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Abstract: In this paper, an efficient and scalable technique for computer network security is presented. 
On one hand, the decryption scheme and the public key creation used in this work are based on a 
multi-layer neural network that is trained by backpropagation learning algorithm. On the other hand, 
the encryption scheme and the private key creation process are based on Boolean algebra. This is a 
new potential source for public key cryptographic schemes which are not based on number theoretic 
functions and have small time and memory complexities. This paper along with test results show that 
the possibility of guessing keys is extremely weaker than using the Data Encryption Standard method 
(DES), which is a widely-used method of data encryption. The presented results are obtained through 
the use of MATLAB 6.5.1 software.  
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INTRODUCTION 

 
 The problem of protecting information has existed 
since information has been managed. However, as 
technology advances and information management 
systems become more and more powerful, the problem 
of enforcing information security also becomes more 
critical[1]. The massive use of the communication 
networks for various purposes in the past few years has 
posed new serious security threats and increased the 
potential damage that violations may cause. As 
organizations are increasing their reliance on computer 
network environments, they are becoming more 
vulnerable to security breaches. Private and public 
sectors more than ever today depend on the information 
they manage. A violation to the security of the 
information may jeopardize the whole system working 
and cause serious damages. Advances in artificial 
neural networks (ANNs) provide effective solutions to 
this problem[2], section 5 provides more details on 
ANNs.  
 
      The security problem is considered here as the 
problem of keeping communications over the network 
private. In other words, a secure network allows only 
the intended recipient to intercept and read a message 
addressed to her/him. Thus, protection of information is 
required against possible violations that can 
compromise its secrecy (or confidentiality). Secrecy is 
compromised if information is disclosed to users not 
authorized to access it. While the encryption scheme 
used in this work is based on Boolean algebra, the 
decryption scheme here is based on a neural network 
techniques that uses backpropagation learning 
algorithm.  
 

 
Data encryption: The data transferred over Public 
infrastructure should be unreadable for illegal purposes. 
The fundamental of encryption technique is to map the 
data to a domain in a manner that is safe from sniffing. 
Two major techniques used in encryption are: 
Symmetric encryption and Asymmetric encryption[3, 4]. 
In Symmetric encryption method, a common key is 
shared among participants. This is used in both 
encoding and decoding processes. The sender encrypts 
the message (M) using a key (K) to generate the 
codeword (E), i.e., 
E = Encrypt (K, M) (1) 
 The resulting codeword is decrypted using the 
common key after being sent through the network and 
is received by the receiver, i.e. 
M = Decrypt (K, E) (2) 
 In Asymmetric encryption model, two keys are 
assigned to each member: Private key, which is 
exclusively confined to the user and Public key, which 
is published among other members by the user. 
Theoretically, the encryption function is such that the 
message encrypted with the Public key, is not decrypted 
unless by the means of corresponding private key and 
the message encrypted with the private key, is not 
decrypted unless by the means of corresponding Public 
key. The relation between encryption and decryption by 
these two keys can be mathematically shown. If M is 
the message, Pub_Ui shows the ith user’s Public key 
and Prv_Ui is the ith user’s private key, then: 
M=Decrypt[Pub_Ui, Encrypt(Prv_Ui, M)] (3) 
iff <Pub_Ui, Prv_Ui > ∈  Ui 
where Ui is the ith user’s key set. 
Also: 
M=Decrypt[Prv_Ui,Encrypt(Pub_Ui,M)] (4) 
iff <pub_Ui, prv_Ui > ∈  Ui 



J. Computer Sci., 2 (9): 710-715, 2006 

 711 

 Therefore, to send a private message, the sender 
encrypts the message using the receiver’s Public key 
and transfers it through Public infrastructure. On the 
other side, the receiver decrypts the encoded message 
by the help of its own private key. An encryption 
mechanism can also be used to authenticate the sender 
of a message. The technique is known as a digital 
signature. To sign a message, the sender encrypts the 
message using his or her private key. The recipient uses 
the inverse function and the sender’s Public key to 
decrypt the message. The recipient knows who has sent 
the message; because, only the sender has the key 
needed to perform the encryption. To ensure that 
encrypted messages are not copied and resent later, the 
original message can contain the time and date that the 
message was created. Interestingly, two level of 
encryption can be used to guarantee that the message is 
both authentic and private. First, the message is signed 
by using the sender’s private key to encrypt it. Second, 
the encrypted message is encrypted again using the 
recipient’s Public key. Mathematically, double 
encryption can be expressed as: 
X=Encrypt[Pub_U2, Encrypt(Prv_U1,M)] (5) 
 Where M denotes a message to be sending, X 
denotes the string resulting from the double encryption, 
Prv_U1 represents the sender’s private key and Pub_U2 
denotes the recipient’s Public key. 
 
 At the receiving terminal, the decryption process is 
the reverse of the encryption process. First, the recipient 
uses his or her private key to decrypt the message. The 
decryption removes one level of encryption, but leaves 
the message digitally signed. Second, the recipient uses 
the sender’s Public key to decrypt the message again. 
The process can be expressed as: 
M=Decrypt [Pub_U1, Decrypt(Prv_U2,X)] (6) 
 
 Where X denotes the encrypted string that was 
transferred across the network, M denotes original 
message, Prv_U2 denotes the recipient’s private key 
and Pub_U1 denotes the sender’s Public key. If a 
meaningful message results from the double decryption, 
it must be true that the message was confidential and 
authentic. The message must have reached its intended 
recipient because only the intended recipient has the 
correct private key needed to remove the outer 
encryption. The message must have been authentic, 
because only the sender has the private key needed to 
encrypt the message so that sender’s Public key will 
correctly decrypt it[3, 4]. 
 
Model design: Suppose M is some N-bit initial 
unipolar data, i.e.,  
Mi = {0, 1}, 0 � i � N-1 (7) 
 The encryption process includes two functions: 
Permutation and Doping. In the following subsections, 
we will describe these two functions. 
 

Permutation function: This function contains a vector 
P of 2N elements, whose elements are in [0, 2 N-1] 
interval. This vector should not have repeated elements. 
P = < p0, p1, … ,p2N- 1 > (8) 
0 � pi � 2N - 1 
pi � pj If i � j 
Where < p0, p1, … ,p2N- 1 > is an n-Tuple. 
If we let Val (M) be as follows: 
Val(M)=2N-1*MN-1+2N-2*MN-2+…+20*M0 (9) 
Then the Permutations (Perm) can be defined as 
follows: 
Perm (M) = Bin [Pval(M) ] (10) 
 Where Bin (X) returns the binary form of X. In 
other words, the Permutation function maps the string 
M of value V onto a string located at Vth position of the 
P vector. Note that vector P includes 2N unrepeated 
elements reveals that the Permutation is a bijective 
function, i, e., 
M � M' <==> Perm (M) � Perm (M') (11) 
 
Doping function: This function includes an N'-element 
vector, D, whose elements are in [0, (N+ N'- 1)] 
interval. N' is a selective number. The vector D should 
contain no repeated elements as well. The Doping 
function makes the (N + N')-bit string E, from N-bit 
string S as follows: 
* For each i ∈  D: Ei = Fi (S). 
 In which Fi can be any Boolean function. 
* N non-permutated elements of E are 

correspondingly permutated with S elements. 
For example, suppose: 
S = [0 1 0]. 
D = [0 2 5]. 
E0 = F0 (S) = S0 AND S1. 
E2 = F2 (S) = S0 OR S1 OR S2. 
E5 = F5 (S) = E0 OR E2. 
Therefore, 
E = [1 0 1 1 0 0]. 
 
Model description: The permutation function operates 
over an N-bit message M to produce an N-bit result S, 
i.e., 
S = Perm (M) (12) 
 S will be presented to Doping function, then the (N 
+ N')- bit result, i. e, E, will be generated. 
E = Dop (S) (13) 
 E is represented as the encrypted data. In this 
model, the private key is: 
Prv_U = {P, D, N', Fi} (14) 
 
Guessing the private key: For the 2N-element vector 
P, there are (2 N!) states and for the N'-element vector 
D whose elements are in the [0, (N + N'-1)] interval, 
there are (N+N')! /N! states. Also, there are 22N states 
for each of N-variable Fi functions. Consequently, even 
under the assumption that N' is known, the overall 
number of states is as follows: 
Total States=2N!*(N+N')!/N!*2N'*2N (15) 
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 It is clear that this space is much larger than the 
256 state spaces through Data Encryption Standard 
(DES), which has been used widely, even by choosing 
small values for N and N'. As an example, if N=5 and 
N' = 1, then these values generate a space of 1029 times 
larger than that of DES. 
 
Artificial neural networks (ANNs): A neural network 
is a massively parallel-distributed processor made up 
from simple processing units, which has a natural 
propensity for storing experiential knowledge and 
making it available for use. The use of neural network 
offers the Input-Output Mapping property and 
capability[2,5-9].  
 The ANNs learning algorithms can be divided into 
two main groups that are supervised (or Associative 
learning) and unsupervised (Self-Organization) 
learning[2, 5, 10]. Supervised learning learns based on the 
target value or the desired outputs. During training the 
network tries to match the outputs with the desired 
target values. It is presented with an example picked at 
random from the set and the synaptic weights of the 
network are modified to minimize the difference 
between the desired response and the actual response of 
the network produced by the input signal in accordance 
with an appropriate statistical criterion. The training of 
the network is repeated for many examples in the set 
until the network reaches a steady state, where there are 
no further significant changes in the synaptic weights. 
The previously applied training example may be 
reapplied during the training session but in a difference 
order. Thus the network learns from the examples by 
constructing an input-output mapping for the problem 
at hand[5].  
 Unsupervised learning method is not given any 
target value. A desired output of the network is 
unknown. During training the network performs some 
kind of data compression such as dimensionality 
reduction or clustering. The network learns the 
distribution of patterns and makes a classification of 
that pattern where, similar patterns are assigned to the 
same output cluster. The Kohonen Self-Organizing 
Map (SOM) network is the best example of 
unsupervised learning network[5].  
 SOM has been used to provide a graphical 
representation of the analysis, highlighting outliers that 
may suggest suspicious activity[6, 7, 10]. In our 
cryptography process, we used a feed-forward network 
implementing the back propagation algorithm[11, 12]. 
 
Using neural network to learn the public key: An 
encrypted message has (N+N') bits. However, it will 
have only 2N valid states. No other state is generated. 
To learn the Public key, the valid states are fed to a 
supervised neural network. We will expect that the 
initial message M will show up as the output. In other 
word, training set will be the following pairs: 
{(E0, M0), (E1, M1)…(E2N-1, M2N-1)} (16) 

 Where Ej and Mj are encrypted string of length 
(N+N') and N-bit initial string, respectively. 
 Having been trained in this way, the structure and 
the weights of the network are presented as a Public 
key. 
Pub_U=< Net, W > (17) 
 
The backpropagation neural network: One of the 
most commonly used supervised ANN model is 
backpropagation network that uses backpropagation 
learning algorithm[2, 12, 13]. Backpropagation (or 
backprop) algorithm is one of the well-known 
algorithms in neural networks. The introduction of 
backprop algorithm has overcome the drawback of 
previous NN algorithm in 1970s where single layer 
perceptron fail to solve a simple XOR problem. The 
backpropagation neural network is essentially a 
network of simple processing elements working 
together to produce a complex output. These elements 
or nodes are arranged into different layers: input, 
middle and output. The output from a backpropagation 
neural network is computed using a procedure known 
as the forward pass[2, 5, 14, 16]: 
* The input layer propagates a particular input 

vector’s components to each node in the middle 
layer. 

* Middle layer nodes compute output values, which 
become inputs to the nodes of the output layer. 

* The output layer nodes compute the network output 
for the particular input vector. 

 The forward pass produces an output vector for a 
given input vector based on the current state of the 
network weights. Since the network weights are 
initialized to random values, it is unlikely that 
reasonable outputs will result before training. The 
weights are adjusted to reduce the error by propagating 
the output error backward through the network. This 
process is where the backpropagation neural network 
gets its name and is known as the backward pass: 
* Compute error values for each node in the output 

layer. This can be computed because the desired 
output for each node is known. 

* Compute the error for the middle layer nodes. This 
is done by attributing a portion of the error at each 
output layer node to the middle layer node, which 
feed that output node. The amount of error due to 
each middle layer node depends on the size of the 
weight assigned to the connection between the two 
nodes. 

* Adjust the weight values to improve network 
performance using the Delta rule. 

* Compute the overall error to test network 
performance. 

 The training set is repeatedly presented to the 
network and the weight values are adjusted until the 
overall error is below a predetermined tolerance. Since 
the Delta rule follows the path of greatest decent along 
the error surface, local minima can impede training. 
The momentum term compensates for this problem to 
some degree.  
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Cipher block chaining: In order to complicated 
decryption for illegal people, cipher block chaining can 
be used so that each plaintext block is XORed with the 
previous cipher block before being encrypted. Thus, the 
encryption will not be context free. The first block is 
XORed with the initial vector that is randomly selected. 
In other word, encryption steps will be as follows: 
C0 = Encrypt (P0 Xor IV). 
C1 = Encrypt (P1 Xor �0). 
C2 = Encrypt (P2 Xor �1). 
C3 = Encrypt (P3 Xor �2). 
In general, Ci is as follows:  
Ci = Encrypt (Pi Xor �i-1)  (18) 
 Where IV is initial vector, Pi is ith plaintext, Ci is 
ith cipher text and �i is a window cut of Ci so that the 
length of �i be equal to the length of Pi. Decryption is 
also done via the following procedure: 
P0 = IV Xor Decrypt(C0). 
P1 = �0 Xor Decrypt(C1). 
P2 = �1 Xor Decrypt(C2). 
P3 = �2 Xor Decrypt(C3). 
In general, Pi can be represented as follows:  
Pi = �i-1 Xor Decrypt(Ci)  (19) 
 It is observed that encryption of ith block is a 
function of all plaintexts in block 0 through (i-1). 
Hence, depending on where the plaintext is located, 
different cipher texts are generated from the same text.  
 
Implementation: In our simulation, an initial 12-bit 
data set has been used, (N=12) and 4 bits are doped 
through encryption process (N' =4). P & D vectors are 
produced randomly after considering essential 
conditions (unrepeated elements). We use the following 
Boolean functions: 
F3 = S3 Xor S1. 
F8 = S8 Xor S4 Xor S2 Xor S0. 
F12 = S11 Xor S6 Xor S3. 
F13 = S11 Xor S9 Xor S7 Xor S5. 
Table 1 shows a few examples. 
 
Table 1: Some of the encryption results  
M Perm((M) Dop(S) 
000000000000 101010111101 1000101101111101 
000000011000 011011111000 0110101111111000 
010101001100 111110110111 1101111001101111 
010101010010 001101110111 0001110011101111 
010101010111 100111010011 1000011110101011 
010101011010 010111010101 0111011010100101 
010101011110 000100101000 0011010101011000 
010101100100 001100000101 0010110100000101 
 
 The neural network used in the decryption process 
is a 3-layer feed-forward network implementing the 
back propagation algorithm. There are 16 neurons in 
input layer, 24 neurons in the hidden layer and 12 
neurons in the output layer. Figure 1 shows the 
architecture of the neural network. To implement our 
neural network we used the Neural Network Toolbox in 
MATLAB. 
 At the beginning of the learning process, the 
weight matrices between input and hidden layer (IW 
{1,1}) and between hidden and output layer (IW {2,1}) 
are initialized with the random values in the [-0.5, 0.5] 
interval. Vectors for hidden neuron biases (b {1}) and 
output neuron biases (b {2}) are also initialized with  

 
Fig. 1: Neural network architecture in decryption 
process 
 

 
Fig. 2: Original signal before encryption 
 

 
Fig. 3: XORed signal 
 

 
Fig. 4: Permuted signal 
 
random values. In the hidden and output layers, the 
linear activation functions have been used. After several 
iterations, when the difference between the calculated 
output and the desired output is less than the threshold 
value, the iteration is stopped. 
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RESULTS 
 
 In order to evaluate the discussed mechanism, the 
encryption and decryption steps of a typical digital 
signal are shown below. Figure 2 shows original signal 
in a plain form. Figure 3 shows the signal in a chained 
form. The value of this signal in each time sample is the 
XORed of original signal value in the same time sample 
and previous time sample of encrypted signal. In our 
experiment, IV is “10101001100” and the window is 
put over the first twelve bits. Figure 4 and 5 shows the 
permuted and doped signal respectively. The result 
shows that the encryption mechanism is not a 
contextfree process. It is seen that, although that the 
original signal has same values in 7th and 8th time 
samples, but the encrypted signal has different values 
right in the same time samples. This condition is 
repeated in 11th and 12th time samples. Figure 6 and 7 
show the artificial neural network outputs and 
decryption signals respectively.  
 

 
Fig. 5: Encrypted signal 
 

 
Fig. 6: Neural network output 
 

 
Fig. 7: Decrypted signal 

CONCLUSION 
 
 As the computer network grow, the encryption 
mechanisms are of notable importance. In particular, 
the asymmetric encryption models have been always 
deeply considered because of their wide range of usage. 
However, finding two pair functions for encryption and 
decryption that satisfy the necessary conditions for 
providing computational strength and safety that has 
always been a serious problem.  
 In this work, we provide a new asymmetric 
encryption mechanism based on artificial neural 
networks. First, we presented the overall methods of 
encryption, and then we explored the necessary 
conditions of asymmetric methods. Next, we presented 
a model for the encryption mechanism that is based on 
Boolean algebra. We then used a neural network to 
learn the decryption mechanism. Finally, the simulation 
results showed that after training the artificial neural 
networks, it can be used effectively as a decryption 
function. 
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