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Abstract: In this paper we deal with sensitivity analysis of combinatorial optimization problems and 
its fundamental term, the tolerance. For three classes of objective functions ( ,Σ  ,Π  MAX ) we give 
some basic properties on upper and lower tolerances. We show that the upper tolerance of an element 
is well defined, how to compute the upper tolerance of an element and give equivalent formulations 
when the upper tolerance is +∞  or 0> . Analogous results are given for the lower tolerance and some 
results on the relationship between lower and upper tolerances are given. 
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1   INTRODUCTION 

 
 After an optimal solution to a combinatorial 
optimization problem has been determined, a natural 
next step is to apply sensitivity analysis[1], sometimes 
also referred to as post-optimality analysis or what-if 
analysis[2]. Sensitivity analysis is also a well-
established topic in linear programming[3] and mixed 
integer programming[2]. The purpose of sensitivity 
analysis is to determine how the optimality of the given 
optimal solution depends on the input data. There are 
several reasons for performing sensitivity analysis. In 
many cases the data used are inexact or uncertain. In 
such cases sensitivity analysis is necessary to determine 
the credibility of the optimal solution and conclusions 
based on that solution. Another reason for performing 
sensitivity analysis is that sometimes rather significant 
considerations have not been built into the model due to 
the difficulty of formulating them. Having solved the 
simplified model, the decision maker wants to know 
how well the optimal solution fits in with the other 
considerations.  
 The most interesting topic of sensitivity analysis is 
the special case when the value of a single element in 
the optimal solution is subject to change. The goal of 
such perturbations is to determine the tolerances being 
defined as the maximum changes of a given individual 
cost (weight, distance, time etc.) preserving the 
optimality of the given optimal solution. The first 
successful implicit application of upper tolerances for 
improving the Transportation Simplex Algorithm is 
appeared in the so called Vogel’s Approximation 
Method[4] and has been used for a straightforward 
enumeration of the k -best solutions for some positive 
integer k [5,6] as well as a base of the MAX-REGRET 
heuristic for solving the three-index assignment 
problem[7].  

 The values of upper tolerances have been applied 
for improving the computational efficiency of heuristics 
and branch-and-bound algorithms for solving different 
classes of NP-hard problems (for example of the 
traveling salesman problem (TSP)[8-11]). Also for the 
TSP, Helsgaun[12] improved the Lin-Kernighan 
heuristic by using the lower tolerances to the minimum 
1-tree with great success. 
 Computational issues of tolerances to the minimum 
spanning tree problem and TSP are addressed in Chin 
and Hock[13], Gordeev et al.[14], Gusfield[15], 
Kravchenko et al.[16], Libura[17], Ramaswamy and 
Chakravarti[18], Shier and Witzgall[19], Sotskov[20], 
Tarjan[21]. Recently, Volgenant[22] has suggested an 

3( )O n  algorithm for computing the upper and lower 
tolerances for all arcs in the Assignment Problem. 
Ramaswamy et al. have reviewed the sensitivity 
analysis problem for the maximum capacity path 
problem ([23] and references within) and suggested an 
elegant reduction of the sensitivity analysis problem for 
the shortest path and maximum capacity path problems 
in an undirected network to the minimum cost interval 
problem. For   an   extensive   account on 
computational issues of upper and lower tolerances in 
the context of sensitivity analysis in combinatorial 
optimization[2,3,24,25,26].  
 The purpose of this paper is to give an overview 
over the terms of upper and lower tolerances for the 
three most natural types ,�  ,∏  MAX  of objective 
functions. To our best knowledge we have not found 
any publications treating the sensitivity analysis 
problem for a general class of combinatorial 
optimization problems with different types of objective 
functions. The paper is the first which deals with 
tolerances in an exact, general and comprehensive way, 
so that discrepancies of previous descriptions can be 
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avoided, e.g. all of above mentioned papers have used 
but not indicated an important assumption that the set 
of feasible solutions to a combinatorial optimization 
problem under consideration is independent of the cost 
(objective) function. Furthermore, this coherent 
consideration leads to new results about tolerances.  
 The paper is organized as follows. In section 2 
we define a combinatorial minimization problem and 
give all notations which are necessary for the terms of 
upper and lower tolerances. In section 3 we define the 
upper tolerance and give characteristics of it. 
Especially, we show that the upper tolerance is well 
defined with respect to the problem instance, i.e., that 
the upper tolerance of an element with respect to an 

optimal solution S�  of a problem instance P  doesn’t 

depend on S�  but only on P  itself. Furthermore we 
show how to characterize elements with upper tolerance 
+∞  or 0>  and how the upper tolerance can be 
computed. In section 4 we show similar relations for the 
lower tolerance. In section 5 we give relationships 
between lower and upper tolerances which mostly are 
direct conclusions from the sections 3 and 4. Our main 
result for objective functions of type �  is that under 
certain conditions the minimum value of upper 
tolerance equals the minimum value of lower tolerance 
and the maximum value of upper tolerance equals the 
maximum value of lower tolerance. Similar results for 
objective functions of type ,∏   MAX  do not hold. The 
non-trivial proofs of the statements can be found in 
section 6. We summarize our paper in section 7 and 
propose directions for future research.  
 
 A preliminary version of this paper appeared in the 
proceedings of the 2nd International Conference on 
Algorithmic Aspects in Information and Management 
(AAIM), Hong Kong, China, June 20–22, 2006, 
Lecture Notes in Comput. Sci., 4041: 194–206. 
 

2   COMBINATORIAL MINIMIZATION 
PROBLEMS  

 
 A combinatorial minimization problem P  is given by 
a tuple ( )cE D c f, , ,  with  
* E  is a finite ground set of elements. 
* 2ED ⊆  is the set of the feasible solutions. 
* c E: → R  is the function which assigns costs to 

each single element of .E  
* 2E

cf : → R  is the objective (cost) function which 

depends on function c  and assigns costs to each 
subset of .E  

 
 A subset S E⊆�  is called an optimal solution of 

,P  if S �  is a feasible solution and the costs ( )cf S �  of 

S �  are minimal (analogous considerations can be made 

if the costs have to be maximized, i.e., for 
combinatorial maximization problems), i.e., S D∈�  
and ( ) min{ ( ) }.c cf S f S S D= ; ∈�  We denote the set of 

optimal solutions by .D�  There are some particular 
monotone cost functions which often occur in practice:  
* [Type � ] The cost function 2E

cf : → R  is of type 

,�  if for each 2ES ∈ : ( ) ( )c e S
f S c e

∈
=�  holds. 

* [Type ∏ ] The cost function 2E
cf : → R  is of 

type ,∏  if for each 2ES ∈ : ( ) ( )c e S
f S c e

∈
= ∏  

and for each e E∈ : ( ) 0c e >  holds.  

* [Type MAX] The cost function 2E
cf : → R  is of 

type MAX (such a cost function is also called 
bottleneck function), if for each 2ES ∈ : 

( ) max{ ( ) }cf S c e e S= ; ∈  holds.  
 
 These three objective functions are monotone, i.e., 
the costs of a subset of E  don’t become cheaper if the 
costs of a single element of E  are increased.  
 In the remainder of the paper, we only consider 
combinatorial minimization problems ( )cP E D c f= , , ,  
which fulfill the following three conditions.  
 
Condition 1: The set D  of the feasible solutions of P  
is independent of function c .  
 
Condition 2: The cost function 2E

cf : → R  is either of 

type ,�  type ,∏  or type MAX.  
 
Condition 3: There is at least one optimal solution of 

,P  i.e., .D ≠ ∅�   
 Note that the Traveling Salesman Problem (TSP), 
Minimum Spanning Tree (MST) and many other 
combinatorial minimization problems fulfill these three 
conditions[27].  
 Given a combinatorial minimization problem 

( ),cP E D c f= , , ,  we obtain a new combinatorial 
minimization problem if we increase the costs of a 
single element e E∈  by some constant .α ∈R  We will 
denote the new problem by ( ),

ee e cP E D c f
αα α ,, ,= , , ,  

which is formally defined by 
if

if

( )
( )

( )e

c e e e
c e

c e e eα α,

, ≠�
= � + , =�

 for each e E∈  and 
ecf α ,
 

is of the same type as .cf  Further define 

lime eP Pα α−∞, →−∞ ,=  and lim .e eP Pα α+∞, →+∞ ,=   

 We need some more notations with respect to a 
combinatorial minimization problem .P  Let e  be a 
single element of .E   
* ( )cf P  denotes the costs of an optimal solution S �  

of .P   
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* For ,M D⊆  ( )cf M  denotes the costs of the best 

solution included in .M  The costs ( )cf S  of either 

infeasible or empty set S  are defined as .+∞  
Obviously, for each M D⊆ : ( ) ( )c cf P f M≤  
holds.  

* ( )D e−  denotes the set of the feasible solutions of 

D  each of which doesn’t contain the element 
,e E∈  i.e., ( ) { }D e S D e S− = ∈ ; ∈/ . Analogously, 

( )D e+  denotes the set of the feasible solutions D  

each of which contains the element e E∈ , i.e., 
( ) { }D e S D e S+ = ∈ ; ∈ .    

* ( )D e−
�  denotes the set of the best feasible solutions 

of D  each of which doesn’t contain the element 
e E∈ , i.e., 

 

  and

    ( )

{ ; ( )( ( ) ( )}c c

D e

S D e S S D e S f S f S
−

′ ′ ′= ∈ ∈ ∀ ∈ ∈ � ≤/ /

�

The elements of ( )D e−
�  are called ( ).S e−

�   

 Analogously, ( )D e+
�  denotes the set of the best 

feasible solutions D  each of which contains the 
element e E∈ , i.e., 

  and

    ( )

{ ( )( ( ) ( )}c c

D e

S D e S S D e S f S f S
+

′ ′ ′= ∈ ; ∈ ∀ ∈ ∈ � ≤

�

The elements of ( )D e+
�  are called ( )S e+

� .  
 

3   UPPER TOLERANCES 
 
 Let ( )cP E D c f= , , ,  be a combinatorial minimization 
problem which fulfills Conditions 1, 2 and 3. Consider 
an optimal solution S �  of P  and fix it.  
 For a single element e  of this optimal solution ,S �  
let the upper tolerance ( )

S
u e�

 of element e  with 

respect to S �  be the supremum by which the costs of e  
can be increased such that S �  remains an optimal 
solution, provided that the costs of all other elements 

{ }e E e∈ \  remain unchanged, i.e., for each e S ∗∈  the 
upper tolerance is defined as follows:  

( ) sup{
S

u e Sα:= ∈ ;R�

�  is an optimal solution of }ePα ,  

Because of the monotonicity of the cost function it 
holds:  

( ) inf{
S

u e Sα:= ∈ ;R�

�  is not an optimal solution  of  

                     }ePα ,  

As S �  is an optimal solution of 
0 ,eP ,  which is ,P  the 

upper tolerance ( )
S

u e�
 is either a non-negative number 

or .+∞  Because of Condition 2, for each e S∈ �  with 
( ) ,

S
u e < +∞�

 it holds:  

( ) max{
S

u e Sα:= ∈ ;R�

�  is an optimal solution of }ePα ,  

 
Theorem 1: Let S �  be an optimal solution of P  with 

.e S ∗∈  e  is contained in every feasible solution of P  
if and only if ( )

S
u e = +∞�

, i.e., 

( )
SS D

e S u e
∈

∈ ⇔ = +∞� �
.  

 
Theorem 2: The upper tolerance of an element doesn’t 
depend on a particular optimal solution of ,P  i.e.,  

1 2 1 2( )( )S S D e S S∀ , ∈ ∀ ∈ ∩�

1 2
( ) ( )S Su e u e=              (1) 

 Thus, if a single element e E∈  is contained in at 
least one optimal solution S �  of ,P  the upper tolerance 
of e  doesn't depend on that particular optimal solution 
S �  but only on problem P  itself. Hence, we can refer 
to the upper tolerance of e  with respect to an optimal 
solution S �  as upper tolerance of e  with respect to ,P  

( )Pu e .  

Note that the upper tolerance of an element e  which is 
not contained in any optimal solution is not defined. For 
these elements ,e E∈  we set UNDEFINED( )Pu e := .  
 
Theorem 3: If e E∈  with UNDEFINED( ) { }Pu e ∈ ,+∞/ , 

then for all 0ε >  the element e  is not contained in any 
optimal solution of 

( )Pu e eP ε+ , .  

 Theorem 3 states that, for all e E∈  with 
UNDEFINED( )Pu e ≠  and ( )Pu e ≠ +∞ , increasing the 

costs of e  by ( )Pu e ε+  for 0ε >  makes the element 
uninteresting for optimal solutions.  
 
Theorem 4: For each single element e E∈  which is 
contained in at least one optimal solution S �  of P , the 
upper tolerance of e  is given by:  
* ( ) ( ( )) ( )P c cu e f D e f P−= −� , if the cost function is 

 of type �  

* ( ( )) ( )
( )( ) ( )c c

c

f D e f P
P f Pu e c e− −= ⋅

�

, if the cost function is of 

type ∏  
* ( ) ( ( )) ( )P cu e f D e c e−= −� , if the cost function is of 

type MAX   
 
Theorem 5: For each single element e E∈  it holds for 
a cost function of type ,�  ∏  and MAX : 

( ( )) ( )
ec cf D e f P

+∞,− =� .  

 Theorem 4 and Theorem 5 tell us how to compute 
the upper tolerance of a single element e E∈  with 
respect to P . We observe[18, 28]:  
 
Corollary 1: The upper tolerance of one element e E∈  
can be computed by solving two different instances of 
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P  for a cost function of type ,�  ∏  and solving one 
instance of P  for a cost function of type MAX , i.e., 
the computation of the upper tolerance has the same 
complexity as P  itself.  
 
Theorem 6: If the cost function is either of type �  or 

,∏  then a single element e  in at least one optimal 
solution is contained in every optimal solution if and 
only if its upper tolerance is greater than 0 , i.e., 

( ) 0PS D
e S u e

∈
∈ ⇔ >� � �

�  or equivalently 

{ ( ) 0}PS D
S e u e

∈
= ; >� � �

� .  

 Theorem 6 characterizes those elements which are 
contained in every optimal solution. We only have to 
know the upper tolerance of an element. Unfortunately, 
this property doesn’t hold for a cost function of type 
MAX .  
 
Remark 1: In general, for a cost function of type 
MAX  only the direction “� ” of Theorem 6 holds, but 
not the direction “ ⇐”.  
 
Corollary 2: Let the cost function be either of type �  
or of type ∏ . There is only one optimal solution of P  
if and only if ( ) 0Pu e >  for all e  with 

UNDEFINED( )Pu e ≠ .  
 
Remark 2: Note that Condition 1 is crucial for all these 
properties, in particular for Theorem 4.  
 

4   LOWER TOLERANCES 
 
 Now, let S �  be an optimal solution of P  which 
doesn’t contain the element e E∈ . Analogously to the 
considerations which we have made with respect to the 
upper tolerance, we can ask for the supremum by which 
the costs of element e  can be decreased such that S �  
remains an optimal solution, provided that the costs of 
all other elements remain unchanged. More formally, 
we define for all e E S∈ \ � :  

is monotone  and

is an optimal solution of

( ) sup{

                    }
ecS

e

l e f

S P
α

α

α
− ,

− ,

:= ∈ ;R�

�

 

Because of the monotonicity of the cost function it 
holds:  

 

is monotone  and

is not an optimal solution of

( ) inf{

                  }
ecS

e

l e f

S P
α

α

α
− ,

− ,

:= ∈ ;R�

�

 

 Note that if the cost function of the combinatorial 
minimization problem is of type ,∏  the costs of the 
elements have to be greater than zero to guarantee 
monotonicity. In the following, let ( )max eδ  be defined 
as  

if is either of type or 

 of type

if is of type

         
( ) MAX

( )                    

c

max

c

f

e

c e f

δ
, ��

+∞�:= �
� , ∏�

 

( )max eδ  is the supremum by which element e  can be 
decreased such that the cost function remains either of 
type ,�  ,∏  or MAX .  

As S �  is an optimal solution of 
0 eP− ,  which is ,P  the 

lower tolerance ( )
S

l e�
 is either a non-negative number 

or +∞  if .e S∈/ �  More exactly, it holds for each 
e E S∈ \ � :  0 ( ) ( )maxS

l e eδ≤ ≤�
 

Because of Condition 2, for each e E S∈ \ �  and each 
( ) ( )maxS

l e eδ<�
, it holds:  

is monotone  and

is an optimal solution of

( ) max{

                      }
ecS

e

l e f

S P
α

α

α
− ,

− ,

= ∈ ;R�

�

 

 
Theorem 7: Let the cost function be of type �  or ∏  
and let S �  be an optimal solution of P . Then, an 
element e  isn’t contained in a feasible solution if and 
only if ( ) ( )maxS

l e eδ=�
, i.e., 

( ) ( )maxSS D
e E S l e eδ

∈
∈ ⇔ =\� �

. 

 
Remark 3: In general, for a cost function of type 
MAX  only the direction “� ” of Theorem 7 holds, but 
not the direction “ ⇐”.  
 Remark 3 partly puts lower tolerances with respect 
to a cost function of type MAX  in question. It states 
that the lower tolerance of an element can be very large, 
namely +∞ , although this element can be included in a 
feasible solution. It can be shown that the element can 
be included in an optimal solution. This contradicts the 
intuition that an element with large lower tolerance is 
not a “good” element and should not be included in 
solutions by heuristics.  
 
Theorem 8: The lower tolerance of an element doesn’t 
depend on a particular optimal solution of ,P  i.e., 

1 2 1 2( )( )S S D e S S∀ , ∈ ∀ ∈ ∪ :/�  
1 2
( ) ( )S Sl e l e= .  

 Thus, if there is at least one optimal solution S �  of 
P  which doesn’t contain element e , the lower 
tolerance of e  doesn’t depend on that particular optimal 
solution but only on problem P  itself. As for upper 
tolerances, we can refer to the lower tolerance of e  
with respect to an optimal solution S �  as lower 
tolerance of e  with respect to ,P  ( )Pl e .  

 The lower tolerance of an element e  which is 
contained in every optimal solution is not defined, yet. 
For these elements e , we set UNDEFINED( )Pl e := .  
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Theorem 9: If e E∈  is a single element with 
UNDEFINED( ) { ( )}P maxl e eδ∈ ,/ , then element e  is 

contained in every optimal solution of ( ( ) )Pl e eP ε− + ,  for all 

0 ( ) ( )max Pe l eε δ< < − .  

 Theorem 9 states that if we decrease the costs of e  
by more than ( )Pl e , then an optimal solution will 

contain element e , provided that ( )Pl e  is neither 

UNDEFINED  nor ( )max eδ .  

 Let for a single element e E∈  and a cost function 
of type MAX   

( ) { } if

if

min max { ( )} ( )
( )

                                    ( )

S D e a S e c a D e
g e

D e

+∈ ∈ +

+

, ≠ ∅��:= �
�+∞ , = ∅�

\  

Obviously, it holds:  
( ) min{ ( ) ( ( ))}

ec cf P g e f D e
−∞, −= , �                             (2) 

 
Theorem 10: For each single element e E∈  it holds:  
* ( ( )) lim ( ( ) )

K ec K cf D e f P K
− ,+ →+∞= +� , if the cost 

function is of type �   

* ( )( )

( )( )
( ( )) lim ( )c K e

f P

c c e KK c e
f D e c e− ,

−+ −→
= ⋅� , if the cost 

function is of type ∏   
* ( ( )) max{ ( ) ( )}cf D e g e c e+ = ,� , if the cost function 

is of type MAX   
 
Theorem 11: For each single element e E∈  with 

UNDEFINED( )Pl e ≠ , the lower tolerance of e  with 
respect to P  is given by:  
* ( ) ( ( )) ( )P c cl e f D e f P+= −� , if the cost function is of 

type �   

* ( ( )) ( )

( ( ))
( ) ( )c c

c

f D e f P
P f D e

l e c e+

+

−= ⋅
�

�
, if the cost function is of 

type ∏   

* 
             

if

otherwise

( ) ( ) ( ) ( )
( )

             
c c

P

c e f P g e f P
l e

− , <�
= �+∞ ,�

, if the cost 

function is of type MAX   
 
 Theorem 10 and Theorem 11 tell us how to 
compute the lower tolerance of a single element e E∈  
with respect to .P  We observe  
 
Corollary 3: The lower tolerance of a single element 
e E∈  can be computed by solving two different 
instances of P  for a cost function of type ,�  ∏  and 
solving one instance of P  for a cost function of type 
MAX,  i.e., the computation of the lower tolerance has 
the same complexity as P  itself.  
 
Theorem 12: If the cost function is either of type �  or 

,∏  then a single element e E∈  isn’t contained in any 
optimal solution if and only if its lower tolerance is 

greater than 0 , i.e., ( ) 0PS D
e S l e

∈
∈ ⇔ >/ � � �

�  or 

equivalently { ( ) 0}PS D
E S e l e

∈
= ; >\� � �

� . Theorem 12 

characterizes those elements which are never included 
in an optimal solution.  
 
Remark 4: In general, for a cost function of type 
MAX  only the direction “� ” of Theorem 12 holds, 
but not the direction “ ⇐”.  
 

5   RELATIONSHIP BETWEEN LOWER AND 
UPPER TOLERANCES 

 
The following properties hold for each cost function 

cf  

either of type �  or .∏   
 
Corollary 4: Let the cost function be either of type �  
or of type .∏  For all e E∈ , the equivalence 

UNDEFINED( ) ( ) 0P Pl e u e= ⇔ >  holds.  

 
Proof: The statement follows from Theorem 6 and the 
definition of lower tolerance.  

�  
 
Corollary 5: Let the cost function be either of type �  
or of type .∏  For all ,e E∈  the equivalence 

UNDEFINED( ) ( ) 0P Pu e l e= ⇔ >  holds. 
 
Proof: The statement follows from Theorem 12 and the 
definition of upper tolerance.  

�  
 
Corollary 6: Let the cost function be either of type �  
or of type .∏  For each e E∈  which is contained in at 
least one optimal solution of P  but not in all, i.e., 

S D
e S

∈
∈� � �

�  and ,
S D

e S
∈

∈/ � � �

�  the equation 

( ) ( ) 0P Pu e l e= =  holds. 
 
Proof: Both the upper tolerance and the lower tolerance 
of e  are defined. ( ) 0Pu e =  holds because of Theorem 

6. ( ) 0Pl e =  holds because of Theorem 12.  

�  
 
 Actually, there are much more close interrelations 
between lower and upper tolerances.  
Let min  {P minu , =  ( )Pu e ;  e E∈  and ( )Pu e ≠  

UNDEFINED}  and min  {P minl , =  ( )Pl e ;  e E∈  and 

( )Pl e ≠  UNDEFINED}  be the smallest upper and lower 

tolerance with respect to .P  Furthermore, let 
P min,∆  be 

defined as min{ ( ) }P min max e e Eδ,∆ = ; ∈ .  
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Corollary 7: Let the cost function be either of type �  
or of type .∏  Provided that there are at least two 
different optimal solutions, i.e.,  2D| | ≥� , the equation 

0P min P minu l, ,= =  holds. 

 
Proof: As there are at least two optimal solutions 

1S  

and 2S , there is an element 1e  with 1 1 2e S S∈ \  or 

1 2 1e S S∈ \ . Thus, 
1 S D

e S
∈

∈� � �

�  and 
1 .

S D
e S

∈
∈/ � � �

�  

By Corollary 6, these two properties of 1e  imply 

1( ) 0Pu e =  and 1( ) 0Pl e = . Thus, 0P min P minu l, ,= =  

holds.  
�  

 
 Much more interesting is the case that there is only 
one optimal solution. Here, both the minimal upper 
tolerance and the minimal lower tolerance are greater 
than 0 . Nevertheless, they are equal. First, we analyze 
the special case that there is only one feasible solution 
of P .  
 
Lemma 1: Let the cost function be either of type �  or 
of type .∏  If the set D  of the feasible solutions of P  
consists of only one element, say S , i.e., 1D| |= , then 

P minu , = +∞  and  

* 
P minl , = +∞   , if S E=  

* 
P min P minl , ,= ∆  , if S = ∅   

* 
P min P minl , ,≥ ∆  , if S E≠  and S ≠ ∅   

 
Remark 5: Note that for the set of the feasible 
solutions D  we have: D ≠ ∅  (Condition 3), but 
nevertheless it might hold:  D∅ ∈ .  
 
Corollary 8: Let the cost function be of type � . If the 
set D  consists of only one element, i.e., 1D| |= , then 

P min P minu l, ,= = +∞  holds. 

 
Proof: The corollary is implied by Lemma 1 as 

P min,∆ = +∞  for a cost function of type .�   

�  
 
Lemma 2: Let the cost function be of type .�  
Provided that no feasible solution is a subset of another 
feasible solution and there are at least two different 
feasible solutions but only one optimal solution, i.e., 

 2D| | ≥  and  1D| | =� , then the equation 

P min P minu l, ,=  holds. In particular, 0 P minl ,< ≠ +∞  and 

0 P minu ,< ≠ +∞ .  

 
 

Theorem 13: Let the cost function be of type .�  
Provided that no feasible solution is a subset of another 
feasible solution, then the equation 

P min P minu l, ,=  holds. 

 
Proof: The statement is implied by Corollary 7, 
Corollary 8 and Lemma 2.  

�  
 
Remark 6: If we relax the condition that no feasible 
solution is a subset of another feasible solution, then 
Theorem 13 doesn’t hold.  
 
Remark 7: In general, Theorem 13 doesn’t hold for a 
cost function of type ∏ .  
 
Remark 8: In general, Theorem 13 doesn’t hold for a 
cost function of type MAX .  
 
Corollary 9: Let the cost function be of type .�  
Provided that no feasible solution is a subset of another 
feasible solution, there is only one optimal solution of 
P  if and only if ( ) 0Pl e >  for all e  with 

UNDEFINED( )Pl e ≠ . 

 
Proof: The statement follows from Corollary 2, 
Theorem 13 and the definition of 

P minu ,  and 
P minl , .  

�  
 
 Finally, we consider the largest upper and lower 
tolerance with respect to ,P  max  {P maxu , =  ( )Pu e ;  

e E∈  and ( )Pu e ≠  UNDEFINED}  and max  {P maxl , =  

( )Pl e ;  e E∈  and ( )Pl e ≠  UNDEFINED} . We define 

G :=  {
S D

e S
∈

∈ ;� � �

�  ( ) }P P maxu e u ,=  and H :=  

{
S D

e E S
∈

∈ ;\� � �

�  ( ) }P P maxl e l ,= .  

We call the set of feasible solutions D  connected, if D  
satisfies:  

a) 
( ) ( )

( )
S D

e S S e D e
S e H

− −∈
−∈ ∈

� �∩ ≠∅	 

� ��� �� � �

� �

�   

b) 
( ) ( )

( ( ))
S D

e E S S e D e
E S e

+ +∈
+∈ ∈

� �
	 

� �\

\
�� �� � �

� �

�    G∩ ≠∅   

 
It is easy to see that conditions a) and b) are equivalent 
to the conditions a’) and b’):  
a’) ( ) ( )

S D
e S S e D e− −∈

∃ ∈ ∃ ∈ :� � �

� � �

     ( )S e H− ∩ ≠∅�  

b’) ( ) ( )
S D

e E S S e D e+ +∈
∃ ∈ ∃ ∈ :\� � �

� � �  

   ( ( ))E S e G+ ∩ ≠∅\ �  
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Theorem 14: Let the cost function be of type .�  If the 
set of the feasible solutions D  is connected, then the 
equation 

P max P maxu l, ,=  holds.  

 We illustrate the conditions a) and b) and Theorem 
14 by the following combinatorial minimization 
problem ( )cP E D c f= , , , :  

* { }E v x y z= , , ,  with ( ) 1c v = , ( ) 2c x = , ( ) 4c y =  
and ( ) 8c z =   

* {{ } { }}D v x y z= , , ,   
* 

cf  is a cost function of type �   

 
 The only optimal solution is { }v x, . It holds 

( ) 9Pu v =  and ( ) 9Pu x =  which implies 9P maxu , =  and 

( ) 9Pl y =  and ( ) 9Pl z =  which implies 9P maxl , = . 

Therefore 
P max P maxu l, ,= . Furthermore it holds: 

{ }G v x= , ,  { }H y z= , ,  ( ) {{ }}D v y z− = , ,�  

( ) {{ }}D x y z− = , ,�  ( ) {{ }}D y y z+ = ,�  and ( ) {{ }}D z y z+ = ,� . 
As condition a’) and condition b’) hold, D  is 
connected. 
 
Remark 9: The condition that the set of the feasible 
solutions D  is connected is only a sufficient, but not a 
necessary condition for 

P max P maxu l, ,= , i.e., there is a 

combinatorial minimization problem, where 

P max P maxu l, ,= , although D  is not connected.  

 
Remark 10: In general, Theorem 14 doesn’t hold for a 
cost function of type .∏   
 
Remark 11: In general, Theorem 14 doesn’t hold for a 
cost function of type MAX.   
 

6   PROOFS 
 
Proofs of the properties of upper tolerances 
 
Proof of Theorem 1: For the direction “� ” we only 
have to prove that an optimal solution S �  remains 
optimal if the costs of an element e S ∗∈  which is 
contained in every feasible solution are increased. We 
prove it by case differentiation:  
* [The cost function 

cf  is of type � ] 

  As element e  is included in every feasible solution 
of ,P  increasing the costs of element e  by 0α >  
increases the costs of all feasible solutions of P  by 
the term α . Hence, optimal solutions of P  are 
optimal solutions of 

ePα , , too.  

* [The cost function 
cf  is of type ∏ ]  

  As element e  is included in every feasible 
solution of ,P  increasing the costs of element e  by 

0α >  increases the costs of all optimal solutions of 
P  by the term ( )

( )
cf P
c eα ⋅  and all other feasible 

solutions S  of P  by the term ( )
( )

cf S
c eα ⋅  which is 

greater than or equal to ( )
( )

cf P
c eα ⋅ . Hence, optimal 

solutions remain optimal.  
* [The cost function 

cf  is of type MAX ] 

  If the costs of element e  are increased by 
( ) ( )cf P c eα ≤ − , optimal solutions of P  

obviously are optimal solutions of 
ePα , , too, 

because the new costs of e  are less than or equal 
( )cf P .  

If the costs of element e  are increased by 
( ) ( )cf P c eα > − , the costs of a formerly optimal 

solution becomes ( )c e α+  and the costs of each 
feasible solution are greater than or equal ( )c e α+ . 
Hence, optimal solutions remain optimal.  

 
 To prove the other direction, assume that there is a 
feasible solution S D∈  with e S∈/ . Increasing the 
costs of e  by some 0γ >  (choose γ  large enough) 

results in ( ) ( )
e ec cf S f S

γ γ, ,
>�  and S �  isn’t an optimal 

solution of 
ePγ , . Thus, the upper tolerance ( )Pu e  of e  

is less than γ  which is in contradiction to ( )
S

u e = +∞�
. 

�  
 
Proof of Theorem 2: The statement follows from 
Lemma 3, 4 and 5 which we prove in the following. 

�  
 
Lemma 3: (1) holds for a cost function of type � . 
Proof: First, consider the case that 

1
( )Su e = +∞ . By 

Theorem 1, 
S D

e S
∈

∈�  and thus, 
2
( )Su e = +∞  holds, 

too.  
In the following, we assume that 

1
( )Su e ≠ +∞  and 

2
( )Su e ≠ +∞ .  

Let us prove 
1 2
( ) ( )S Su e u e≥ , now.  

As both solutions 
1S  and 2S  are optimal, the equation  

1 2

( ) ( )
e S e S

c e c e
∈ ∈

=� �        (3) 

holds. Furthermore, the following statements are true:  
* By Condition 1, both 

1S  and 2S  are feasible 

solutions of 
2

( )Su e eP ,
.  

* As e  is an element of both 
1S  and 2S , the costs of 

1S  and 2S  increase by the term α , respectively, if 

the costs of e  are increased by α :  
 

1

1
{ }

 ( ) ( ) ( ( ) )
ec

e S e

f S c e c e
α

α
,

∈

= + +�
�
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1

             ( )                    
e S

c e α
∈

= +�

  

2

see (3)             ( )                    
e S

c e α
∈

= +�  

  

2 { }

             ( ) ( ( ) )
e S e

c e c e α
∈

= + +�
�

2( )
ecf S

α ,
=  

 
 This implies that, for all 0α > , 

1S  is an optimal 

solution of 
ePα ,  if 2S  is an optimal solution of 

ePα , . 

Hence, 
1 2
( ) ( )S Su e u e≥  holds.  

Obviously, the relation 
1 2
( ) ( )S Su e u e≤  can be shown 

analogously.  
�  

 
Lemma 4: (1) holds for a cost function of type ∏ . 
 
Proof: The case 

1
( )Su e = +∞  can be shown 

analogously to the proof of Lemma 3.  
In the following, we assume that 

1
( )Su e ≠ +∞  and 

2
( )Su e ≠ +∞ .  

The statement of Lemma 4 can be proven analogously 
to Lemma 3 because of the following two facts:  
 
* For each 1 2e S S∈ ∩ : 

1 { }
( )

e S e
c e

∈
=∏ \

 

2 { }
( )

e S e
c e

∈∏ \
 because 

1
( )

e S
c e

∈
=∏  

2
( )

e S
c e

∈∏  

and ( ) 0c e ≠ .  
* For each 1 2e S S∈ ∩  and for each 0α > :  

1

2

1
{ }

{ }

2

( ) ( ) ( ( ) )

 ( ) ( ( ) )

 ( )

e

e

c
e S e

e S e

c

f S c e c e

c e c e

f S

α

α

α

α

,

,

∈

∈

= ⋅ +

= ⋅ +

=

∏

∏
\

\

 

�  
 
Lemma 5: (1) holds for a cost function of type MAX. 
 
Proof: The case 

1
( )Su e = +∞  can also be shown 

analogously to the proof of Lemma 3.  
In the following, we assume that 

1
( )Su e ≠ +∞  and 

2
( )Su e ≠ +∞ .  

Because of the definition of 
1
( )Su e  and Condition 1, the 

following statements obviously hold for all 0ε >  :  
* 

1S  is an optimal solution of 
1

( )Su e eP ,
.  

* 
1S  isn’t an optimal solution of 

1
( )Su e eP ε+ ,

 although 

feasible solution.  
 
 It follows that 

( ) 11
1( ) ( ) ( )

u e eS
c Sf S c e u e

,
= +  must hold. 

Otherwise, 
( ) 11

1( ) ( ) ( )
u e eS

c Sf S c e u e
,

> +  would hold and 

the costs of e  could be increased by some constant 
0ε >  without violating the optimality of 

1S . 

Furthermore, we have: 

( )1

1

 2 1 1 2

1

 as

monotonicity of the cost function

( ) ( )         

 ( )     

 ( ) ( )
u e eS

c c

c

S

f S f S S S D

f S

c e u e
,

= , ∈
≤

= +

�

 

 Thus, as the cost function we consider in this 
lemma is of type MAX, the costs of 2S  with respect to 

1
( )Su e eP ,

 is determined by element e  as 
2e S∈  and the 

costs of all the other elements of 2S  are less than or 

equal 
1

( ) ( )Sc e u e+ , i.e.,  

( ) 1 ( )1 1
2 1( ) ( ) ( ) ( )

u e e u e eS S
c S cf S c e u e f S

, ,
= + =  

As 
1S  is an optimal solution of 

1
( )Su e eP ,

, 2S  is also an 

optimal solution of 
1

( )Su e eP ,
. Thus, 

2 1
( ) ( )S Su e u e≥  holds.  

The relation 
2 1
( ) ( )S Su e u e≤  can be shown analogously.  

�  
 
Proof of Theorem 3 
Lemma 6: Let 

1 2 2ES S, ⊆  be two subsets of E , 

1 2e S S∈ ∩  and 0α > . It holds:  

1 2 1 2( ) ( ) ( ) ( )
e ec c c cf S f S f S f S

α α, ,
≥ � ≥        (4) 

 Note that the above implication even holds for all 
α ∈ R , if the cost function is either of type �  or ∏ . 
 
Proof: We prove the lemma by case differentiation.  
* [The cost function is of type � ]  

 
1 1

2

2

( ) ( )

 ( )

 ( )

e

e

c c

c

c

f S f S

f S

f S

α

α

α

α
,

,

= +

≥ +
=

 

 Thus, (4) holds even for all α ∈ R . 
* [The cost function is of type ∏ ]  

 
1

1

2

       as
( )

( ) ( ( ) ) ( ) 0
( )
( )

    ( ( ) )
( )

e

c
c

c

f S
f S c e c e

c e
f S

c e
c e

α
α

α

,
= + ⋅ ≠

≥ + ⋅

 

 
2          ( ) 

ecf S
α ,

=  

 Thus, (4) holds even for all α ∈ R .  
* [The cost function is of type MAX ] 
 There are three sub-cases to distinguish:  
 Case 1: 

1( ) ( )cf S c e α≥ +  

   and 2( ) ( )cf S c e α≥ +  

  Because of 0α > , it follows:  
  

1 1 2 2( ) ( ) ( ) ( )
e ec c c cf S f S f S f S

α α, ,
= , =  

  so that (4) obviously holds. 
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 Case 2: 
1( ) ( )cf S c e α≥ +  

   and 
2( ) ( )cf S c e α< +   

  Because of 0α > , it follows: 
  

1 1 2( ) ( ) ( ) ( )
e ec c cf S f S c e f S

α α
α

, ,
= ≥ + =  

 Case 3: 
1( ) ( )cf S c e α< +  

   and 2( ) ( )cf S c e α< +  
  It follows: 
  

1 2( ) ( ) ( )
e ec cf S c e f S

α α
α

, ,
= + =  

�  
Now, we prove Theorem 3.  
 Let e E∈  be with UNDEFINED( ) { }Pu e ∈ ,+∞/ , 

0ε >  and S D∈  with e S∈  a feasible solution of 

( )Pu e eP ε+ , . We show that S  isn’t an optimal solution of 

( )Pu e eP ε+ , .  

Because of Condition 1, S  is a feasible solution of P .  
Now, we can distinguish two cases:  
* [ S  is optimal with respect to P ] : Then, ( )Su e  is 

defined and because of the definition of upper 
tolerance and Theorem 2, S  isn’t an optimal 
solution of 

( )Pu e eP ε+ ,   

* [ S  isn’t optimal with respect to P ] : Because of 
UNDEFINED,( )Pu e ≠  there is an optimal solution 

S �  of P  with .e S∈ �  As just proven, S �  is not 
optimal with respect to 

( )Pu e eP ε+ , . As ,S D∈/ �  it 

follows: ( ) ( )c cf S f S> � . As ,e S S∈ ∩ �  Lemma 6 

can be applied: 
( ) ( )

( ) ( )
u e e u e eP P

c cf S f S
ε ε+ , + ,

≥ � . Hence, 

S  cannot be optimal with respect to 
( )Pu e eP ε+ ,  as its 

costs are greater than or equal those of S �  which 
isn’t an optimal solution of 

( )Pu e eP ε+ , .  

�  
 
Proof of Theorem 4: Theorem 4 follows from the 
following three lemma, Lemma 7, 8 and 9.  

�  
 
Lemma 7. Let the cost function be of type .�  For each 
single element e E∈  which is contained in at least one 
optimal solution S �  of ,P  the upper tolerance of e  is 
given by:  

( ) ( ( )) ( )P c cu e f D e f P−= −�  

 
Proof: First, let us prove that 

( ) ( ( )) ( )P c cu e f D e f P−≥ −�  holds.  

If ( )Pu e = +∞ , the above relation is obvious. Thus, we 

can assume ( )Pu e ≠ +∞  in the following. The equation 

( )
( ( )) ( ( ))

u e eP
c cf D e f D e

ε+ , − −=� �  holds for each 0ε > , as 

only the costs of element e  are increased.  

By Theorem 3, for all 0ε >  there is no feasible 
solution S D∈  with e S∈  which is an optimal solution 
of ( )Pu e eP ε+ , , i.e., 

( ) ( )
( ( )) ( )

u e e u e eP P
c cf D e f S

ε ε+ , + ,− <� �  holds, 

as .e S∈ �  Hence, for all 0ε >   

( )

( )

( ( )) ( ( ))

 ( )

 ( ) ( )

u e eP

u e eP

c c

c

c P

f D e f D e

f S

f P u e

ε

ε

ε

+ ,

+ ,

− −=

<

= + +

� �

�  

Thus, ( ( )) ( ) ( )c c Pf D e f P u e− ≤ +�  holds which is 

equivalent to ( ( )) ( ) ( )c c Pf D e f P u e− − ≤� . 
Now, let us prove the other direction, namely 

( ) ( ( )) ( )P c cu e f D e f P−≤ −� .  

Let  ( ) ( ( )) ( )c ce f D e f Pβ −:= −� . 

We can assume that ( )eβ ≠ +∞ , as otherwise the 
assertion is proven obviously. Increasing the costs of e  
by ( )eβ ε+  with 0ε >  lets increase the costs of the 

formerly optimal solution S �  to  

( )
( ) ( ) ( )                       

e ec cf S f S e
β ε

β ε
+ ,

= + +� �

                 ( ) ( ( ( )) ( ))c c cf P f D e f P ε−= + − +�

                 ( ( ))                             cf D e ε−= +�

                 ( ( ))     cf D e−> �  

( )
                 ( ( ))                            

e ecf D e
β ε+ , −= �  

Thus, S �  is no optimal solution of ( )e ePβ ε+ ,  and 

( ) ( )Pu e eβ ε< + . It follows:  

( ) ( ) ( ( )) ( )P c cu e e f D e f Pβ −≤ = −�  

�  
 
Lemma 8: Let the cost function be of type ∏ . For 
each single element e E∈  which is contained in at least 
one optimal solution S �  of P , the upper tolerance of e  
is given by:  

( ( )) ( )
( ) ( )

( )
c c

P
c

f D e f P
u e c e

f P
− −= ⋅
�

 

 
Proof: First, let us prove that ( ( )) ( )

( )( ) ( )c c

c

f D e f P
P f Pu e c e− −≥ ⋅

�

 

holds.  
 We only have to prove the relation for ( )Pu e ≠ +∞ . 

The equation 
( )

( ( ))
u e eP

cf D e
ε+ , −

�  ( ( ))cf D e−= �  holds for 

each 0ε > . By Theorem 3, for all 0ε >  there is no 
feasible solution S D∈  with e S∈  which is an optimal 
solution of ( )Pu e eP ε+ , , i.e., 

( ) ( )
( ( )) ( )

u e e u e eP P
c cf D e f S

ε ε+ , + ,− <� �  

holds, as e S∈ � . Hence, for all 0ε >  

( )
( ( )) ( ( ))                              

u e eP
c cf D e f D e

ε+ ,− −=� �

( )
               ( )                                    

u e eP
cf S

ε+ ,
< �
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{ }

               ( ) ( ( ) ( ) )        P
e S e

c e c e u e ε
∈

= ⋅ + +∏
\�

{ }

               ( ) ( ( ) ) ( )   P
e S e S e

c e u e c eε
∈ ∈

= + + ⋅∏ ∏
\� �

1
               ( ) ( ( ) ) ( )

( )P
e S e S

c e u e c e
c e

ε
∈ ∈

= + + ⋅ ⋅∏ ∏
� �

1
               ( ) ( ( ) ) ( )   

( )c P cf S u e f S
c e

ε= + + ⋅ ⋅� �

1
               ( ) ( ( ) ) ( )      

( )c P cf P u e f P
c e

ε= + + ⋅ ⋅  

 

Thus, ( ( )) ( )
( ) ( ) ( )c c

c

f D e f P
Pf P c e u e ε− − ⋅ < +

�

 holds which 

implies:  
( ( )) ( )

( ) ( )
( )

c c
P

c

f D e f P
c e u e

f P
− − ⋅ ≤
�

 

Now, let us prove the other direction, namely 
( ( )) ( )

( )( ) ( )c c

c

f D e f P
P f Pu e c e− −≤ ⋅

�

. Let  

( ( )) ( )
( ) ( )

( )
c c

c

f D e f P
e c e

f P
β − −:= ⋅

�

 

 Once again, we can assume that ( )eβ ≠ +∞ . 
Increasing the costs of e  by ( )eβ ε+  with 0ε >  lets 

increase the costs of the formerly optimal solution S �  
to  

( )

( )
( ) ( ( ) ( ) )                     

( )e e

c
c

f S
f S c e e

c eβ ε
β ε

+ ,
= ⋅ + +

�

�

( )
                 ( ( ) ( ))                            

( )
cf S

c e e
c e

β> ⋅ +
�

( )
                 ( ) ( )                            

( )
c

c

f S
f S e

c e
β= + ⋅

�

�

( ( )) ( ) ( )
                 ( ) ( )

( ) ( )
c c c

c
c

f D e f P f P
f P c e

f P c e
− −= + ⋅ ⋅
�

( )

                 ( ( ))

                 ( ( ))    
e e

c

c

f D e

f D e
β ε+ ,

−

−

=

=

�

�
 

Thus, S �  is no optimal solution of ( )e ePβ ε+ ,  and 

( ) ( )Pu e eβ ε< + . It follows:  

( ( )) ( )
( ) ( ) ( )

( )
c c

P
c

f D e f P
u e e c e

f P
β − −≤ = ⋅

�

 

�  
 
Lemma 9: Let the cost function be of type MAX . For 
each single element e E∈  which is contained in at least 
one optimal solution S �  of P , the upper tolerance of e  
is given by:  

( ) ( ( )) ( )P cu e f D e c e−= −�  
 
Proof: First, let us prove that ( ) ( ( )) ( )P cu e f D e c e−≥ −�  

holds.  
 We only have to prove the relation for ( )Pu e ≠ +∞ . 

The equation 
( )

( ( ))
u e eP

cf D e
ε+ , −

�  ( ( ))cf D e−= �  holds for 

each 0ε > . Furthermore 

( )
( ) ( ) ( )

u e eP
c Pf S c e u e

ε
ε

+ ,
= + +�  holds, as S �  is no 

optimal solution of ( )Pu e eP ε+ , .  

By Theorem 3, for all 0ε >  there is no feasible 
solution S D∈  with e S∈  which is an optimal solution 
of ( )Pu e eP ε+ , , i.e., 

( ) ( )
( ( )) ( )

u e e u e eP P
c cf D e f S

ε ε+ , + ,− <� �  holds, 

as .e S∈ �  Hence, for all 0ε >   

( )
 ( ( )) ( ( ))

u e eP
c cf D e f D e

ε+ ,− −=� �  

( )
                  ( )     

u e eP
cf S

ε+ ,
< �  

                ( ) ( )  Pc e u e ε= + +  

Thus, ( ( )) ( ) ( )c Pf D e c e u e ε− − < +�  holds which 

implies: ( ( )) ( ) ( )c Pf D e c e u e− − ≤� . 
Now, let us prove the other direction, namely 

( ) ( ( )) ( )P cu e f D e c e−≤ −� . 

 Let ( ) ( ( )) ( )ce f D e c eβ −:= −� . 

We can assume that ( )eβ ≠ +∞ . For the optimal 

solution S D∈� �  with ,e S∈ �  the following holds for 
all 0ε >  :   

( )
              ( )

e ecf S
β ε+ ,

�

         max{max{ ( )

                  { }} ( ) ( ) }

c e

e S e c e eβ ε
= ;

∈ , + +\�

         max{max{ ( ) { }}

                     ( ) ( ( )) ( ) }c

c e e S e

c e f D e c e ε−

= ; ∈ ,

+ − +

\�
�

         max{max{ ( ) { }} ( ( )) }cc e e S e f D e ε−= ; ∈ , +\� �

         ( ( ))                                              cf D e−> �  

Thus, S �  is no optimal solution of ( )e ePβ ε+ ,  and 

( ) ( )Pu e eβ ε< +  for all 0ε > . It follows:  

( ) ( ) ( ( )) ( )P cu e e f D e c eβ −≤ = −�  

�  
 
Proof of Theorem 5: Let e  be a single element of E . 
First, let e  be in each feasible solution of P . Then  

( ( )) ( ) ( )
ec c cf D e f f P

+∞,− = ∅ = +∞ =�  

 So assume that there is at least one feasible 
solution S  with e S∈/ . Let S ∗

+∞  be an optimal solution 

of 
eP+∞, . Because of the assumption and Condition 1, 

e S ∗
+∞∈/ . So  

( ( )) ( ( )) ( )
e ec c cf D e f D e f P

+∞, +∞,− −= =� �  

�  
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Proof of Theorem 6: By Theorem 4,  
if is of type

if is of type

( ( )) ( ) ,
( ) ( ( )) ( )

( ) ,
( )

c c c

P c c
c

c

f D e f P f
u e f D e f P

c e f
f P

−

−

� − �
�= −� ⋅ ∏�
�

�

�  

holds.  
 First, we prove the direction “� ”. Because e  is 
contained in every optimal solution, the costs of a 
feasible solution not containing e  is greater than the 
costs of an optimal solution, i.e., ( ( )) ( )c cf D e f P− >� . 

Hence, ( ) 0Pu e > .  

Now, let us prove the other direction. Let ( ) 0Pu e > . 

Assume that there is an optimal solution S �  with 

.e S∈/ �  By this, ( ( )) ( )c cf D e f P− =�  and ( ) 0Pu e =  

follows, which is a contradiction to ( ) 0Pu e > .  

�  
 
Proof of Remark 1: Let the cost function be of type 
MAX .  
For the direction “� ” let e  be contained in every 
optimal solution. Thus  

( ( )) ( ) ( )c cf D e f P c e− > ≥�  

Hence, ( ) 0Pu e >  with Theorem 4.  
 For the other direction consider the following 
combinatorial minimization problem ( )cP E D c f= , , ,  
defined by:  
* { }E v x y z= , , ,  with ( ) 1c v = , ( ) ( ) 2c x c y= =  

and ( ) 3c z =   
*   and{{ } }D p q p q E p q= , ; , ∈ ≠   
* 

cf  is a cost function of type MAX   
 
 Obviously, there are three optimal solutions, 
namely { }v x, , { }v y,  and { }x y, . The costs ( ( ))cf D v−

�  

of the best feasible solution which doesn’t contain v  is 
2 . By Theorem 4, the upper tolerance of v  with respect 
to P  is given by ( ( )) ( )cf D v c v− −� . Hence, 

( ) 1 0Pu v = >  although { }x y,  is an optimal solution of 

P  which doesn’t contain v . 
�  

 
Proof of Corollary 2: The condition that ( ) 0Pu e >  for 

all e  with UNDEFINED( )Pu e ≠  is equivalent to the 

condition that ( ) 0Pu e >  for all .
S D

e S
∈

∈� � �

�  With 

Theorem 6 this is equivalent to 
S D S D

S S
∈ ∈

⊆� �� � � �

� �  

and equivalent to 1D| |=� .  
�  

 
Proof of Remark 2: Just look at the following 
combinatorial minimization problem ( )cP E D c f= , , ,  

which doesn’t fulfill Condition 1:  
* { }E v x y z= , , ,  with ( ) ( ) 1c v c x= =  and 

( ) ( ) 2c y c z= =   
*     with and{{ } ( ) ( )}D p q p q E p q c p c q= , ; , ∈ ≠ =  
* 

cf  is a cost function of type �   

 
 Then there is exactly one optimal solution of ,P  

namely { }S v x= ,� . Thus, ( ) ( ) 2c cf P f S= =�  holds. 
Furthermore, there is exactly one feasible solution 
which doesn’t contain element v , namely { }S y z= , . 

Because of ( ( )) ( ) 4c cf D v f S− = = ,�  the equation 

( ( )) ( ) 2c cf D v f P− − =�  holds. However, ( ) 0
S

u v =�
, as 

increasing the costs of v  by 0α >  makes S �  
infeasible.  
 This proves that Theorem 4 doesn’t hold if the 
combinatorial minimization problem P  doesn’t fulfill 
Condition 1. 

�  
 
Proofs of the properties of lower tolerances 
 
Proof of Theorem 7: If there is no feasible solution 
which contains element e E∈ ,   then   the   costs   of e  
can    be    decreased    by    0α >     without    affecting 
the    costs of a     feasible     solution.    Thus,    optimal 
solutions     of     P       are      optimal solutions of 

eP α− , .  

 To prove the other direction, assume that there is a 
feasible solution S D∈  with e S∈ . Decreasing the 
costs of e  by some 0 ( )max eγ δ< <  (choose γ  such that 

( )c e γ−  is small enough) results in (note that we 
consider only a cost function of type �  and ∏  in this 
lemma) ( ) ( )

e ec cf S f S
γ γ− , − ,

< �  and S �  is no optimal 

solution of 
eP γ− , . Thus, the lower tolerance of e  with 

respect to S �  is less than γ  and ( ) ( )maxS
l e eδ<�

.  

�  
 
Proof of Remark 3: The first part of the proof of 
Theorem 7 shows that the direction “�” holds, even if 
the cost function is of type MAX .  
 To prove that the direction “ ⇐” doesn’t hold for a 
cost function of type MAX , consider the combinatorial 
minimization problem ( )cP E D c f= , , ,  defined by:  

* { }E v x y= , ,  with ( ) 1c v =  and ( ) ( ) 2c x c y= =   
*   and{{ } }D p q p q E p q= , ; , ∈ ≠   
* 

cf  is a cost function of type MAX   

 
 Obviously, each feasible solution is optimal as the 
costs of each feasible solution is 2 . Decreasing the 
costs of element v  by 0α >  doesn’t affect the costs of 
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a feasible solution. Thus, each feasible solution of P  is 
an optimal solution of 

vP α− , . Hence, 
{ }( )x yl v, = +∞  

although v  is contained in the optimal solution { }v x, . 
�  

 
Proof of Theorem 8: First, consider the case 

1
( ) ( )S maxl e eδ= . Because of Theorem 3, we have to 

make a case differentiation.  
* [The cost function is either of type �  or ∏ ] 

By Theorem 7, e  isn’t contained in a feasible 
solution, thus, optimal solutions remain optimal if 
the costs of e  are decreased by 0 ( )max eα δ≤ ≤ . In 

particular, 2S  is an optimal solution of 
eP α− , . 

Hence, 
2
( ) ( )S maxl e eδ= .  

* [The cost function is of type MAX ]  
 In this case, ( )max eδ = +∞ .  

Now, assume that 
2
( )Sl e α= ≠ +∞ . Then for all 

0ε > , 2S  isn’t an optimal solution of 
( ) eP α ε− + , . 

Hence, as 2S  is optimal with respect to P , there is 

a feasible solution S D∈  with  
 * e S∈   
 * 

( ) ( ) 2( ) ( )
e ec cf S f S

α ε α ε− + , − + ,
<   

 It follows:  
 

( )
     1 1 1    because of( ) ( )              

ec cf S f S e S
α ε− + ,

= ∈/
 

( ) 1
          because of         ( ) ( )

ec Sf S l e
α ε− + ,

≤ = +∞
 

( )
 2         ( )                                     

ecf S
α ε− + ,

<  

     2 2               because of         ( )       cf S e S= ∈/  

which is a contradiction to the fact that both 
1S  and 

2S  are optimal with respect to .P  Thus, 
2
( )Sl e  has 

to be +∞ .  
 
 This closes the proof that 

1
( ) ( )S maxl e eδ=  implies 

2
( ) ( )S maxl e eδ= .  

 Now, consider the other case, namely 

1
( ) ( )S maxl e eδ< . If we decrease the costs of element e  

by 
1
( )Sl e , the following statements hold:  

* By Condition 1, 
1S  and 2S  are feasible solutions 

with respect to 
1

( )Sl e eP− ,
.  

* Because of the definition of lower tolerance, 
1S  is 

an optimal solution of 
1

( )Sl e eP− ,
.  

* As the costs of neither 
1S  nor 2S  are affected by 

decreasing the costs of e , we have  
 

( )1
2 2( ) ( )                                                     

l e eS
c cf S f S

− ,
=  

1 1 2and are optimal w r t                 ( )          cf S S S P. . .=  

( )1
1                      ( )                                           

l e eS
cf S

− ,
=  

 
 
 It follows that 2S  is an optimal solution of 

1
( )Sl e eP− ,

, 

too. Hence, 
2 1
( ) ( )S Sl e l e≥  holds.  

Analogously we can prove 
2 1
( ) ( )S Sl e l e≤ .  

�  
 
Proof of Theorem 9: Let e E∈  with 

UNDEFINED( ) { ( )}P maxl e eδ∈ ,/  and ε  with 

0 ( ) ( )max Pe l eε δ< < − . Further let S D∈  with e S∈/  be 

a feasible solution of 
( ( ) )Pl e eP ε− + , . We show, that S  is 

not an optimal solution of 
( ( ) )Pl e eP ε− + , .  

Because of Condition 1, S  is a feasible solution of .P   
We have to distinguish two cases:  
* [S is optimal with respect to P ]  

In this case, the lower tolerance of e  with respect 
to S  is defined and ( ) ( )S Pl e l e=  holds. By the 

definition of lower tolerance, S  isn’t an optimal 
solution of 

( ( ) )Pl e eP ε− + , .  

* [S isn’t optimal with respect to P ]  
Because of UNDEFINED( )Pl e ≠ , there is at least 

one optimal solution S �  of P  with .e S∈/ �  As just 
proven, S �  isn’t an optimal solution of 

( ( ) )Pl e eP ε− + , .  

As ,S D∈/ �  ( ) ( )c cf S f S> �  holds and because of 

,e S S∈ ∪/ �  the costs of neither S  nor S �  are 
changed if the costs of e  decrease. Thus 

( ( ) ) ( ( ) )
( ) ( ) ( ) ( )

l e e l e eP P
c c c cf S f S f S f S

ε ε− + , − + ,
= > =� �  

holds and S  is not an optimal solution of 

( ( ) )Pl e eP ε− + , .  

�  
 
Proof of Theorem 10: First, let e  be not contained in a 
feasible solution of ,P  i.e., ( )D e+ = ∅ . Then  

( ( )) ( )c cf D e f+ = ∅ = +∞�  
Furthermore  

( )lim ( ) ( ) lim
K ec cK K

f P K f P K
− ,→+∞ →+∞

+ = + = +∞  

for a cost function of type �  and  

( ) ( )

( ) 1
lim ( ) ( ) ( ) lim

( ) ( )

                                    

K ec
c

K c e K c e

f P
c e f P c e

c e K c e K
− ,

− −→ →

� �
⋅ = ⋅ ⋅	 
	 
− −� �

= +∞

 

for a cost function of type ∏  and  

      

max{ ( ) ( )} max{ ( )}
                      

g e c e c e, = +∞,
= +∞

 

for a cost function of type MAX .  
Now, let e  be contained in at least one feasible solution 
of .P   
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For a cost function of type �  it holds for all K  with 
( )K c e< :  ( ( )) ( ( ))

K ec cf D e f D e K
− ,+ += +� �  

The assertion follows, as for sufficiently large ,K  

( ( )) ( )
K e K ec cf D e f P

− , − ,+ =� .  

For a cost function of type ∏  it holds for all K  with 

0 ( )K c e< < :  
( ( ))

( ( )) ( )
( )

K ec
c

f D e
f D e c e

c e K
− , +

+ = ⋅
−

�

�  

 Analogously, the assertion follows, as for K  
sufficiently close to ( )c e ,  

( ( ))
K ecf D e

− , +
�  ( )

K ecf P
− ,

= .  

The assertion for a cost function of type MAX  follows 
from the definition of .g   

�  
 
Proof of Theorem 11: The statement follows from the 
following three lemma, Lemma 10, 11 and 12.  

�  
 
Lemma 10: Let the cost function be of type � . For 
each single element e E∈  with UNDEFINED( )Pl e ≠ , 

the lower tolerance of e  is given by:  
( ) ( ( )) ( )P c cl e f D e f P+= −�  

 
Proof: For the case ( )Pl e = +∞  it follows from 

Theorem 7 and 8 that 
S D

e E S
∈

∈ \�  and thus, 

( ( )) ( )c cf D e f+ = ∅ = +∞� . Therefore 

( ( )) ( )c cf D e f P+ − = +∞�  

Now let ( )Pl e ≠ +∞ .  

 First, let us prove that ( ) ( ( )) ( )P c cl e f D e f P+≥ −�  

holds. Decreasing the costs of e  by ( )Pl e ε+  with 

0ε >  decreases the costs of the best feasible solutions 
which contain e  by ( )Pl e ε+ , i.e., 

( ( ) )
( ( )) ( ( )) ( )

l e eP
c c Pf D e f D e l e

ε
ε

− + , + += − −� � .  

By Theorem 9, for all 0ε >  an optimal solution of 

( ( ) )Pl e eP ε− + ,  contains e , i.e.,  

( ( ) ) ( ( ) )
( ( )) ( ( ))

l e e l e eP P
c cf D e f D e

ε ε− + , − + ,+ −<� �  

 Now, let S �  be an optimal solution of P  with 
e S∈/ � . Such a feasible solution S �  exists as 

UNDEFINED( )Pl e ≠  holds. Because of  

( ( ) )

 because

as is optimal w r t

( ( )) ( ( ))

 ( )      ( )

 ( )        

l e eP
c c

c

c

f D e f D e

f S S D e

f P S P

ε− + , − −

−

. . .

=

= ∈

=

� �

� � �

�

 

we can conclude: 

( ( ) )

( ( ) )

( ( )) ( ) ( ( ))

 ( ( ))

 ( )

l e eP

l e eP

c P c

c

c

f D e l e f D e

f D e

f P

ε

ε

ε
− + ,

− + ,

+ +

−

− − =

<

=

� �

�  

Thus, ( ( )) ( ) ( )c P cf D e l e f P+ − ≤�  holds which is 

equivalent to ( ( )) ( ) ( )c c Pf D e f P l e+ − ≤� . 
 Now, let us prove the other direction, namely 

( ) ( ( )) ( )P c cl e f D e f P+≤ −� . Let 

( ) ( ( )) ( )c ce f D e f Pβ +:= −�  

and let S �  be an optimal solution of P  with e S∈/ � . 
S �  exists because of UNDEFINED( )Pl e ≠ . As we have 

assumed ( )Pl e ≠ +∞ , ( )D e+
�  is not empty by Theorem 

7 and 8 and thus, ( )eβ ≠ +∞  holds.  
 Decreasing the costs of e  by ( )eβ ε+  with 0ε >  

makes the best solutions of ( )D e+
�  cheaper than the 

formerly optimal solution S �  which doesn’t contain e . 
Indeed, for all 0ε > , the following equations hold:  

( ( ) )
                  ( ( ))

e ecf D e
β ε− + , +

�

            ( ( )) ( )                        cf D e eβ ε+= − −�

            ( ( )) ( ( ( )) ( ))c c cf D e f D e f P ε+ += − − −� �

            ( )                                          cf P ε= −
            ( )                                              cf P<

( ( ) )

            ( )

            ( )                    
e e

c

c

f S

f S
β ε− + ,

=

=

�

�
 

Thus, for all 0ε > , S �  is no optimal solution of 

( ( ) )e eP β ε− + ,  and it follows:  

( ) ( ) ( ( )) ( )P c cl e e f D e f Pβ +≤ = −�  

�  
 
Lemma 11: Let the cost function be of type ∏ . For 
each single element e E∈  with UNDEFINED( )Pl e ≠ , 

the lower tolerance of e  is given by:  

( ( )) ( )
( ) ( )

( ( ))
c c

P
c

f D e f P
l e c e

f D e
+

+

−= ⋅
�

�
 

 
Proof: For the case ( ) ( )Pl e c e=  it follows from 

Theorem     7     and     8    that 
S D

e E S
∈

∈ \�  and thus  

( ( )) ( )c cf D e f+ = ∅ = +∞�  

Therefore  

                                            

( ( )) ( ) ( )
( ) ( ) ( )

( ( )) ( ( ))

( )

c c c

c c

f D e f P f P
c e c e c e

f D e f D e

c e

+

+ +

− ⋅ = − ⋅

=

�

� �  

Now let ( ) ( )Pl e c e≠ .  

First, let us prove that ( ( )) ( )

( ( ))
( ) ( )c c

c

f D e f P
P f D e

l e c e+

+

−≥ ⋅
�

�
 holds. 
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Decreasing the costs of e  by ( )Pl e ε+  with 0ε >  
decreases the costs of the best feasible solutions which 
contain e  by 1

( )( ( ) ) ( ( ))P cc el e f D eε ++ ⋅ ⋅ � , i.e., 

( ( ) )
( ( ))

l e eP
cf D e

ε− + , + =�

 1
( )( ( )) ( ( ) ) ( ( ))c P cc ef D e l e f D eε+ +− + ⋅ ⋅� � . 

By Theorem 9, for all 0ε >  an optimal solution of 

( ( ) )Pl e eP ε− + ,  contains e , i.e.,  

( ( ) ) ( ( ) )
( ( )) ( ( ))

l e e l e eP P
c cf D e f D e

ε ε− + , − + ,+ −<� �  

Now, let S �  be an optimal solution of P  with .e S∈/ �  
Such a feasible solution S �  exists as 

UNDEFINED( )Pl e ≠  holds. Because of  

( ( ) )

because of

as is optimal w r t

( ( )) ( ( ))

 ( )     ( )

 ( )      

l e eP
c c

c

c

f D e f D e

f S S D e

f P S P

ε− + , − −

−

. . .

=

= ∈

=

� �

� � �

�

 

we can conclude for all 0ε > :  

 
1

             ( ( )) ( ( ) ) ( ( )) 
( )c P cf D e l e f D e

c e
ε+ +− + ⋅ ⋅� �

( ( ) )
        ( ( ))

l e eP
cf D e

ε− + , += �  

( ( ) )
        ( ( ))

l e eP
cf D e

ε− + , −< �  

        ( )cf P=  

Thus, 1
( )( ( )) ( ) ( ( )) ( )c P c cc ef D e l e f D e f P+ +− ⋅ ⋅ ≤� �  holds 

which is equivalent to  
( ( )) ( )

( ) ( )
( ( ))

c c
P

c

f D e f P
c e l e

f D e
+

+

− ⋅ ≤
�

�
 

Now, let us prove the other direction, namely 
( ( )) ( )

( ( ))
( ) ( )c c

c

f D e f P
P f D e

l e c e+

+

−≤ ⋅
�

�
. Let  

( ( )) ( )
( ) ( )

( ( ))
c c

c

f D e f P
e c e

f D e
β +

+

−:= ⋅
�

�
 

and let S �  be an optimal solution of P  with e S∈/ � . 
S �  exists because of UNDEFINED( )Pl e ≠ . As 

( ) ( )Pl e c e≠  holds by assumption, ( )D e+
�  isn’t empty 

(see Theorem 7 and 8) and ( ( ))cf D e+ ≠ +∞�  holds. 
Hence  

( ( )) ( )
( ) ( )

( ( ))

( )
       1 ( ) ( )

( ( ))

c c

c

c

c

f D e f P
e c e

f D e

f P
c e c e

f D e

β +

+

+

−= ⋅

� �
= − ⋅ <	 

� �

�

�

�

 

Decreasing the costs of e  by ( )eβ ε+  with 

0 ( ) ( )c e eε β< < −  makes the best solutions of ( )D e+
�  

cheaper than the formerly optimal solution S �  which 
doesn’t contain e . Indeed, for all 0ε > , the following 
equations hold:  

( ( ) )
 ( ( ))

e ecf D e
β ε− + , +

�

1
        ( ( )) ( ( ) ) ( ( ))             

( )c cf D e e f D e
c e

β ε+ += − + ⋅ ⋅� �

1
        ( ( )) ( ) ( ( ))                   

( )c cf D e e f D e
c e

β+ +< − ⋅ ⋅� �

( ( )) ( ) ( )
        ( ( )) ( ( ))

( ( )) ( )
c c

c c
c

f D e f P c e
f D e f D e

f D e c e
+

+ +
+

−= − ⋅ ⋅
�

� �

�

        ( )cf P=  

        ( )                      cf S= �

( ( ) )
        ( )                           

e ecf S
β ε− + ,

= �  

 
Thus, for all 0ε > , S �  is no optimal solution of 

( ( ) )e eP β ε− + ,  and it follows:  

( ( )) ( )
( ) ( ) ( )

( ( ))
c c

P
c

f D e f P
l e e c e

f D e
β +

+

−≤ = ⋅
�

�
 

�  
 
Lemma 12: Let the cost function be of type MAX . 
For each single element e E∈  with 

UNDEFINED( )Pl e ≠ , the lower tolerance of e  is given 
by:  

            

if

otherwise

( ) ( ) , ( ) ( )
( )

             , 
c c

P

c e f P g e f P
l e

− <�= �+∞�
 

 
Proof: Because of UNDEFINED( )Pl e ≠  there is at least 

one optimal solution S ∗  of P  with e S∗∈/ . Thus, e  is 
not contained in any optimal solution and 

( ) ( ( ))c cf P f D e−= �        (5) 
holds. 
First, let ( ) ( )cg e f P< . Assume ( ) ( )cc e f P< . Then we 
obtain a contradiction because of Theorem 10:  

( ( )) max{ ( ) ( )} ( )c cf D e g e c e f P+ = , <� . Thus, 

( ) ( )cc e f P≥ .  

It holds for 0α ≥ :  

  

      because of Theorem 10 and (5)

( ) min{ ( ( )) ( ( ))}

 min{max{ ( ) ( ) } ( )}
e e ec c c

c

f P f D e f D e

g e c e f P
α α α

α
− , − , − ,+ −= ,

= , − ,

� �

( ) if ( ) ( )
                  

( ), if ( ) ( )
c c

c c

f P c e f P

f P c e f P

α
α

= , ≤ −�
�< > −�

( ) if ( ) ( )
                 

( ), if ( ) ( )
c c

c c

f S c e f P

f S c e f P

α
α

∗

∗

�= , ≤ −
�< > −�

 

 
From  

( ) ( ) ( )
e ec c cf P f S f S

α α− , − ,

∗ ∗= =  for ( ) ( )cc e f Pα ≤ −  it 

follows: ( ) ( ) ( )P cl e c e f P≥ − . 

From ( ) ( )
ec cf P f S

α− ,

∗<  for ( ) ( )cc e f Pα > −  it 
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follows: ( ) ( ) ( )P cl e c e f P≤ − . 

So we have: ( ) ( ) ( )P cl e c e f P= − . 

Now, let ( ) ( )cg e f P≥ . From (2) and (5) it follows:  

( ) min{ ( ) ( ( ))}

 min{ ( ) ( )}

 ( )

 ( )

 ( )

e

e

c c

c

c

c

c

f P g e f D e

g e f P

f P

f S

f S

−∞,

−∞,

−

∗

∗

= ,

= ,
=

=

=

�

 

( )Pl e = +∞  follows from the definition of lower 
tolerance.  

�  
 
Proof of Theorem 12: By Theorem 11,  

if is of type

if is of type

( ( )) ( )

( )

( ( )) ( )
( )

( ( ))

c c c

P

c c
c

c

f D e f P f

l e

f D e f P
c e f

f D e

+

+

+

− , �

=
−

⋅ , ∏

�
�
�
�
�

�

�

�

 

holds, if l UNDEFINED( )P e ≠ .  

 First, we prove the direction “� ”. Because e  isn’t 
contained in any optimal solution, UNDEFINED( )Pl e ≠  

and the costs of a feasible solution which contains e  is 
greater than the costs of an optimal solution, i.e., 

( ( )) ( )c cf D e f P+ >� . Hence, ( )Pl e  is greater than 0 .  
 Now, let us prove the other direction. Let 

( ) 0Pl e > . Assume that there is an optimal solution S �  

with .e S∈ �  By this, ( ( )) ( )c cf D e f P+ =�  and ( ) 0Pl e =  
follows which is a contradiction.  

�  
 
Proof of Remark 4: Let the cost function be of type 
MAX .  
 To prove the direction “� ” let e  be not contained 
in any optimal solution. Then UNDEFINED( )Pl e ≠ . 

Assume that ( ) 0Pl e = . By Theorem 11, it follows 

( ) ( )cc e f P=  and ( ) ( )cg e f P< . With the definition of 

g  we have: ( ( )) ( )c cf D e f P+ =�  which is a 

contradiction to the assumption that e  is not contained 
in any optimal solution.  
 To prove that the direction “ ⇐” doesn’t hold, 
consider the following combinatorial minimization 
problem ( )cP E D c f= , , ,  defined by:  

* { }E v x y= , ,  with ( ) 1c v = , ( ) 1c x = , ( ) 1c y =   
* {{ } { } { }}D v x v y x y= , , , , ,   
* 

cf  is a cost function of type MAX   

 
  

 Each feasible solution is an optimal solution, i.e, 

S D
E S

∈
=� � �

�  and so 
S D

E S
∈

= ∅\� � �

�
. 

Furthermore it holds: ( )Pl v = +∞ .  

�  
 
Proofs of the relationship between upper and lower 
tolerances 
 
Proof of Lemma 1: Obviously, S  is also the only 
optimal solution of .P   
We make the following case differentiation:  
* [ =S E ]  

As every single element of E  is contained in each 
feasible solution, each single element e E∈  has 
the upper tolerance ( )Su e = +∞  because of 

Theorem 1. As the only optimal solution contains 
each single element of E , the lower tolerance isn’t 
defined for a single element of E , i.e., 

UNDEFINED( )Pl e =  for all e E∈  and { ( )Pl e ;  

e E∈  and ( )Pl e ≠  UNDEFINED} = ∅  holds. 
Hence  

                  P minl ,  

  and

UNDEFINED

             min{ ( )  ( )

 } 
P Pl e e E l e= ; ∈ ≠

             min                = ∅  
             = +∞  
             min{ }                       = + ∞
             min{ ( ) }                                  Pu e e E= ; ∈

  and

UNDEFINED

             min{ ( ) ( )

 }
P Pu e e E u e= ; ∈ ≠

                                                                   P minu ,=  

* [ = ∅S ]  
As the only optimal solution is empty, the upper 
tolerance isn’t defined for a single element of E , 
i.e., UNDEFINED( )Pu e =  holds for all e E∈ . This 
implies 

  and UNDEFINED{ ( ) ( ) }P Pu e e E u e; ∈ ≠ = ∅  and  

 and UNDEFINEDmin{ ( ) ( ) }

 min
 

P min P Pu u e e E u e, = ; ∈ ≠
= ∅
= +∞

As the only feasible solution is empty, Theorem 7 
can be applied to each single element e E∈ . 
Hence, ( ) ( )P maxl e eδ=  holds for all e E∈ . This 

implies: 
P min P minl , ,= ∆ .  

* [ ≠S E  and ≠ ∅S ]  
For each single element oute E S∈ \ , the lower 

tolerance ( )P outl e  is ( )max outeδ  and the upper 

tolerance of oute  isn’t defined. Analogously, for 
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every single element 
ine S∈ , the upper tolerance 

( )P inu e  is +∞  and the lower tolerance of ine  isn’t 

defined. Thus, 
P minu , = +∞  and 

P min P minl , ,≥ ∆  hold.  

�  
 
Proof of Lemma 2: In the following, let S �  be the 
optimal solution of .P   
First, we prove 

P min P minl u, ,≤ . Let { }S D S∈ \ �  be a 

feasible (but non-optimal) solution. By assumption, 
S S⊆/� , i.e., there is an element e S S∈ \� � . Because 

of Theorem 1 and e S D∈ ∈/� , ( )Pu e ≠ +∞� .  

Now, let e�  be an element of S �  with ( )Pu e ≠ +∞� . 

Because of the definition of upper tolerance, for all 
0ε > , solution S �  is not an optimal solution of 

( )Pu e e
P

ε+ ,� �
. By Theorem 3 there is a solution 

{ }S D S′∈ \ �  with e S ′∈/�  and  
 

( ) ( )
( ) ( )

u e e u e eP P
c cf S f S

ε ε+ , + ,
′ <

� � � �

�        (6) 

 Again, S S′ ⊆/ �  holds, i.e., there is an element 

e S S′ ′∈ \ � . Now, decreasing the costs of element e′  by 
( )Pu e ε+�  also implies that S �  is not an optimal 

solution any more. In fact  

( ( ) )

as

( ) ( ) ( ( ) )                

     
u e eP

c c Pf S f S u e

e S
ε

ε
′− + ,

′ ′= − +

′ ′∈
�

�

( )
 

as

                     ( ) ( ( ) )      

     
u e eP

c Pf S u e

e S
ε

ε
+ ,

′= − +

′∈/

� �

�

�

( )
 

because of (6)

                     ( ) ( ( ) )     

     
u e eP

c Pf S u e
ε

ε
+ ,

< − +
� �

� �

 

as

                     ( ( ) ( ) ) ( ( ) )

     
c P Pf S u e u e

e S

ε ε= + + − +
∈

� � �

� �

                      ( )cf S= �  

( ( ) )
 

as

                     ( )         

     

u e eP
cf S

e S

ε ′− + ,
=

′∈

�

�

�

 

holds. This implies l ( ) ( )P Pe u e ε′ < +�  for all 0ε > , 

hence, ( ) ( )P Pl e u e′ ≤ � .  

 As such an element e′  exists for each element 
e S∈� �  with ( )Pu e ≠ +∞� , 

P min P minl u, ,≤ holds.  

 Now, we prove 
P min P minu l, ,≤ . Let { }S D S∈ \ � . By 

the assumption of the lemma, S S⊆/ � , i.e., there is an 

element e S S∈ \ � . Because of Theorem 7 and 
e S D∈ ∈ , ( )Pl e ≠ +∞ .  

 Now, let e′  be an element of E S\ �  with 
( )Pl e′ ≠ +∞ . Because of the definition of lower 

tolerance, for all 0ε > , solution S �  is not an optimal 

solution of 
( ( ) )Pl e eP ε′ ′− + , . By Theorem 9, there is a 

solution { }S D S′∈ \ �  with e S′ ′∈  and  

( ( ) ) ( ( ) )
( ) ( )

l e e l e eP P
c cf S f S

ε ε′ ′ ′ ′− + , − + ,
′ < �        (7) 

 Because of the assumption, S S′⊆/�  holds, i.e., 

there is an element e S S ′∈ \� � . Now, increasing the 
costs of element e�  by ( )Pl e ε′ +  also implies that S �  

is not an optimal solution any more. In fact  

( )

as

( ) ( )                                              

     
l e eP

c cf S f S

e S
ε′ + ,

′ ′=

′∈/

�

�

( ( ) )

as

                   ( ) ( ( ) )             

     
l e eP

c Pf S l e

e S
ε

ε
′ ′− + ,

′ ′= + +

′ ′∈

( ( ) )

because of (7)

                   ( ) ( ( ) )             

     
l e eP

c Pf S l e
ε

ε
′ ′− + ,

′< + +�

as

                   ( ) ( ( ) )                         

     
c Pf S l e

e S

ε′= + +
′∉

�

�

( )

as

                   ( ) ( ( ) ) ( ( ) )

     
l e eP

c P Pf S l e l e

e S
ε

ε ε
′ + ,

′ ′= − + + +

∈
�

�

� �

( )
                   ( )                                    

l e eP
cf S

ε′ + ,
=

�

�  

holds. This implies u ( ) ( )P Pe l e ε′< +�  for all 0ε > , 

hence, ( ) ( )P Pu e l e′≤� .  

 As such an element e�  exists for each element 
e E S′∈ \ �  with ( )Pl e′ ≠ +∞ , 

P min P minu l, ,≤ holds.  

This closes this proof. Note that we have also shown 

P minu , ≠ +∞ .  

�  
 
Proof of Remark 6: Consider the following 
combinatorial minimization problem ( )cP E D c f= , , ,  
defined by:  
* { }E x y= ,  with ( ) 1c x = , ( ) 1c y =   
* {{ } { }}D x x y= , ,   
* 

cf  is a cost function of type �   

 
We have the optimal solution { }x . It holds:  

( )P min Pu u x, = = + ∞ , ( )Pl x = + ∞ , ( ) 1P min Pl l y, = = . 

�  
 
Proof of Remark 7: Consider the following 
combinatorial minimization problem ( )cP E D c f= , , ,   
defined by:  
* { }E v x y z= , , ,  with ( ) 1c v = , ( ) 2c x = , ( ) 1c y =  

and ( ) 1 5c z = .   
* {{ } { }}D v x y z= , , ,   
* 

cf  is a cost function of type ∏   
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 By definition, there are two feasible solutions and 
one optimal solution, namely { }y z,  whose costs 

({ })cf y z,  are 1 5. . It holds: UNDEFINED( )Pu v = ,  

UNDEFINED( )Pu x = ,  ( ) 1 3Pu y = /  and ( ) 0 5Pu z = .  

which implies 1 3P minu , = /  and ( ) 0 25Pl v = . ,  

( ) 0 5Pl x = . ,  UNDEFINED( )Pl y =  and 

UNDEFINED( )Pl z =  which implies 0 25P minl , = . . 

Therefore 
P min P minu l, ,≠ . 

�  
 
Proof of Remark 8: Consider the following 
combinatorial minimization problem ( )cP E D c f= , , ,  
defined by:  
* { }E v x y z= , , ,  with ( ) 1c v = , ( ) 2c x = , ( ) 2c y =  

and ( ) 2c z =   
* {{ } { } { } { }}D v x y v x z v y z x y z= , , , , , , , , , , ,   
* 

cf  is a cost function of type MAX   

 
 Each feasible solution is an optimal solution. It 
holds: ( ) 1Pu v = ,  ( ) 0Pu x = ,  ( ) 0Pu y =  and ( ) 0Pu z =  

which implies 0P minu , =  and ( )Pl v = +∞,  ( )Pl x = +∞,  

( )Pl y = +∞  and ( )Pl z = +∞  which implies 

P minl , = +∞ . Therefore 
P min P minu l, ,≠ . 

�  
 
Proof of Theorem 14: First, we show 

P max P maxu l, ,≥ . 

Because of Theorem 4 there is an 
1 S D

e S
∈

∈� � �

�  with 

1( ) ( ( ))P max c cu f P f D e, −+ = � .  

Condition a’) of the definition of connected implies that 
there exists 

2 S D
e S

∈
∈� � �

� , 2 2( ) ( )S e D e− −∈� �  and 

3e H∈  with 
3 2( )e S e−∈ �  or 2 3( ) ( )S e D e− +∈� .  

Thus 

1

2 because of Theorem 4

( ) ( ( ))

 ( ( ))      
P max c c

c

u f P f D e

f D e
, −

−

+ =

≥

�

�

2

3

                     ( ( ))                                    

                     ( ( ))
c

c

f S e

f D e
−

+

=

≥

�

�

   3

3

because of Theorem 11

because of

                     ( ) ( )

                     ( )   
P c

P max c

l e f P

l f P e H,

= +
= + ∈

 

 
 Now, we show 

P max P maxl u, ,≥ . Because of Theorem 

11 there is an 
1e ∈  

S D
E S

∈
\� � �

�  with 

1( ) ( ( ))P max c cl f P f D e, ++ = � .  

Condition b’) of the definition of connected implies that 
there exists 

2 S D
e E S

∈
∈ \� � �

� , 2 2( ) ( )S e D e+ +∈� �  and 

3e G∈  with 
3 2( )e S e+∈/ �  or 2 3( ) ( )S e D e+ −∈� . Thus  

1

2 because of Theorem 11

( ) ( ( ))

( ( ))         
P max c c

c

l f P f D e

f D e
, +

+

+ =

≥

�

�

2

3

                   ( ( ))                                         

                   ( ( ))
c

c

f S e

f D e
+

−

=

≥

�

�

   3

3 

 because of Theorem 4 

because of

                   ( ) ( )   

                   ( )     
P c

P max c

u e f P

u f P e G,

= +
= + ∈

 

�  
 
Proof of Remark 9: Consider the following 
combinatorial minimization problem ( )cP E D c f= , , ,  
defined by:  
* { }E v x y z= , , ,  with ( ) 1c v = , ( ) 2c x = , ( ) 4c y =  

and ( ) 5c z =   
* {{ } { } { } { } { } { }}D v x v y v z x y x z y z= , , , , , , , , , , ,   
* 

cf  is a cost function of type �   

The only optimal solution is { }v x, . It holds:  

( ) 3 ( ) 2P Pu v u x= , =  

which implies 3P maxu , =  and  

( ) 2 ( ) 3P Pl y l z= , =  

which implies 3P maxl , = . Therefore  

P max P maxu l, ,=  

Furthermore it holds:  
{ } { }G v H z= , =  

( ) {{ }}D v x y− = , ,�  ( ) {{ }}D x v y− = , ,�  

( ) {{ }}D y v y+ = , ,�  ( ) {{ }}D z v z+ = ,�  

As neither condition a’) nor condition b’) holds, D  is 
not connected.  

�  
 
Proof of Remark 10: Consider the example for the 
illustration of Theorem 14 for a cost function of type 
∏ , i.e., the following combinatorial minimization 
problem ( )cP E D c f= , , ,  defined by:  

{ }E v x y z= , , ,  with ( ) 1c v = , ( ) 2c x = , ( ) 4c y =  and 
( ) 8c z =   

* {{ } { }}D v x y z= , , ,   
* 

cf  is a cost function of type ∏   

The only optimal solution is { }v x, .  
It holds:  

( ) 15 ( ) 30P Pu v u x= , =  

which implies 30P maxu , =  and  

( ) 3 75 ( ) 7 5P Pl y l z= . , = .  

which implies 7 5P maxl , = .  Therefore  

P max P maxu l, ,≠  

Furthermore it holds:  
{ } { }G x H z= , =  

( ) {{ }}D v y z− = , ,�  ( ) {{ }}D x y z− = , ,�  
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( ) {{ }}D y y z+ = , ,�  ( ) {{ }}D z y z+ = ,�  
As condition a’) and condition b’) hold, D  is 
connected.  

�  
 
Proof of Remark 11: Consider the example for the 
illustration of Theorem 14 for a cost function of type 
MAX , i.e., the following combinatorial minimization 
problem ( )cP E D c f= , , ,  defined by:  

* { }E v x y z= , , ,  with ( ) 1c v = , ( ) 2c x = , ( ) 4c y =  
and ( ) 8c z =   

* {{ } { }}D v x y z= , , ,   
* 

cf  is a cost function of type MAX   

The only optimal solution is { }v x, . It holds:  

( ) 7 ( ) 6P Pu v u x= , =  

which implies 7P maxu , =  and  

( ) ( )P Pl y l z= +∞, = +∞  

which implies 
P maxl , = +∞  Therefore  

P max P maxu l, ,≠  

Furthermore it holds:  
{ } { }G v H y z= , = ,  

( ) {{ }}D v y z− = , ,�  ( ) {{ }}D x y z− = , ,�  

( ) {{ }}D y y z+ = , ,�  ( ) {{ }}D z y z+ = ,�  
As condition a’) and condition b’) hold, D  is 
connected.  

�  
 

7   SUMMARY AND FUTURE RESEARCH 
DIRECTIONS  

 
 In this paper we have rigorously defined and 
studied the properties of upper and lower tolerances for 
a general class of combinatorial optimization problems 
with three types of objective functions, namely with 
types ,�  ,∏  and MAX. Theorems 2 and 8 indicate that 
the upper and lower tolerances do not depend on a 
particular optimal solution under the condition that the 
set of the feasible solutions is independent on the costs 
of ground elements.  
 For problems with the objective functions of types 
�  and ∏  Theorem 6 implies that the upper tolerances 
can be considered as an invariant characterizing the 
structure of the set of all optimal solutions as follows. If 
all upper tolerances are positive (see Corollary 2), then 
the set of optimal solutions contains a unique optimal 
solution. If some upper tolerances are positive and 
others are zeros, then the set of optimal solutions 
contains at least two optimal solutions such that the 
cardinality of their intersection is equal to the number 
of positive upper tolerances. If all upper tolerances are 
zeros, then the set of optimal solutions contains at least 
two optimal solutions such that the cardinality of their 

intersection is equal to zero, i.e., there is no common 
element in all optimal solutions. Similar conclusions 
can be made from Theorem 12 and Corollary 9 if we 
replace each optimal solution by its complement to the 
ground set.  
 One of the major problems, when solving NP-hard 
problems by means of the branch-and-bound approach, 
is the choice of the branching element which keeps the 
search tree as small as possible. Using tolerances we are 
able to ease this choice. Namely, if there is an element 
from the optimal solution of the current relaxed NP-
hard problem (we assume that this optimal solution is a 
non-feasible solution to the original NP-hard problem) 
with a positive upper tolerance, then this element is in 
all optimal solutions of the current relaxed NP-hard 
problem. Hence, branching on this element means that 
we enter a common part in all possible search trees 
emanating from each particular optimal solution of the 
current relaxed NP-hard problem. Therefore, branching 
on an element with a positive upper tolerance is not 
only necessary for finding a feasible solution to the 
original NP-hard problem but also is a best possible 
choice. An interesting direction of research is to 
develop tolerance based b-n-b type algorithms for 
different NP-hard problems with the objective functions 
of types �  and .∏   
 Many modern heuristics for finding high quality 
solutions to a NP-hard problem delete high cost 
elements and save the low cost ones from a relaxed NP-
hard problem. A drawback of this strategy is that in 
terms of either high or low cost elements the structure 
of all optimal solutions to a relaxed NP-hard problem 
cannot be described. A tolerance of an element is the 
cost of excluding or including that element from the 
solution at hand. Hence, another direction of research is 
to develop tolerance based heuristics for different NP-
hard problems with the objective functions of types �  
and .∏   

 
ACKNOWLEDGEMENT 

 
 The research of all authors was supported by a 
DFG grant SI 657/5, Germany and SOM Research 
Institute, University of Groningen, the Netherlands. 
 This article is dedicated to the former project 
leader, Prof. Dr. Jop Sibeyn, who is missed since a 
snow-hike in spring 2005. He was involved in the 
application of the DFG project SI 657/5 and has 
contributed to the results presented here by lively and 
inspiring discussions.  

 
REFERENCES 

 
1. Sotskov, Y.N., V.K. Leontev and E.N. Gordeev, 

1995. Some concepts of stability analysis in 
combinatorial optimization. Discrete Appl. Math., 
58: 169-190. 



J. Computer Sci., 2 (9): 716-734, 2006 

 734

2. Greenberg, H.J., 1998. An Annotated Bibliography 
for Post-solution Analysis in Mixed Integer and 
Combinatorial Optimization. Woodruff, D.L. (Ed.), 
Advances in Computational and Stochastic 
Optimization, Logic Programming and Heuristic 
Search. Kluwer Academic Publishers, pp: 97-148. 

3. Gal, T. and H.J. Greenberg, (Eds.), 1997. Advances 
in Sensitivity Analysis and Parametric 
Programming. Internat. Ser. Oper. Res. 
Management Sci. 6. Kluwer Academic Publishers, 
Boston. 

4. Reinfeld, N.V. and W.R. Vogel, 1958. 
Mathematical Programming. Prentice-Hall, 
Englewood Cliffs, N.J. 

5. Murty, K.G., 1968. An algorithm for ranking all 
the assignments in order of increasing cost. Oper. 
Res., 16: 682-687. 

6. Van der Poort, E.S., M. Libura, G. Sierksma and 
J.A.A. Van der Veen, 1999. Solving the k-best 
traveling salesman problem. Comput. Oper. Res., 
26: 409-425. 

7. Balas, E. and M.J. Saltzman, 1991. An algorithm 
for the three-index assignment problem. Oper. 
Res., 39: 150-161.  

8. Goldengorin, B. and G. Jäger, 2005. How to make 
a greedy heuristic for the asymmetric traveling 
salesman competitive.  SOM Research Report 
05A11, University of Groningen, The Netherlands. 
(http://som.eldoc.ub.rug.nl/reports/themeA/2005/0
5A11/).  

9. Goldengorin, B., G. Jäger and P. Molitor, 2006. 
Tolerance based contract-or-patch heuristic for the 
asymmetric TSP. Third Workshop on 
Combinatorial and Algorithmic Aspects of 
Networking, Chester, United Kingdom, July 2, T. 
Erlebach (Ed.). Lecture Notes in Comput. Sci. 

10. Goldengorin, B., G. Sierksma and M. Turkensteen, 
2004. Tolerance Based Algorithms for the ATSP. 
Graph-Theoretic Concepts in Computer Science. 
30th Intl. Workshop, WG 2004, Bad Honnef, 
Germany, June 21-23, Hromkovic, J., Nagl, M., 
Westfechtel, B. (Eds.). Lecture Notes in Comput. 
Sci., 3353: 222-234. 

11. Turkensteen, M., D. Ghosh, B. Goldengorin and G. 
Sierksma, 2005. Tolerance-Based Branch and 
Bound Algorithms. A EURO Conf. for Young OR 
Researchers and Practitioners, ORP3, Valencia, 
Spain, Sep. 6-10, Maroto, C. et al. (Eds.). ESMAP, 
S.L., pp: 171-182. 

12. Helsgaun, K., 2000. An effective implementation 
of the Lin-Kernighan traveling salesman heuristic. 
Eur. J. Oper. Res., 126: 106-130. 

13. Chin, F. and D. Hock, 1978. Algorithms for 
updating minimal spanning trees. J. Comput. 
System Sci., 16: 333-344. 

 
 

14. Gordeev, E.N., V.K. Leontev and I.K. Sigal, 1983. 
Computational algorithms for finding the radius of 
stability in selection problems. USSR Comput. 
Math. Math. Phys., 23: 973-979. 

15. Gusfield, D., 1983. A note on arc tolerances in 
sparse minimum-path and network flow problems. 
Networks, 13: 191-196. 

16. Kravchenko, S.A., Y.N. Sotskov and F. Werner, 
1995. Optimal schedules with infinitely large 
stability radius. Optimization, 33: 271-280. 

17. Libura, M., 1991. Sensitivity analysis for minimum 
hamiltonian path and traveling salesman problems. 
Discrete Appl. Math., 30: 197-211. 

18. Ramaswamy, R. and N. Chakravarti, 1995. 
Complexity of determining exact tolerances for 
min-sum and min-max combinatorial optimization 
problems. Working Paper WPS-247/95, Indian 
Institute of Management, Calcutta, India, pp: 34. 

19. Shier, D.R. and C. Witzgall, 1980. Arc tolerances 
in minimum-path and network flow problems. 
Networks, 10: 277-291. 

20. Sotskov, Y.N., 1993. The stability of the 
approximate boolean minimization of a linear 
form. USSR Comput. Math. Math. Phys., 33: 699-
707. 

21. Tarjan, R.E., 1982. Sensitivity analysis of 
minimum spanning trees and shortest path trees. 
Inform. Process. Lett., 14: 30-33. 

22. Volgenant, A., 2006. An addendum on sensitivity 
analysis of the optimal assignment. Eur. J. Oper. 
Res., 169: 338-339. 

23. Ramaswamy, R., J.B. Orlin and N. Chakravarti, 
2005. Sensitivity analysis for shortest path 
problems and maximum capacity path problems in 
undirected graphs. Math. Program., Ser. A, 102: 
355-369. 

24. Gal, T., 1995. Sensitivity Analysis, Parametric 
Programming, and Related Topics: Degeneracy, 
Multicriteria Decision Making, Redundancy. W. de 
Gruyter, Berlin and New York. 

25. Goldengorin, B. and G. Sierksma, 2003. 
Combinatorial optimization tolerances calculated 
in linear time. SOM Research Report 03A30, 
University of Groningen, The Netherlands, 
(http://som.eldoc.ub.rug.nl/reports/themeA/2003/ 

 03A30/). 
26. Hall, N.G. and M.E. Posner, 2004. Sensitivity 

analysis for scheduling problems. J. Scheduling, 7: 
49-83. 

27. Bang-Jensen, J. and G. Gutin, 2002. Digraphs: 
Theory, Algorithms and Applications. Springer, 
London. 

28. Van Hoesel, S. and A. Wagelmans, 1999. On the 
complexity of postoptimality analysis of 0/1 
programs. Discrete Appl. Math., 91: 251-263.  


