:

actual

estimatedactual

Effort
EffortEffort

MRE
−=

 If the value of MRE is large, then the model over-
estimates the cost, while a large negative value would
indicate, that the model under-estimates the software
cost.
 Researchers have begun to turn their attention to
non-algorithmic methods and in particular, to a set of
approaches based on expert judgment, rule based,
neural networks and case based reasoning.
 Expert judgment methods rely on the use of human
expertise to estimate software cost[10]. These techniques
are useful in the absence of quantified empirical data
and are based on prior knowledge of experts in the
field. Instead of starting estimating software cost from
scratch, software managers rely on their past
experiences and understanding of the problem. They
attempt to find past cases similar to the new project and
to adapt old estimations to fit the new situation.
However, this human-based approach lacks a consistent
and systematic procedure for cost estimation and as a
result, might lead to over- or under-estimation of the
cost of the software project. The major drawback of this
method is that an estimate is only as good as the
expert’s opinion.
 The rule based systems can be used for estimation
when no further rules are fired up from known or new
facts. This technique has been adopted from the
Artificial Intelligence domain where a known fact fires
up rules, which in turn may assert new facts. Kellner
and etc. Kellner, Madachy and Raffo [11] developed a
rule based system to estimate the cost of software.
 In the last decade, significant effort has been put
into the development of software estimation models
using neural networks[12]. Neural networks are based on
the principle of learning from example; no prior
information is specified. Neural network estimation
models must be trained by providing them with
historical project data input values (project size,
complexity, skill levels, etc) and automatically
adjusting their algorithmic parameter values until it is
very good at predicting results for the training data set.
These models suffer from the same kinds of statistical
problems with the training data as the algorithmic
techniques. Very large data sets are needed to
accurately train neural networks.
 Estimation by analogy based on the comparison of
the software under consideration with similar projects.
 There is no single best software cost estimation
model, but CBR method is rated among the best
methods in a variety of circumstances[13]. Experiment
showed that CBR approach provides better accuracy
than algorithmic methods. CBR systems deal only with
those problems that occur in practice, while algorithmic
system must handle all possible problems. CBR
solutions are derived from form of reasoning which
close to the human problem solving as opposed to rule
based or neural nets. CBR can operate in circumstances
where it is not possible to generate an algorithmic

J. Computer Sci., 2 (3): 276-282, 2006

 278

model (no statistically significant relationships could be
found).

Case based reasoning: Case Based Reasoning (CBR)
has been attracting much attention recently as a
paradigm with a wide variety of applications. In this
study, issues related to construction of a cost estimation
model and composition of a case, where subcases are
distributed across different distributed databases, are
discussed.
 CBR is an AI methodology combined with
database of cases related to the topics under
consideration for re-using past experience. In this
approach, a reasoner tries to remember previous cases
similar to the current one and uses them to solve the
current problem. The CBR systems store therefore
numerous cases related to the matters considered. Often
the past experiences provide important clues or direct
answers to the current problem.
 CBR technique was described by Aamodt and Plaza[14]
as combination of the following four processes and
shown in Fig. 1.

* Retrieve previously experienced case or cases

related to the current problem.
* Re-use this or these case(s) in one way or another.
* Revise the solution based on re-using previous

cases.
* Retain the new solution (as a new case) by adding

it into the existing case-based database. In such a
way, a CBR system will gradually grow larger and
become a precious resource.

Fig.1: The CBR cycle

Case-based reasoning has several advantages:

* Many early studies showed that CBR presented

better prediction accuracy than other models.
* CBR method reflects the same method that human

experts use when making estimates by applying
analogical reasoning.

* CBR can handle both quantitative and qualitative
data

* CBR systems can use existing solution and adapt it
to the current situation.

* CBR systems can be implemented very quickly.
* CBR is simple and flexible, compared to

algorithmic models.

* To add new knowledge to CBR system, a user only
needs to add new cases to the system.

* CBR can effectively support all the steps in the
software cost estimation process from storing past
cases, retrieving similar cases to adapting the
retrieved case for the new project.

* CBR approach takes advantages of expert prior
knowledge

* CBR systems can handle failed cases. (Identify
potentially high risk situations.

 Recent research by Shepperd's group[5] has created
a new automated approach to use CBR in software cost
estimation. The approach is very successful in
providing accurate estimates.
 In order to find a case from a large number of
cases, the similarity of cases should be analyzed. The
establishing similarity of cases is the basis of CBR and
case searching. Similarity of cases is influenced by a set
of attributes which make the case different from others.
These attributes are the key attributes of a case. The
cases which have one or more similar key attributes are
similar. Every key attribute of cases represents the
cases from a specific perspective. Project size, target
platform, quality of system requirements are some of
the attributes that can act as key attributes. One of the
more likely used key attributes is the project size which
represents the number of lines of code the project will
have. It can be estimated using different techniques
such as Genetic Programming and Neural Networks[15].
Some attributes, such as development environment,
application type, business area type and others, can act
as sub-key attributes.
 Case searching model is used to compare and filter
the cases from the case base to find similar cases. The
case searching model is based on the key and sub-key
attributes. To make the case searching model more
effective, case index reflecting the main feature of the
cases is build. This index is recommended especially
when the volume of the case base is large.

Mobile agent: Mobile agents can be defined as
autonomous, problem-solving computational entities
capable of effectively performing operations in
dynamic unpredictable environments. Such
environments are known as multi-agent systems.
Agents interact and maybe cooperate with other agents.
They are capable of exercising control over their
actions and interactions. Using mobile agent technology
solves the problem of heterogeneity of networks, low
bandwidth of communication channels, reduces
network traffic by processing data locally instead of
transmitting the data over a network. It could accelerate
development with agent components and enhance
modularity, reusability, flexibility and reliability.
 A mobile agent consists of two different parts: the
code itself, which composes of the instructions that

Given Problem

New Case CBR

Most Similar
Case

New Case

Approved
 Case

Map

Retrieve

Adapt Revise

Test Add

J. Computer Sci., 2 (3): 276-282, 2006

 279

define the behavior of the agent and its intelligence and
the current state of execution of the agent. At least three
major requirements have to be fulfilled for a mobile
agent to perform its job. They are common execution
language across heterogeneous networks, for example
Java; transference of agents across networks through a
communication mechanism, for example MAP, TCP/IP,
HTTP, or SMTP; protection of agents against hostile
server and agent server from malicious agent. Agent
may protect their data and information by using
encryption/decryption techniques.
 A multi-agent system is composed of intelligent
agents working towards finding most similar cases.
Agents access case bases to retrieve the best matching
case. In such a system, each of the agents may not be
individually capable of finding the best similar case.
Each agent may retrieve the best local cases, which,
when assembled, may not result in the best overall case
in terms of global measures. But cooperation among
them may lead to achievement of the final goals of
finding the most similar case or cases. That means the
cost prediction of a project does not just rely on few
projects stored locally, but affected by larger size of
data (distributed datasets).
The main characteristics of Intelligent Agents within
CBR environment are:

* Autonomy: the ability of agents to make

independent decision;
* Ability to autonomously learn from experience;
* Goal-driven: that is the provision of detailed

knowledge so that goals can be achieved;
* Mobility: it allows the routing of agents through a

distributed system;
* Reactivity: reacting to changes in the environment;
* Ability to cooperate: a group of agents work

together to achieve a common goal;
* Ability to communicate: the agents must to be able

to communicate with other agents and/or user.

 Agents require knowledge of the current situation,
skills to accomplish tasks and make decisions on how
to act.
 Each client agent will search in a local case base.
And each one is associated with a set of constraints
representing the requirements of the software cost
estimation model. Client agents use a centralized search
mechanism to find an optimal or partially optimal
projects to a given problem instance. Candidate projects
are stored at the data structure of the agent.
 The client agents can be simply divided into three
types of agents:

* Interface agents: to communicate with the client
* Mobile information agents: to collect information

from distributed information resources.
* Task agents: to solve the problem by selecting the

best solution from the accumulated information
collected by the mobile information agents.

Adaptation of CBR and mobile agent approaches to
cost estimation model: The complementary properties
of CBR and mobile agent can be advantageously
combined to solve the software cost estimation
problem, where any single technique fails to provide a
satisfactory solution. The mobile agent can be effective
in addressing the problem of getting data from different
companies. Within this approach, CBR software cost
estimation process consists of the following
components:

* Formal case representation: past cases should be

classified by their attributes and focus on a specific
group of cases relevant to the current situation.

* Identification of project attributes for which an
estimate is required. These attributes are used as
basis for finding similar past projects of known
costs.

* Hierarchical case indexing: construction of an
efficient case indexing technique to reduce search
time for retrieving similar cases. The closeness
between a past case and a new one is assessed
based on similarity metric for accurate case
matching.

* Knowledge - based cost estimate adaptation: search
for the relevant knowledge in case and if there is no
complete match between the retrieved case(s) and
the new one, revision of the existing solution to fit
new problem.

 The most important software cost factors
(attributes) to be considered in CBR method are:

* Project size (the size of source code measured in

number of lines of codes, number of HTML pages,
or functions points)

* Organization type (Manufacturing, banking,
services, administration);

* Target platform (mainframe, Network, PC, etc.);
* Quality of system requirements;
* Development type (new development,

redevelopment, enhancement);
* Business area type (engineering, sales, legal,

inventory);
* Application type (transaction system, office

automation, management information system,
executive information system);

* Project security (need for security);
* Complexity of the software;
* Staff experience, availability and skills;
* Development environment;
* Others (the volume of documentation, the number

of developers, the number of different files created,
the number of bugs reported and so on).

 Case representation scheme is dependent on the
case size and the complexity of the attributes describing
the case. A case of the software cost estimation system

J. Computer Sci., 2 (3): 276-282, 2006

 280

Web Browser

End User Computer

Interface Agent

Task Agent
CBR

Cost Estimation Server

Agent Server CBR

Server

CBR

Cost Estimation Server

Agent Server

INTERNET

Mobile Agent

Back End Server

consists mainly of three parts: the description part,
solution parts and the relationship part. The description
part contains the attributes values describing the
behaviors of the case, while the solution part contains
the solutions. The relationship part describes the
relationship information among cases. Multiple cases
can be use to represent a single problem.
 When the number of cases in case-base is very
large, it is important to formulate indexing technique
that helps locate similar cases close to each other
efficiently. David W. Patterson and others in[16] propose
two efficient indexing schemes designed for use in
CBR systems. The first one is based on a matrix of
cases indexed by their attribute values. The second one
is an extension of the first one by combining the matrix
with an additional tree-like indexing structure. The
strength of these techniques lies in its ability to improve
retrieval efficiency over time by reusing previously
encountered solutions.
 CBR solves the software cost estimation problem
in the following way. The attributes or features of the
current problem (project) are identified. Then the
current problem is matched against the cases (projects)
in the case base (using the most important attributes)
and most similar cases (with known cost) are ranked.
The most similar case from these ranked cases is
retrieved. Searching for similar case is not only by the
features in the description part but also by the relation
among cases.
 If the retrieved case completely matches the
current problem, it is used to suggest a solution, which
is reused and tested for success. If partial match occurs,
then the proposed solution is revised and adapted to fit
new needs[17]. Retrieving a case starts with identifying a
set of relevant descriptors (cost factors), such as
software size (number of lines of code), function points,
security needs, use of software tools, etc. and ends
when a best matching case has been selected. The final
solution becomes a new case in the case base library.
The degree of similarity in CBR is assessed by means
of a matching function such as the Nearest Neighbor
(NN) matching function[18]:

,
*)P,(

),(

1

1

�

�

=

==
n

i
a

aa

n

i
a

w

wNf
PNSimilarity

Where N is the new case (new project), P is the
previous case (previous project), n is the number of
features in each case, i is an individual feature from 1 to
n, f is a match function for attribute a in cases N and P
and wa is the weight of the a-th attribute which reflects
the relative importance of that attribute.
 It is possible that more than one case will have the
same value of similarity coefficient or the values of
similarity coefficients for different cases can be very
close. To select the most suitable case from these

candidate cases, the system, through the task agent, will
suggest the best case to choose.
 The overall framework of the proposed system is
presented in Fig. 2. It is composed of three different
major components: front end user machine, back end
server and the software cost estimation servers on the
web. The system has a number of agents. Each agent is
designed to represent a specific functional unit. This
requires three different agent types, one mobile and two
static (interface agent, task agent and mobile
information agent).
 The client at the front end user machine interacts
with the system through a web browser. The back end
server has a CBR database storing the previous
projects, task manager agent and mobile information
agent. The mobile information agent will visit the
software cost estimation servers on the web. Each time
a client conduct a search, searching criteria will be
generated at the back end server and sent by task agent
as a data, stored in the mobile information agent, into
the web. The mobile information agent will roam the
web searching for the required information based on the
given criteria. When information is found, the mobile
information agent will send it back to the task agent at
the back end server where it will be filtered and then
presented to the user. The information mobile agent
searches case base for the most similar project
according to the similarity metric and uses it as a
candidate project.

Fig. 2: Architecture of the software cost estimation

model

 The process of estimation of software cost by CBR
and multi-agent consists of the following steps:
After the client communicates with the system through
interface agent, each client agents should execute the
following algorithms:
Each mobile information agent executes:

Do local retrieval: Select projects of the same types,
similar application domains, size, etc. (to be defined by
the client) from CBR database.
The task agent executes:

J. Computer Sci., 2 (3): 276-282, 2006

 281

* Receive candidate projects from each mobile
information agent;

* Merge candidate projects;
* Choose best project(s).

 If a project is retrieved, then the attributes that do
not match the attributes of the current project will be
grouped as a new project and these unmatched
attributes are used to do the retrieval again. This
process will be repeated until all attributes are collected
and the task manager will merge the collected projects.
If there are many projects which have the same amount
of attributes, the one which is the most similar (the
nearest neighbor)[19] to the current project will be
selected by the task agent.
 A prototype of the software cost estimation system
is implemented using Java so that the system can run on
heterogeneous platforms and a CBR inference engine.
The implementation consists of the server side and the
client side connected through the Internet. The server
side consists of the server agents and CBR database.
The client side consists of a browser that has support
for XML and Java applets. Internet information server
and servlets are used for the web servers (Java Servlet
Class running in server). MS-SQL is used for database
programming. Communication between agents
established through Java Agent Development. The
software agents communicate with each other in XML
messages.
 Request for similar projects is constructed at the
client interface agent. The main attributes of the new
project are entered. The task agent of the back end
server will do data analysis for this request though
conducting case identification using CBR database. The
system is connected to the database by JDBC to access
the data for initial reference of similar cases. The
mobile information agents will carry the main attributes
and their values and then search for similar projects in
different web servers. The response results will be
forwarded back to the task agent to choose the best
matching project. The final result will be presented to
the client though his agent browser.

CONCLUSION

 Software cost estimation is an important and hard
management task. This is due to the lack of information
on making decisions in the early phases of the project
development.
 In this study, a new hybrid software cost estimation
model, which integrates case-based reasoning and
multi-agent technology, has been presented. The study
described the application of cased-based reasoning to
estimating the cost for developing software project
using multi-organization databases integrated with
mobile agent technology. The major property of CBR is
saving the previous experience into case base and re-
use past solved problems in order to propose solutions

to new problems later. The experience of a solved
problem can be stored into the case base.
 Large collected software cost data from different
sources present an interesting aspect of cost estimation
model, which may behave better than models developed
on projects coming from single database. The proposed
system may be used to produce estimates for new
projects by software organizations that do not have
historical projects cost data or just starting up their
software business.
 Future work primarily involves conducting
experiments on sensitive empirical data coming from
different sources using the proposed integrated
approach of CBR and multi-agent techniques.

REFERENCES

1. Myrtveit and E. Srensrud, 1999. A controlled

experiment to assess the benefits of estimating with
analogy and regression models. IEEE Trans.
Software Engg., 25: 510-525.

2. Braind, L., E.L.K. Emam and K. Maxwell, 1999.
An assessment and comparison of common
software cost estimation modeling techniques. Intl.
Conf. Software Engg., Los Angeles, CA, pp: 313-
322.

3. Briand, L.C., T. Langley and I. Wieczorek, 2000. A
replicated assessment of common software cost
estimation techniques. Proc. 22nd Intl. Conf.
Software Engg, ICSE, pp: 377-386.

4. Mendes, E. and B. Kitchenham, 2004. Further
comparison of cross-company and within-company
effort estimation models for web applications. Proc.
10th Intl. Symp. Software Metrics (METRICS’04),
pp: 348-357.

5. Shepperd, M. and C. Schofield, 1997. Estimating
software project effort using analogies. IEEE
Trans. Software Engg., 23: 12.

6. Boehm, B. and E. Horowitz et al., 2000. Software
Cost Estimation with COCOMO II. Prentice-Hall.

7. Clark, B., S. Chulani and B. Boehm, 1998.
Calibrating the COCOMO II Post-Architecture
Model. Proc. Intl. Conf. Software Engg., pp: 477-
480.

8. Chulani, S., B. Boehm and B. Steece, 1999.
Bayesian analysis of empirical software
engineering cost models. IEEE Trans. Software
Engg., 25: 573-583.

9. Kemerer, C., 1987. An empirical validation of
software cost estimation models. Commun. ACM,
pp: 416-429.

10. Host, M. and C. Wohlin, 1998. Experimental study
of individual subjective effort estimation and
combinations of estimates. Proc. Intl. Conf.
Software Engg., pp: 332-339.

11. Kellner, Madachy and Raffo, 1999. Software
process modeling and simulation: Why, what, how.
J. Systems and Software, 46: 91-105.

J. Computer Sci., 2 (3): 276-282, 2006

 282

12. Gray, A. and S. MacDonell, 1997. A comparison of
techniques for developing predictive models of
software metrics. Information and Software
Technol., 39: 425-437.

13. Ruhe, M, R. Jeffery and I. Wieczorek, 2003. Cost
estimation for web applications. Intl. Conf. Software
Engg., Washington, DC, USA., pp: 285-294.

14. Aamodt, A. and E. Plaza, 1994. Case-based
reasoning: Foundational issues, methodological
variations and system approaches. AI
Communications, 7: 39-59.

15. Regolin, E. and G. de Souza et al., 2003. Exploring
machine learning techniques for software size
estimation. Proc. XXIII Intl. Conf. Chilean
Computer Science Society, IEEE, pp: 130-136.

16. Patterson, D.W., M. Galushka and Niall Rooney,
2005. Characterization of a novel indexing
technique for case-based reasoning. Artif.l Intell.
Rev., 23: 359-393.

17. Mendes, E., S. Counsell and N. Mosley, 2001.
Towards the prediction of development effort for
hypermedia applications. Proc. ACM Hypertext'01
Conf., Denmark, pp: 249-258.

18. Auer, M. and S. Biffi, 2004. Increasing the
accuracy and reliability of analogy-based cost
estimation with extensive project feature dimension
weighting. Proc. Intl. Symp. Empirical Software
Engg., pp: 147-155.

19. El-Emam, L.C.K., D. Surmann, I. Wieczorek and
K.D. Maxwell, 1999. An assessment and
comparison of common cost estimation modeling
techniques. Proc. ICSE 1999, Los Angeles, USA,
pp: 313-322.

