
Journal of Computer Science 2 (9): 704 - 709, 2006
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author : Jia-Dong Ren, College of Information Science and Engineering, Yanshan University, China
704

MFTPM: Maximum Frequent Traversal Pattern Mining with Bidirectional
Constraints

Jiadong Ren, Xiaojian Zhang and Huili Peng

College of Information Science and Engineering, YanShan University, Qinhuangdao 066004, China

Abstract: An important application of sequential mining technique is maximal frequent traversal
pattern mining, since users’ traversal pattern and motivation are latent in session sequence at some time
segment. In this paper, a Frequent Traversal Pattern Tree structure with dwell time (FTP-Tree) is
designed to store, compress the session database, and simplify the configuration of dwell time
thresholds during mining. A novel algorithm based on bidirectional constraints, called Maximal
Frequent Traversal Pattern Mining (MFTPM) is presented, which traverses quickly FTP-Tree and
discovers maximal frequent traversal patterns from the session sequences. Experimental results show
that MFTPM can significantly reduce the average execution time and the storage space for mining
maximal frequent traversal patterns. Our performance study shows that MFTPM performs muth better
than previous approaches in the time constraint environment.

Key words: Dwell time ; FTP-Tree ; Session ; Maximal frequent traversal pattern

INTRODUCTION

 Mining Frequent Traversal Patterns (FTP) is an
important task in web usage mining. Web usage mining
makes sense of data generated by observing web surf
sessions or behaviors and finds the relationship among
different users’ accesses. Sessions, users’ behaviors,
and traversal data on each web server can be extracted
from the web logs. Analysis of traversal sequence data
can obtain trends of users’ interests and provide useful
information for server performance enhancements,
restructuring a web site, and directly marketing in e-
commerce. Since web contains mass usage data, it is
indubitable that we can obtain abundant FTP. However,
some FTP are not only numerous but also meaningless.
Many traditional algorithms generally mine the
candidate traversal sequences to get FTP. If a traversal
sequence of length L is a FTP, then 2L-1 candidate
subsequences must be enumerated one by one. If the
length of sequence is too long, we have to spend
considerable execution time and waste vast disk space.
In addition, autonomic mining FTP in web environment
is unrealistic. So, we needn’t mine FTP but Maximal
Frequent Traversal Patterns (MFTP), since the most
information of FTP is contained in MFTP. In [1], J.Han
introduces that data mining is an interactive process,
and decision-makers should directly take part in the
process through query language or GUI for mining
MFTP. Thus we design a method to settle those
problems, which decision-makers can give some time
parameters to constrain every page in each traversal
sequence of sessions. Although the method possibly

limits the frequency of some pages, we can discover
more interesting MFTP.
 There exist many algorithms for mining FTP and
MFTP, such as GSP[2], MSPS and SPADE etc. But
these algorithms mostly aim at the whole database.
SPADE[3] are often fit for small databases. If the
database is too large and the minimal support is very
low, SPADE will generate large numbers of candidate
sequences, which are too big to be loaded into memory.
GSP is an efficient algorithm for mining large database.
However, the length of the longest frequent sequences
determines the number of scanning database it requires.
Consequently, if there exist very long frequent
sequences and if the database grows huge, the I/O cost
of GSP could be very large. Although MSPS[4] based
sampling technique can reduce much more search space
and based pruning technique can remove many
candidate subsequences, it possibly loses lots of useful
information of traversal sequences, and only gets
approximate result. In addition, the rate of sample
directly affects the precision of mining MFTP. In this
case, we propose a new MFTPM algorithm for mining
MFTP.
 The rest of the paper is organized as follows: The
definitions of dwell time, session FTP, and MFTP are
described in the section 2. In the Section 3, we construct
the FTP-Tree. MFTPM, performance evaluation and
experimental results are described in the section 4 and
the section 5 . Finally, Section 6 draws a conclusion
researched and describes the future work.

PROBLEM DEFINITION

J. Computer Sci., 2 (9): 704 - 709, 2006

 705

Let P = {P1, P2,…, Pn} be the complete set of web
pages. Let DB be the traversal sequence database to be
mined, DB is a set of sessions, DB= {S1, S2,…, Sm} and
Si = < (P1, t1)(P2, t2)…(Pr, tr)> where Si ⊂DB, Pj∈Si,
1≤i≤m, 1≤j≤r, tj is the time of requesting Pj. Each
record in DB includes session identifier (Sid), traversal
sequence and timestamp. We specify t1 = 0 in order to
compute dwell time conveniently, where t1 is the
requesting time of each entry page in every session.
Consider two sequences sa=<a1,a2,…,an> and
sb=<b1,b2,…,bm>(n≤m). If there exists integers
1≤i1<i2<...≤m with a1=bi1, a2=bi2,...,an=bim, then sa is a
subsequence of sb, and sb is a super-sequence of sa
sequences. sa is called a prefix of sb if and only if (1)
bi=ai for 1 ≤ i ≤ n ≤ m; (2) an ⊆ bm; and (3) all pages in
(bm-an) are alphabetically ordered after those in an.
Given a session database DB formed by traversal
sequences, the support count of a traversal sequence si
is denoted by Count (si), where Count (si) denotes the
number of session in DB that contains si. The length of
a traversal sequence si is the number of pages in the
sequence. A traversal sequence of length k is called a k-
traversal sequence.
[Definition] Dwell time is the actual time that a user
spends on a content page in a sequence of session.

Let Pi, Pi+1 be two adjacent pages in a sequence of
session. Ti is the time of request of Pi, Ti+1 is the time of
request of Pi+1. Suppose T3 is the time of loading Pi, T4
is the time of loading the ancillary files, and T0 is the
dwell time of Pi. According to Fig. 1, T3=T1-Ti, T4=T2-
T1.

 Jpeg
 Pi Gif Java Pi+1
Loading Pi Loading ancillary files Dwell time of Pi
Ti T1 T2 Ti+1

Fig. 1: Dwell time of Pi

The dwell time of Pi can be calculated by finding
the difference between the requests of Pi and Pi+1, and
subtracting the time required loading Pi and the
ancillary files from the value (using equation (1) to
calculate T0). But the time required to loading streaming
media files like real audio and mpeg may not be
considered for the dwell time computation of Pi.
T0=Ti+1 -Ti -[(T1 -Ti)+(T2 -T1)] or Ti+1 -Ti -(T3+T4) (1)

T0=Ti+1 -Ti - (T1- Ti) or Ti+1 - Ti –T3 (2)

This paper will take equation (2) to compute T0. In
the case, the time of loading ancillary files (T4) doesn’t
be considered. Decision-makers can give two time
thresholds according to their purpose. The two
thresholds are minimal dwell time �1 and maximal dwell
time �2. We can utilize �1 and �2 to constrain dwell time
T0 of every page, and remove the unreasonable pages
from the sequence s.

Let Pi be a page in traversal sequence si, Pi.t0 be its
dwell time of Pi. FTPset denotes a complete set, which
consists of the frequent traversal patterns.

(1) If Pi.t0<�1, then Pi∉si, Pi∉FTSset (si ⊆DB).
This case indicates the content of Pi doesn’t satisfy the
want of the user, or the page is error.

(2) If Pi.t0>�2, then Pi∉si, Pi∉FTSset (si ⊆DB).
This case indicates the user may exit from the web site,
or he revisits the Pi that bad been saved in the cache of
browsers. We know Pi in cache doesn’t leave behind
any information in web logs.

As we know, there are many time granularities
used to describe dwell time and timestamp, such as
hour, minute and second and so on. We choose minute
as the unit of dwell time, this is because hour is too
coarse and second too detailed for mining MFTP, which
was introduced in [5].
[Definition] A session is a page sequence ordered by
timestamp in usage data record, or is a visit performed
by a user from the time when he enters the web sites to
the time he leaves.

Before mining FTP and MFTP, different sessions
for the same user should be reconstructed. During the
reconstruction, two time constraints are very crucial.
One is that the duration for any session can’t exceed a
defined threshold. The most commonly used timeout
threshold is 30min, which was proposed in [6]. The
other is that the time gap between any two continuously
visited pages can’t exceed another defined threshold.
The most commonly used threshold is 10min, which
was presented in [7].
[Definition] Traversal sequence si is a Frequent
Traversal Pattern (FTP) if and only if Count
(si) ≥ Min_sup and �1 ≤ si.T0 ≤ 30min (�2=30min), where
Min_sup is a user specified support threshold, 30min is
upper limit time threshold of a session sequence. A FTP
of length k is called a k-FTP.
[Definition] Given a traversal sequence set V, si is a
Maximal Frequent Traversal Pattern (MFTP) if and
only if ∃ si’ s.t. (si’∈V) ∧ (si’ ⊆ si) ∧ (si’ ≠ si), where si’
is an assumed sequence.
[Property] If si is a MFTP, and si is not contained in
any other traversal sequence in V. We use MFTPS to
represent the set of all maximal frequent traversal
sequences in V.

CONSTRUCTION OF TREE STRUCTURE

 In this section, a new in-memory data structure
called FTP-Tree is constructed. FTP-Tree is a tree
structure, which must satisfy three necessary conditions.
First, the tree consists of one root labeled as “null”, a
set of sequence-prefix subtree as the children of the
root, and header table. Second, each node in FTP-Tree
includes four fields: P.name, Node.count, Node.link,
and Session:Ti. Session:Ti registers which sessions will

J. Computer Sci., 2 (9): 704 - 709, 2006

 706

contain the same page with dwell time, where Ti denotes
some dwell time of the page. Hence we can easily make
use of an equation to express the relation between
Session:Ti and Node.count, represented by
Node.count=� Page.(Session:Ti). Third, each entry of
the header table includes three fields: Page, Page.count,
and Node-link, where Node-link indicates the pointer
pointing to the first node in FTP-Tree, and the node
carrying the same name with the Page. The following
algorithm explains the steps of constructing FTP-Tree.
Algorithm 1: construct FTP-Tree (T, s)
Input: Traversal Sequences s1, s2,…, sm, �1, �2, T0
Output: FTP-Tree// Store and compress database
Function FTP-Tree (T, s)
(1) While (Pj ≠ null) and (�1 ≤ Pj.T0 ≤ �2) Do {//Pj∈si,
si ⊂ {s1, s2,…, sm}

(2) If (Pj.name=A.name) Then{//A is the ancestor of T
(3) A.count=A.count+1
(4) A.count=� A.(Session:Ti)+Session:Pj.T0
(5) T=A

(6) Else If(Pj.name=C.name)Then{//C is the child of T
(7) C.count=C.count+1
(8) C.count=� C.(Session:Ti)+Session:Pj.T0
(9) T=C
(10) Else

(11) Insert (T, Pj)
(12) Pj.count=1; Pj= Pj.next}

(13)end if
(14)end if

Given a database of session DB, which consists of
traversal sequences of users, as Table1 shows. The
notation Sid represents the identifier of a session. We
first convert the database DB with timestamp constraint
into TDB with dwell time constraint. TDB is shown in
Table2. According to Algorithm1, we are able to use
FTP-Tree to store and compress TDB. Let the time of
loading every page in traversal sequence be T3=0.5min,
the two thresholds of dwell time be �1=1.5min,
�2=10min (Decision-makers are free to determine the
values of �1 and �2 according to his purpose for mining
MFTP). Thus we adopt equation (2) to compute the
dwell time (T0) of every page. Through scanning TDB,
we can insert the accessed pages of traversal sequences
into FTP-Tree as its nodes. But the inserted pages must
be constrained by �1 and �2, that is, the pages in FTP-
Tree must cater for the two thresholds. For example,
though page P8 has appeared in s2, its dwell time T0
(0.5min) is less than �1 (1.5min), therefore P8 can’t link
to P3. Fig. 2 shows the FTP-Tree of TDB.

Table 1: DB with timestamp constraint

Sid Traversal Sequence Timestamp
S1 P1 P2 P3 P4 P2 P5 0,7,16,21,24.5,27,30

S2
P1 P2 P3 P4 P3 P2 P5 P7 P5
P3 P8

0,3,5,9,12,15,17,21,24,26.5
,29,30

S3 P1 P2 P1 P3 P9 0,5.5,13,17.5,26,30
S4 P3 P9 P7 P9 P9 P4 0,4,9.5,12,17.5,23.5,30

Table 2: TDB with dwell time constraint
Sid Traversal Sequence Dwell time
S1 P1 P2 P3 P4 P2 P5 6.5,8.5,4.5,3,2,2.5

S2
P1 P2 P3 P4 P3 P2 P5 P7 P5
P3 P8

2.5,1.5,3.5,2.5,2.5,1.5
3.5,2.5,1.5,2, 0.5

S3 P1 P2 P1 P3 P9 5,7,4,8,3.5
S4 P3 P9 P7 P9 P9 P4 3.5,5,2,5,5.5,6

Page Count Node-link

 Null P3:1,S4:3.5 P9:3 P4:1, S4:6

P7 2 P1:4 P3:1,S3:8 P7:1,S4:2
P4 3
P5 3 P9:1,S3:3.5
P9 4
P1 4 P2:5 P5:3 P3:1,S2:2
P2 5
P3 6 P7:1,S2:2.5

 P3:3

 P8:1,S2: 0.5
P4:2

Fig. 2 : FTP-Tree of TDB

THE MFTPM ALGORITHM

We apply the following strategies to mine MFTP
from FTP-Tree. At first, according to �1, �2, 30min, and
Min_sup specified by user, function MFTPM in
Algorithm2 can generate every 1-FTP, denoted by �i, as
initial suffix, the next constructs its prefix traversal
sequence base B, and finally builds longer traversal
sequences by every traversal sequence base connecting
with its suffix �i. For example, if � is a traversal
sequence base in B, the sequence �∪ �i will be longer
traversal sequence with �i suffix. If the longer sequence
�∪ �i can simultaneously satisfy the above parameters,
then �∪ �i becomes a new FTP. The function executes
the procedure until all 1-FTP have been done. At last,
we discover MFTP in FTP with new judging conditions.
The following algorithm shows the steps for MFTP.
Algorithm 2: MFTPM
Input: FTP-Tree T, �1, �2, T0, Min_sup
Output: MFTPS //Maximal Frequent Traversal Pattern
Set
Initialization: MFTPS= ∅
Function MFTPM (T, �, MFTPS) {
(1) If T only contains a single path then
(2) Then {

(3) Generate MFTP �∪ �
(4) If ((�∪ �) ≥ Min_sup)) Then {

(5) If ((� ∪ �) ⊄ MFTPS) and
((�∪ �) ≠ Sseq)//Sseq is not a subsequence of any other
frequent traversal sequence in MFTPS

(6) Then MFTPS= MFTPS ∪ (�∪ �)
(7) Else Discard �∪ �}

}

J. Computer Sci., 2 (9): 704 - 709, 2006

 707

(8) Else
(9) For each �i (�i.count ≥ Min_sup) and (�1 ≤ �i.T0 ≤ �2)
Do {//�i is a page in the head table

(10) Generate 1-FTP �i
(11) S=S ∪ �i, Q=�i.next //Q points to the first

location of �i in the FTP-Tree
(12) While (Q ≠ null) and (Q.count ≥ Min_sup)

and (�1 ≤ Q.T0 ≤ �2) Do {//Q.T0 shows the dwell time
(13) Generate �i’s prefix traversal sequence

base �, and construct long traversal sequence �i
//�i=�∪ �i

(14) If (�i.count ≥ Min_sup) and
(�1 ≤ �i.T0 ≤ 30min) Then {//�1 is minimal dwell time in
long sequence �i. �1=Min (�i.T0)

(15) S=S ∪ �i, Q=Q.next}// End While
(16) If (S ≥ Min_sup) Then {

(17) If (S ⊄ MFTPS) and (S ≠ Sseq)
(18) Then MFTPS= MFTPS ∪ S
(19) Else Discard S}
(20) Exit for loop body}

Table 3: Execution time of MFTPM on BMS-WebVies-1

ANALYSIS AND PERFORMANCE
EVALUATION

The analysis of MFTPM algorithm is similar to

FP-growth[8]. First, given an FTP-Tree T, �1, �2, and
parameter T0, we mine the MFTP from T with traversal
strategy. If T only contains a single path of FTP-Tree in
which each node only has a single child, then we can
directly get MFTP �∪ �. Utilizing (4)(5)(6)(7) lines
judge whether �∪ � merge into MFTPS or not. When T
is multipath FTP-Tree, each �i of catering for (9) line
should generate 1-FTP and construct prefix traversal
sequence � for each �i. The long FTP �∪ �i can be
formed with �i suffix and � prefix in steps (12)(13)(14)
and (15). The next steps (16)(17) and (18) of MFTPM
are to determine the set of all maximal frequent
traversal patterns from the FTP-Tree constructed so far.
Let’s examine the efficiency of the algorithm by mining
TDB on condition that three parameters are fulfilled
Min_sup=0.5, �1=1.5min, �2=10min, the result of
MFTPS={P1 P2 P3 P4, P1 P2 P5, P9}.

SR NB FTP1 MFTP1 ET1 FTP2 MFTP2 ET2 PT

1000 625 23 68s 594 19 33s 51.47%
2000 1134 45 125s 1002 27 59s 52.80%
4000 1728 21 170s 1365 14 80s 52.94%
8000 2861 65 314s 2798 57 143s 54.46%

BMS-
WebVies-1

16000 3106 54 485s 2983 48 207s 57.32%

Table 4: Execution time of MFTPM on BMS-WebVies-2

SR NB FTP1 MFTP1 ET1 FTP2 MFTP2 ET2 PT
1000 542 26 75s 518 23 37s 50.67%
2000 987 32 114s 860 27 53s 53.51%
4000 1853 29 185s 1675 18 83s 55.14%
8000 2741 56 301s 2683 42 132s 56.15%

BMS-
WebVies-2

16000 3219 43 532s 3014 39 220s 58.65%

All the experiments are performed on a 2.4GHz

Pentium 4 processor with 512 megabytes main memory,
running on Microsoft Windows 2000. In addition, all
the programs are written in Microsoft/Visual C++ 6.0.
We pursue the experiments on real datasets to evaluate
the performance of MFTPM algorithm. The real
datasets, BMS-WebVies-1 and BMS-WebVies-2, which
contain several months worth of click sequence data
from two e-commerce web sites. The two datasets was
provided by Blue Martini Software[9], and is available
from the KDD Cup 2000 home page. Collecting the
same number sequence data of the two datasets, which
are divided into the different length sessions, and the
average session contains 5-11 pages.
Table 5: Notation for analysis

SR The source of session
NB The number of session
FTP1 The number of FTP without �1, �2
MFTP1 The number of MFTP without �1, �2
FTP2 The number of FTP with �1, �2
MFTP2 The number of MFTP with �1, �2
ET1 Execution time without �1, �2
ET2 Execution time with �1, �2
PT The improved performance in percentage

To test the performance of MFTPM algorithm,
two experiments are performed.

The first group experiment: Algorithm2 traverses
FTP-Tree from two different aspects. One aspect, the
algorithm doesn’t involve �1, �2, the other contains �1, �2,

the results given in Table 3 and Table 4. The two tables
list that the numbers of frequent traversal Patterns
(FTP1, FTP2) and maximal frequent traversal patterns
(MFTP1 MFTP2) have little changed with �1, �2, but
great changes of the execution time have taken place
obviously. PT (PT=1- ET1

2ET) changed from 51.47% to
57.32% in Table 3, from 50.67% to 58.65% in Table 4.
As the size of NB goes up, the performance of MFTPM
is clearly predominant. Compared to ET1, ET2 in the
two tables shortened over two times at low support
(Min_sup=0.5) and appropriate dwell time constraints
(�1=1.5min, �2=10min, T0=0.5min). For example, in

J. Computer Sci., 2 (9): 704 - 709, 2006

 708

Table5, when NB size grows 16000, execution time
changes from 532s to 220s.

The second group experiment: For measuring the
performance of MFTPM furthermore, utilizing the
above datasets, we compare our algorithm with SPADE,
MSPS and GSP at the different values of Min_sup. In
Fig. 3 and Fig. 4, we plot total execution time taken by
MFTPM algorithm and the others for values of
minimum support threshold Min_sup ranging from
0.2% to 1.2%. The Figures show how decreasing
Min_sup leads to an increase in execution time. As seen
from the result shown in Fig. 3 and Fig. 4, the run time
of MFTPM is distinctly faster (about 2-3 times faster)
than SPADE, MSPS and GSP when the support
threshold goes down.

Execution time (sec.)
1600
1400
1200
1000
 800
 600
 400
200

0
 0.2 0.4 0.6 0.8 1.0 1.2

Min_sup (%)

Fig. 3: Execution time of three algorithms on BMS-
WebVies-1

Execution time (sec.)
1600
1400
1200
1000
 800
 600
 400
200

0
 0.2 0.4 0.6 0.8 1.0 1.2

Min_sup (%)

Fig. 4: Execution time of three algorithms on BMS-
WebVies-2

CONCLUSION

In this paper we proposed a new algorithm
MFTPM that mines the set of all MFTP over the
traversal sequences, and an in-memory data structure
called FTP-Tree is constructed for storing FTP. In the
MFTPM algorithm, a bidirectional dwell time technique
is used to constrain every page in session sequences,
which efficiently limits the number of the meaningless
pages and FTP. Experiments with the decision-makers
giving the proper constraint parameters show that
MFTPM can effectively reduce the execution time and
I/O cost. We also performed extensive experiments
comparing with GSP, MSPS and SPADE, and the result
showed that the performance of MFTPM outperformed
the others. MFTPM algorithm was only examined in the
static dataset. The next step, we will undertake further
analysis and experiments in dynamic web click stream.

REFERENCES

1. Jiawei Han and Micheline Kamber, 2001. Data

Mining: Concepts and Techniques, Morgan
Kanfmann, Chinese.

2. Srikant, R. and Agrawal, R., 1996. Mining
sequential pattern: Generalizations and
performance improvements, In Proceeding of the
5th Conference on Extending Database
Technology (EDBT), Avignion, France, pp. 3-17.

3. Zaki, M, J., 2001. SPADE: An efficient algorithm
for mining frequent sequences, Machine Learning,
Vol 42, No. 1, pp. 31-60.

4. C.Luo and SM Chung, 2004. A Scalable

Algorithm for Mining Maximal Frequent

Sequences Using Sampling, In Proceeding of the

16th IEEE Int’1 Conf. On Tools with Artificial

Intelligence (ICTAI), Florida, USA, pp. 156-165.

5. Xiaolong Zhang, Wenjuan Gong and Yoshihiro

Kawamura, 2004. Customer behavior pattern

discovering with web mining, In Proceeding of the

6th Asia-Pacific Web Conf (APWeb), Hangzhou,

China, pp. 844-853.

MFTPM
MSPS

 GSP

MFTPM
MSPS
SPADE

J. Computer Sci., 2 (9): 704 - 709, 2006

 709

6. L.D. Catledge, and J.E. Pitkow, 1998.
Characterizing browsing strategies in the World-
Wide Web, Computer Networks and ISDN
Systems, Vol 27 No. 6, pp. 1065-1073.

7. Long Wang, and Christoph Meinel, 2004.
Behavior recovery and complicated pattern
definition in web usage mining, In Proceedings of
the 2004 IEEE International Conference on
Multimedia and Expo (ICME), Taipei, Taiwan, pp.
531-543.

8. J. Han, J. Pei and Y.W. Yin, 2000. Mining
frequent patterns without candidate generations, In
Proceedings of the ACM. SIGMOD International
Conference on Management of Data, Dallas, USA,
pp. 1-12.

9. Z. Zheng, J. Shen and L. Mason, 2001. Real world
performance of association rule algorithms, In
Proceeding of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining, California, USA, pp. 401-406.

