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Abstract: An important application of sequential mining technique is maximal frequent traversal 
pattern mining, since users’ traversal pattern and motivation are latent in session sequence at some time 
segment. In this paper, a Frequent Traversal Pattern Tree structure with dwell time (FTP-Tree) is 
designed to store, compress the session database, and simplify the configuration of dwell time 
thresholds during mining. A novel algorithm based on bidirectional  constraints, called Maximal 
Frequent Traversal Pattern Mining (MFTPM) is presented, which traverses quickly FTP-Tree and 
discovers maximal frequent traversal patterns from the session sequences. Experimental results show 
that MFTPM can significantly reduce the average execution time and the storage space for mining 
maximal frequent traversal patterns. Our performance study shows that MFTPM performs muth better 
than previous approaches in the time constraint environment. 
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INTRODUCTION 

 
 Mining Frequent Traversal Patterns (FTP) is an 
important task in web usage mining. Web usage mining 
makes sense of data generated by observing web surf 
sessions or behaviors and finds the relationship among 
different users’ accesses. Sessions, users’ behaviors, 
and traversal data on each web server can be extracted 
from the web logs. Analysis of traversal sequence data 
can obtain trends of users’ interests and provide useful 
information for server performance enhancements, 
restructuring a web site, and directly marketing in e-
commerce. Since web contains mass usage data, it is 
indubitable that we can obtain abundant FTP. However, 
some FTP are not only numerous but also meaningless. 
Many traditional algorithms generally mine the 
candidate traversal sequences to get FTP. If a traversal 
sequence of length L is a FTP, then 2L-1 candidate 
subsequences must be enumerated one by one. If the 
length of sequence is too long, we have to spend 
considerable execution time and waste vast disk space. 
In addition, autonomic mining FTP in web environment 
is unrealistic. So, we needn’t mine FTP but Maximal 
Frequent Traversal Patterns (MFTP), since the most 
information of FTP is contained in MFTP. In [1], J.Han 
introduces that data mining is an interactive process, 
and decision-makers should directly take part in the 
process through query language or GUI for mining 
MFTP. Thus we design a method to settle those 
problems, which decision-makers can give some time 
parameters to constrain every page in each traversal 
sequence of sessions. Although the method possibly 

limits the frequency of some pages, we can discover 
more interesting MFTP.  
 There exist many algorithms for mining FTP and 
MFTP, such as GSP[2], MSPS and SPADE etc. But 
these algorithms mostly aim at the whole database. 
SPADE[3] are often fit for small databases. If the 
database is too large and the minimal support is very 
low, SPADE will generate large numbers of candidate 
sequences, which are too big to be loaded into memory. 
GSP is an efficient algorithm for mining large database. 
However, the length of the longest frequent sequences 
determines the number of scanning database it requires. 
Consequently, if there exist very long frequent 
sequences and if the database grows huge, the I/O cost 
of GSP could be very large. Although MSPS[4] based 
sampling technique can reduce much more search space 
and based pruning technique can remove many 
candidate subsequences, it possibly loses lots of useful 
information of traversal sequences, and only gets 
approximate result. In addition, the rate of sample 
directly affects the precision of mining MFTP. In this 
case, we propose a new MFTPM algorithm for mining 
MFTP. 
 The rest of the paper is organized as follows: The 
definitions of dwell time, session FTP, and MFTP are 
described in the section 2. In the Section 3, we construct 
the FTP-Tree. MFTPM, performance evaluation and 
experimental results are described in the section 4 and 
the section 5 . Finally, Section 6 draws a conclusion 
researched and describes the future work.  
 

PROBLEM DEFINITION 
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Let P = {P1, P2,…, Pn} be the complete set of web 
pages. Let DB be the traversal sequence database to be 
mined, DB is a set of sessions, DB= {S1, S2,…, Sm} and 
Si = < (P1, t1)(P2, t2)…(Pr, tr)> where Si ⊂DB, Pj∈Si, 
1≤i≤m, 1≤j≤r, tj is the time of requesting Pj. Each 
record in DB includes session identifier (Sid), traversal 
sequence and timestamp. We specify t1 = 0 in order to 
compute dwell time conveniently, where t1 is the 
requesting time of each entry page in every session. 
Consider two sequences sa=<a1,a2,…,an> and 
sb=<b1,b2,…,bm>(n≤m). If there exists integers 
1≤i1<i2<...≤m with a1=bi1, a2=bi2,...,an=bim, then sa is a 
subsequence of sb, and sb is a super-sequence of sa 
sequences. sa is called a prefix of sb if and only if (1) 
bi=ai for 1 ≤ i ≤ n ≤ m; (2) an ⊆ bm; and (3) all pages in 
(bm-an) are alphabetically ordered after those in an. 
Given a session database DB formed by traversal 
sequences, the support count of a traversal sequence si 
is denoted by Count (si), where Count (si) denotes the 
number of session in DB that contains si. The length of 
a traversal sequence si is the number of pages in the 
sequence. A traversal sequence of length k is called a k-
traversal sequence. 
[Definition] Dwell time is the actual time that a user 
spends on a content page in a sequence of session. 

Let Pi, Pi+1 be two adjacent pages in a sequence of 
session. Ti is the time of request of Pi, Ti+1 is the time of 
request of Pi+1. Suppose T3 is the time of loading Pi, T4 
is the time of loading the ancillary files, and T0 is the 
dwell time of Pi. According to Fig. 1, T3=T1-Ti, T4=T2-
T1. 
 
                                 Jpeg 
       Pi                Gif      Java                                        Pi+1 
Loading Pi Loading ancillary files Dwell time of Pi 
Ti             T1                                 T2                        Ti+1 

Fig. 1: Dwell time of Pi 
 

The dwell time of Pi can be calculated by finding 
the difference between the requests of Pi and Pi+1, and 
subtracting the time required loading Pi and the 
ancillary files from the value (using equation (1) to 
calculate T0). But the time required to loading streaming 
media files like real audio and mpeg may not be 
considered for the dwell time computation of Pi. 
T0=Ti+1 -Ti -[(T1 -Ti)+(T2 -T1)] or Ti+1 -Ti -(T3+T4)       (1) 
 
T0=Ti+1 -Ti - (T1- Ti) or Ti+1 - Ti –T3                            (2) 

This paper will take equation (2) to compute T0. In 
the case, the time of loading ancillary files (T4) doesn’t 
be considered. Decision-makers can give two time 
thresholds according to their purpose. The two 
thresholds are minimal dwell time �1 and maximal dwell 
time �2. We can utilize �1 and �2 to constrain dwell time 
T0 of every page, and remove the unreasonable pages 
from the sequence s. 

Let Pi be a page in traversal sequence si, Pi.t0 be its 
dwell time of Pi. FTPset denotes a complete set, which 
consists of the frequent traversal patterns. 

(1) If Pi.t0<�1, then Pi∉si, Pi∉FTSset (si ⊆DB). 
This case indicates the content of Pi doesn’t satisfy the 
want of the user, or the page is error. 

(2) If Pi.t0>�2, then Pi∉si, Pi∉FTSset (si ⊆DB). 
This case indicates the user may exit from the web site, 
or he revisits the Pi that bad been saved in the cache of 
browsers. We know Pi in cache doesn’t leave behind 
any information in web logs. 

As we know, there are many time granularities 
used to describe dwell time and timestamp, such as 
hour, minute and second and so on. We choose minute 
as the unit of dwell time, this is because hour is too 
coarse and second too detailed for mining MFTP, which 
was introduced in [5]. 
[Definition] A session is a page sequence ordered by 
timestamp in usage data record, or is a visit performed 
by a user from the time when he enters the web sites to 
the time he leaves. 

Before mining FTP and MFTP, different sessions 
for the same user should be reconstructed. During the 
reconstruction, two time constraints are very crucial. 
One is that the duration for any session can’t exceed a 
defined threshold. The most commonly used timeout 
threshold is 30min, which was proposed in [6]. The 
other is that the time gap between any two continuously 
visited pages can’t exceed another defined threshold. 
The most commonly used threshold is 10min, which 
was presented in [7]. 
[Definition] Traversal sequence si is a Frequent 
Traversal Pattern (FTP) if and only if Count 
(si) ≥ Min_sup and �1 ≤ si.T0 ≤ 30min (�2=30min), where 
Min_sup is a user specified support threshold, 30min is 
upper limit time threshold of a session sequence. A FTP 
of length k is called a k-FTP. 
[Definition] Given a traversal sequence set V, si is a 
Maximal Frequent Traversal Pattern (MFTP) if and 
only if ∃ si’ s.t. (si’∈V) ∧ (si’ ⊆ si) ∧ (si’ ≠ si), where si’ 
is an assumed sequence. 
[Property] If si is a MFTP, and si is not contained in 
any other traversal sequence in V. We use MFTPS to 
represent the set of all maximal frequent traversal 
sequences in V.  
 

CONSTRUCTION OF TREE STRUCTURE 
 
 In this section, a new in-memory data structure 
called FTP-Tree is constructed. FTP-Tree is a tree 
structure, which must satisfy three necessary conditions. 
First, the tree consists of one root labeled as “null”, a 
set of sequence-prefix subtree as the children of the 
root, and header table. Second, each node in FTP-Tree 
includes four fields: P.name, Node.count, Node.link, 
and Session:Ti. Session:Ti registers which sessions will 
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contain the same page with dwell time, where Ti denotes 
some dwell time of the page. Hence we can easily make 
use of an equation to express the relation between 
Session:Ti and Node.count, represented by 
Node.count=� Page.(Session:Ti). Third, each entry of 
the header table includes three fields: Page, Page.count, 
and Node-link, where Node-link indicates the pointer 
pointing to the first node in FTP-Tree, and the node 
carrying the same name with the Page. The following 
algorithm explains the steps of constructing FTP-Tree. 
Algorithm 1: construct FTP-Tree (T, s) 
Input: Traversal Sequences s1, s2,…, sm, �1, �2, T0 
Output: FTP-Tree// Store and compress database 
Function FTP-Tree (T, s) 
(1) While (Pj ≠ null) and (�1 ≤ Pj.T0 ≤ �2) Do {//Pj∈si, 
si ⊂ {s1, s2,…, sm} 

(2) If (Pj.name=A.name) Then{//A is the ancestor of T 
(3) A.count=A.count+1 
(4) A.count=� A.(Session:Ti)+Session:Pj.T0  
(5) T=A 

(6) Else If(Pj.name=C.name)Then{//C is the child of T 
(7) C.count=C.count+1 
(8) C.count=� C.(Session:Ti)+Session:Pj.T0 
(9) T=C 
(10) Else  

(11) Insert (T, Pj) 
(12) Pj.count=1; Pj= Pj.next} 

(13)end if 
(14)end if 

Given a database of session DB, which consists of 
traversal sequences of users, as Table1 shows. The 
notation Sid represents the identifier of a session. We 
first convert the database DB with timestamp constraint 
into TDB with dwell time constraint. TDB is shown in 
Table2. According to Algorithm1, we are able to use 
FTP-Tree to store and compress TDB. Let the time of 
loading every page in traversal sequence be T3=0.5min, 
the two thresholds of dwell time be �1=1.5min, 
�2=10min (Decision-makers are free to determine the 
values of �1 and �2 according to his purpose for mining 
MFTP). Thus we adopt equation (2) to compute the 
dwell time (T0) of every page. Through scanning TDB, 
we can insert the accessed pages of traversal sequences 
into FTP-Tree as its nodes. But the inserted pages must 
be constrained by �1 and �2, that is, the pages in FTP-
Tree must cater for the two thresholds. For example, 
though page P8 has appeared in s2, its dwell time T0 
(0.5min) is less than �1 (1.5min), therefore P8 can’t link 
to P3. Fig. 2 shows the FTP-Tree of TDB. 

 
Table 1: DB with timestamp constraint 

Sid Traversal Sequence Timestamp 
S1 P1 P2 P3 P4 P2 P5 0,7,16,21,24.5,27,30 

S2 
P1 P2 P3 P4 P3 P2 P5 P7 P5 
P3 P8 

0,3,5,9,12,15,17,21,24,26.5 
,29,30 

S3 P1 P2 P1 P3 P9 0,5.5,13,17.5,26,30 
S4 P3 P9 P7 P9 P9 P4 0,4,9.5,12,17.5,23.5,30 

Table 2: TDB with dwell time constraint 
Sid Traversal Sequence Dwell time 
S1 P1 P2 P3 P4 P2 P5 6.5,8.5,4.5,3,2,2.5 

S2 
P1 P2 P3 P4 P3 P2 P5 P7 P5 
P3 P8 

2.5,1.5,3.5,2.5,2.5,1.5 
3.5,2.5,1.5,2, 0.5 

S3 P1 P2 P1 P3 P9 5,7,4,8,3.5 
S4 P3 P9 P7 P9 P9 P4 3.5,5,2,5,5.5,6 

 
Page  Count  Node-link 
 
                               Null    P3:1,S4:3.5    P9:3    P4:1, S4:6 
                                                 

P7  2                         P1:4          P3:1,S3:8       P7:1,S4:2 
P4  3                                          
P5  3                                         P9:1,S3:3.5 
P9  4                                          
P1  4                         P2:5          P5:3      P3:1,S2:2 
P2  5                                          
P3  6                                 P7:1,S2:2.5 

                                     P3:3           
 

                                       P8:1,S2: 0.5 
P4:2 

Fig. 2 : FTP-Tree of TDB 
 

THE MFTPM ALGORITHM 
 

We apply the following strategies to mine MFTP 
from FTP-Tree. At first, according to �1, �2, 30min, and 
Min_sup specified by user, function MFTPM in 
Algorithm2 can generate every 1-FTP, denoted by �i, as 
initial suffix, the next constructs its prefix traversal 
sequence base B, and finally builds longer traversal 
sequences by every traversal sequence base connecting 
with its suffix �i. For example, if � is a traversal 
sequence base in B, the sequence �∪ �i will be longer 
traversal sequence with �i suffix. If the longer sequence 
�∪ �i can simultaneously satisfy the above parameters, 
then �∪ �i becomes a new FTP. The function executes 
the procedure until all 1-FTP have been done. At last, 
we discover MFTP in FTP with new judging conditions. 
The following algorithm shows the steps for MFTP. 
Algorithm 2: MFTPM 
Input: FTP-Tree T, �1, �2, T0, Min_sup 
Output: MFTPS //Maximal Frequent Traversal Pattern 
Set 
Initialization: MFTPS= ∅  
Function MFTPM (T, �, MFTPS) { 
(1) If T only contains a single path then 
(2) Then { 

(3) Generate MFTP �∪ � 
(4) If ((�∪ �) ≥ Min_sup)) Then { 

(5) If ((� ∪ �) ⊄ MFTPS) and 
((�∪ �) ≠ Sseq)//Sseq is not a subsequence of any other 
frequent traversal sequence in MFTPS 

(6) Then MFTPS= MFTPS ∪ (�∪ �) 
(7) Else Discard �∪ �} 

} 
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(8) Else 
(9) For each �i (�i.count ≥ Min_sup) and (�1 ≤ �i.T0 ≤ �2) 
Do {//�i is a page in the head table 

(10) Generate 1-FTP �i 
(11) S=S ∪ �i, Q=�i.next //Q points to the first 

location of �i in the FTP-Tree 
(12) While (Q ≠ null) and (Q.count ≥ Min_sup) 

and (�1 ≤ Q.T0 ≤ �2) Do {//Q.T0 shows the dwell time 
(13) Generate �i’s prefix traversal sequence 

base �, and construct long traversal sequence �i 
//�i=�∪ �i 

(14) If (�i.count ≥ Min_sup) and 
(�1 ≤ �i.T0 ≤ 30min) Then {//�1 is minimal dwell time in 
long sequence �i. �1=Min (�i.T0) 

(15) S=S ∪ �i, Q=Q.next}// End While 
(16) If (S ≥ Min_sup) Then { 

(17) If (S ⊄ MFTPS) and (S ≠ Sseq) 
(18) Then MFTPS= MFTPS ∪ S 
(19) Else Discard S} 
(20) Exit for loop body} 
 

Table 3: Execution time of MFTPM on BMS-WebVies-1 

ANALYSIS AND PERFORMANCE 
EVALUATION 

 
The analysis of MFTPM algorithm is similar to 

FP-growth[8]. First, given an FTP-Tree T, �1, �2, and 
parameter T0, we mine the MFTP from T with traversal 
strategy. If T only contains a single path of FTP-Tree in 
which each node only has a single child, then we can 
directly get MFTP �∪ �. Utilizing (4)(5)(6)(7) lines 
judge whether �∪ � merge into MFTPS or not. When T 
is multipath FTP-Tree, each �i of catering for (9) line 
should generate 1-FTP and construct prefix traversal 
sequence � for each �i. The long FTP �∪ �i can be 
formed with �i suffix and � prefix in steps (12)(13)(14) 
and (15). The next steps (16)(17) and (18) of MFTPM 
are to determine the set of all maximal frequent 
traversal patterns from the FTP-Tree constructed so far. 
Let’s examine the efficiency of the algorithm by mining 
TDB on condition that three parameters are fulfilled 
Min_sup=0.5, �1=1.5min, �2=10min, the result of 
MFTPS={P1 P2 P3 P4, P1 P2 P5, P9}. 

 
SR NB FTP1 MFTP1 ET1 FTP2 MFTP2 ET2 PT 

1000 625 23 68s 594 19 33s 51.47% 
2000 1134 45 125s 1002 27 59s 52.80% 
4000 1728 21 170s 1365 14 80s 52.94% 
8000 2861 65 314s 2798 57 143s 54.46% 

BMS-
WebVies-1 

16000 3106 54 485s 2983 48 207s 57.32% 
 
Table 4: Execution time of MFTPM on BMS-WebVies-2 

SR NB FTP1 MFTP1 ET1 FTP2 MFTP2 ET2 PT 
1000 542 26 75s 518 23 37s 50.67% 
2000 987 32 114s 860 27 53s 53.51% 
4000 1853 29 185s 1675 18 83s 55.14% 
8000 2741 56 301s 2683 42 132s 56.15% 

BMS-
WebVies-2 

16000 3219 43 532s 3014 39 220s 58.65% 
 
All the experiments are performed on a 2.4GHz 

Pentium 4 processor with 512 megabytes main memory, 
running on Microsoft Windows 2000. In addition, all 
the programs are written in Microsoft/Visual C++ 6.0. 
We pursue the experiments on real datasets to evaluate 
the performance of MFTPM algorithm. The real 
datasets, BMS-WebVies-1 and BMS-WebVies-2, which 
contain several months worth of click sequence data 
from two e-commerce web sites. The two datasets was 
provided by Blue Martini Software[9], and is available 
from the KDD Cup 2000 home page. Collecting the 
same number sequence data of the two datasets, which 
are divided into the different length sessions, and the 
average session contains 5-11 pages. 
Table 5: Notation for analysis 

SR The source of session 
NB The number of session 
FTP1 The number of FTP without �1, �2 
MFTP1 The number of MFTP without �1, �2 
FTP2 The number of FTP with �1, �2 
MFTP2 The number of MFTP with �1, �2 
ET1 Execution time without �1, �2 
ET2 Execution time with �1, �2 
PT The improved performance in percentage 

To test the performance of MFTPM algorithm, 
two experiments are performed. 

The first group experiment: Algorithm2 traverses 
FTP-Tree from two different aspects. One aspect, the 
algorithm doesn’t involve �1, �2, the other contains �1, �2, 

the results given in Table 3 and Table 4. The two tables 
list that the numbers of frequent traversal Patterns 
(FTP1, FTP2) and maximal frequent traversal patterns 
(MFTP1 MFTP2) have little changed with �1, �2, but 
great changes of the execution time have taken place 
obviously. PT (PT=1- ET1

2ET ) changed from 51.47% to 
57.32% in Table 3, from 50.67% to 58.65% in Table 4. 
As the size of NB goes up, the performance of MFTPM 
is clearly predominant. Compared to ET1, ET2 in the 
two tables shortened over two times at low support 
(Min_sup=0.5) and appropriate dwell time constraints 
(�1=1.5min, �2=10min, T0=0.5min). For example, in 
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Table5, when NB size grows 16000, execution time 
changes from 532s to 220s. 

The second group experiment: For measuring the 
performance of MFTPM furthermore, utilizing the 
above datasets, we compare our algorithm with SPADE, 
MSPS and GSP at the different values of Min_sup. In 
Fig. 3 and Fig. 4, we plot total execution time taken by 
MFTPM algorithm and the others for values of 
minimum support threshold Min_sup ranging from 
0.2% to 1.2%. The Figures show how decreasing 
Min_sup leads to an increase in execution time. As seen 
from the result shown in Fig. 3 and Fig. 4, the run time 
of MFTPM is distinctly faster (about 2-3 times faster) 
than SPADE, MSPS and GSP when the support 
threshold goes down. 
 

Execution time (sec.) 
1600  
1400  
1200  
1000  
  800  
  600 
  400 
200 

0 
      0.2      0.4      0.6      0.8     1.0     1.2 
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Fig. 3: Execution time of three algorithms on BMS-
WebVies-1 

Execution time (sec.) 
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  800  
  600 
  400 
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      0.2      0.4      0.6      0.8     1.0     1.2 

Min_sup (%) 
 

Fig. 4: Execution time of three algorithms on BMS-
WebVies-2 

CONCLUSION 
 

In this paper we proposed a new algorithm 
MFTPM that mines the set of all MFTP over the 
traversal sequences, and an in-memory data structure 
called FTP-Tree is constructed for storing FTP. In the 
MFTPM algorithm, a bidirectional dwell time technique 
is used to constrain every page in session sequences, 
which efficiently limits the number of the meaningless 
pages and FTP. Experiments with the decision-makers 
giving the proper constraint parameters show that 
MFTPM can effectively reduce the execution time and 
I/O cost. We also performed extensive experiments 
comparing with GSP, MSPS and SPADE, and the result 
showed that the performance of MFTPM outperformed 
the others. MFTPM algorithm was only examined in the 
static dataset. The next step, we will undertake further 
analysis and experiments in dynamic web click stream. 
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