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Abstract: Workload and resource management are two essential functions provided at the service level 
of the Grid software infrastructure. To improve the global throughput of these environments, effective 
and efficient load balancing algorithms are fundamentally important. Most strategies were developed 
in mind, assuming homogeneous set of resources linked with homogeneous and fast networks. 
However for computational Grids we must address main new challenges, like heterogeneity, scalability 
and adaptability. Our contributions in this perspective are two fold. First we propose a dynamic tree-
based model to represent Grid architecture in order to manage workload. This model was characterized 
by three main features: (i) it was hierarchical; (ii) it supports heterogeneity and scalability; and (iii) it 
was totally independent from any Grid physical architecture. Second, we develop a hierarchical load 
balancing strategy and associated algorithms based on neighbourhood propriety. The main benefit of 
this idea was to decrease the amount of messages exchanged between Grid resources. As consequence, 
the communication overhead induced by tasks transferring and flow information was reduced. In order 
to evaluate the practicability and performance of our strategy we have developed a Grid simulator in 
Java. The first results of our experimentations were very promising. We have realized a significant 
improvement in mean response time with a reduction of communication cost. It means that the 
proposed model can lead to a better load balancing between resources without high overhead. 
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INTRODUCTION 

 
 The rapid development in computing resources has 
enhanced the performance of computers and reduced 
their costs. This availability of low cost powerful 
computers coupled with the popularity of the Internet 
and high-speed networks has led the computing 
environment to be mapped from distributed to Grid 
environments. In fact, recent researches on computing 
architectures are allowed the emergence of a new 
computing paradigm known as Grid computing[1]. Grid 
is a type of distributed system which supports the 
sharing and coordinated use of resources, independently 
from their physical type and location, in dynamic 
virtual organizations that share the same goal[2]. This 
technology allows the use of geographically widely 
distributed and multi-owner resources to solve large-
scale applications like meteorological simulations, data 
intensive applications, research of DNA sequences and 
so on[3]. 
 In order to fulfil the user expectations in terms of 
performance and efficiency, the Grid system needs 
efficient load balancing algorithms for the distribution 

of tasks. A load balancing algorithm attempts to 
improve the response time of user’s submitted 
applications by ensuring maximal utilization of 
available resources. The main goal is to prevent, if 
possible, the condition where some processors are 
overloaded with a set of tasks while others are lightly 
loaded or even idle[4]. 
 Although load balancing problem in conventional 
distributed systems has been intensively studied, new 
challenges in Grid computing still make it an interesting 
topic and many research projects are under way. This is 
due to the characteristics of Grid computing and the 
complex nature of the problem itself. Load balancing 
algorithms in classical distributed systems, which 
usually run on homogeneous and dedicated resources, 
cannot work well in the Grid architectures[5]. Grids has 
a lot of specific characteristics, like heterogeneity, 
autonomy, scalability, adaptability and resources 
computation-data separation, which make the load 
balancing problem more difficult[6].  

 In this study we proposed a framework consisting 
of distributed dynamic load balancing algorithm in 
perspective to minimize the average response time of 
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applications submitted to Grid computing. Our main 
contributions are two fold. First we propose a dynamic 
tree-based model to represent Grid architecture in order 
to manage workload. This model is characterized by 
three main features: (i) it is hierarchical; (ii) it supports 
heterogeneity and scalability; and (iii) it is totally 
independent from any Grid physical architecture. 
Second, we develop a hierarchical load balancing 
strategy and associated algorithms based on 
neighbourhood propriety. The goal of this idea is to 
decrease the amount of messages exchanged between 
Grid resources. As consequence, the communication 
overhead induced by tasks transferring and flow 
information is reduced. 
 
Load balancing problem 
Overview: A typical distributed system will have a 
number of interconnected resources who can work 
independently or in cooperation with each other. Each 
resource has owner workload, which represents an 
amount of work to be performed and every one may 
have a different processing capability. To minimize the 
time needed to perform all tasks, the workload has to be 
evenly distributed over all resources based on their 
processing speed. 
 The essential objective of a load balancing consists 
primarily in optimizing the average response time of 
applications, which often means maintaining the 
workload proportionally equivalent on the whole 
resources of a system. 
 Conceptually, load balancing algorithms can be 
classified into two categories: static or dynamic[7].  
* In static load balancing, a task is assigned to an 

available resource when it is generated or admitted 
to the system using a fixed schema. 

* In contrast to static load balancing, dynamic load 
balancing allocate/reallocate tasks to resources at 
runtime based on no priori task information, which 
may determine when and whose tasks can be 
migrated. In this way, imbalances load can be 
resolved by redistributing tasks in real-time, thus 
solving the shortcoming of static load balancing. 
However, network traffic for transmitting load 
information to the load balancing system would 
increase too much due to the decision dynamicity. 

 Load balancing algorithms can be defined by their 
implementation of the following policies[8]: 
* Information policy: specifies what load information 

to be collected, when it is to be collected and from 
where. 

* Triggering policy: determines the appropriate 
moment to start a load balancing operation. 

* Resource type policy: classifies a resource as 
server or receiver of tasks according to its 
availability status and capabilities. 

* Location policy: uses results of the resource type 
policy to find a suitable partner for a server or 
receiver. 

* Selection policy: defines tasks that should be 
migrated from overloaded resources to idlest ones. 

 
Challenges of load balancing in grid: Although load 
balancing methods in conventional parallel and 
distributed systems has been intensively studied[4], they 
do not work in Grid architectures because these two 
classes of environments are radically distinct. Indeed, 
the schedule of tasks on multiprocessors or multi 
computers suppose that processors are homogeneous 
and linked with homogeneous and fast networks[9]. The 
rationale behind this approach is that: 
i. The resources have same capabilities; 
ii. The interconnection bandwidth between processing 

elements is high; 
iii. Input data is readily available at the processing 

site;  
iv. The overall time spent transferring input and output 

data is negligible in comparison with the total 
application duration. 

 Given the distribution of tremendous resources in a 
Grid environment and the size of the data to be moved, 
it becomes clear that this approach is not accurate 
because following properties[5,6]: 
 
Heterogeneity: Heterogeneity exists in both of 
computational and networks resources. 
* First, networks used in Grids may differ 

significantly in terms of their bandwidth and 
communication protocols. 

* Second, computational resources are usually 
heterogeneous (processors, resource capabilities 
memory  size  and so on). Also different 
software’s, like operating systems, file systems; 
cluster management software may be 
heterogeneous. 

 
Autonomy: Because the multiple administrative 
domains that share Grid resources, a site is viewed as 
an autonomous computational entity. It usually has its 
own scheduling policy, which complicates the task 
allocation problem. A single overall performance goal 
is not feasible for a Grid system since each site has its 
own performance goal and scheduling decision is made 
independently of other sites according to its own 
performances. 
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Fig. 1: Example of grid topology 
 
Scalability and adaptability: A Grid might grow from 
few resources to millions. This raises the problem of 
potential performance degradation as the size of a Grid 
increases. If the pool of resources can be assumed fixed 
or stable in traditional parallel and distributed 
computing environments, in a Grid dynamicity exists in 
the networks and computational resources. 
* First, a network shared by many execution domains 

cannot provide guaranteed bandwidth. This is 
particularly true for Wide-Area Networks like 
Internet. 

* Second, both the availability and capability of 
computational resources will exhibit dynamic 
behaviour. On one hand new resources may join 
the Grid and on the other hand, some resources 
may become unavailable. Resource managers must 
tailor their behaviour dynamically so that they can 
extract the maximum performance from the 
available resources and services. 

Resource selection and computation-data 
separation: In traditional systems, executable codes of 
applications and input/output data are usually in the 
same site, or the input sources and output destinations 
are determined before the submission of an application. 
Thus the cost for data staging can be neglected or the 
cost is a constant determined before execution and load 
balancing algorithms need not consider it. But in a Grid 
the computation sites of an application are usually 
selected by the Grid scheduler according to resource 
status and some performance criterion. Additionally, 
the communication bandwidth of the underlying 
network is limited and shared by a host of background 
loads, so the communication cost cannot be neglected. 
This situation brings about the computation-data 
separation problem: the advantage brought by selecting 
a computational resource that can provide low 
computational cost may be neutralized by its high 
access cost to the storage site. 
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Fig. 2: Tree-based representation of a grid 
 
 These challenges pose significant obstacles on the 
problem of designing an efficient and effective load 
balancing system for Grid environments. Some 
problems resulting from the above are not solved 
successfully yet and still open research issues. Thus it is 
very difficult to define a load balancing system which 
can integrate all these factors. 
 
Tree-based balancing model: In order to well explain 
the proposal model, we must define the topological 
structure of a Grid computing. 
 
Grid topology: As topological point of view, we regard 
a Grid as a collection of G clusters Ck, connected by 
WAN links through gates gtk, k ∈ {0... G-1}. Each 
cluster contains S sites Sjk interconnected via switches 
SWjk, j∈{0,...,S-1}. Every site involves M resources 
(Computing and Storage Elements) denoted CEijk and 
SEijk, i∈{0,...,M-1}. Resources within a site are 
interconnected together by a local area network. 
An example of such topology is shown in Fig. 1.  
 
Mapping a Grid into a tree-based model: The load 
balancing strategy proposed in this is based on a 
mapping of any Grid into a tree-based model. It is build 
as follows: 

* First, for each site we create a two levels subtree. 
The leaves of this subtree correspond to the 
Computing Elements of a site and the root of this 
subtree is a virtual node associated to the site. The 
role  of  this  virtual node is to manage the 
workload of a site. In practice, this management 
function is processed by a computing element 
within the site. 

* Second, the subtrees corresponding to all sites of a 
cluster are aggregated to generate a three levels 
subtree. 

* Third, these subtrees are connected together to 
build a four levels tree. 

 The final tree is denoted by G/S/M, where G is the 
number of Clusters that compose the Grid, S the 
number of Sites and M the number of CE’s. As 
illustrated by Fig. 2 this generic tree can be transformed 
in turn into three specific trees: G/S/M, 1/S/M and 
1/1/M, depending on the values of G, S and M. The 
mapping function generates a non cyclic connected 
graph where each level has specific functions. 
 
Level 0: In this first level (top level), we have a virtual 
node that corresponds to the root of the tree. It is 
associated to the Grid and it manages the workload on 
the whole Grid. 
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Level 1: This level contains G virtual nodes, each one 
associated to a physical cluster of the Grid. In our load 
balancing strategy, this virtual node is responsible to 
manage its sites. 
 
Level 2: In this third level, we find S nodes associated 
to physical sites of all clusters of the Grid. The main 
function of these nodes is to manage the workload of 
their physical Computing Elements. 
 
Level 3: At this last level (leaves of the tree), we find 
the M Computing Elements of a Grid linked to their 
respective sites and clusters. 
 Regardless the tree model, we use the term of 
virtual node, but in practice each virtual node 
corresponds to a physical Computing Element. For 
example, if a site Sjk contains M Computing Elements, 
M-1 CE’s will be used to run tasks and the Mth is 
considered as a virtual node whose role is to manage 
the workload within the site Sjk. 
 Proposed model has some characteristics that we 
can resume as follows: 
i. It is hierarchical: this characteristic will facilitate 

the workflow information flow through the tree. 
ii. It supports heterogeneity, autonomy and 

scalability: adding or removing entities like (CE’s, 
sites or clusters) correspond to simple operations 
(adding/removing nodes or sub trees) in our model. 

iii. It is totally independent from any physical 
architecture of a Grid, because the mapping of a 
Grid into a tree is univocal. For each Grid 
corresponds one and only one tree. 

 
Load balancing strategy 
Principles: In accordance with the structure of 
proposed model, we develop a hierarchical load 
balancing strategy. We distinguish between three load 
balancing levels: Intra-site (Inter-CE's), Intra-cluster 
(Inter-sites) and Intra-Grid (Inter-clusters). 
 
1. Intra-site load balancing: In this first level, 
depending on its current load, each CE’s manager 
decides to start a load balancing operation. In this case, 
the CE’s manager tries in priority, to load balance its 
workload among its computing elements. Hence, we 
can proceed S local load balancing in parallel, where S 
is the number of sites. 
 
2. Intra-cluster load balancing: In this second level, 
load balance concerns clusters Ck, for which some 
owner CE’s managers fail to achieve a local load 
balance. In this case, the sites manager transfers tasks 
from overloaded sites to under loaded ones. 

 
 
3. Intra-Grid load balancing: The load balance at this 
level is used only if some sites managers fail to load 
balance their workload among their associated sites. If 
we have such as case, tasks of overloaded clusters are 
transferred to under loaded clusters by the Grid 
manager. 
 The main advantage of this strategy is to privilege 
local load balancing in first (within a site, then within a 
cluster and finally on the whole Grid). The goal of this 
neighbourhood strategy is to decrease the amount of 
messages between sites and clusters. As consequence of 
this goal, the communication overhead induced by tasks 
transfer is reduced. 
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Generic strategy: At any load balancing level, we 
propose the following strategy: 
1. Estimate the current workload of a site, a cluster 

or a Grid: Here we are interested by the 
information policy to define what information 
reflects the workload status of site/cluster/Grid, 
when it is to be collected and from where. 
Knowing the number of available elements under 
his control and their computing capabilities, each 
group manager estimates its own capability and 
performs the following actions: 

i. Estimates current group workload based on 
workload information received periodically from 
its elements. 

ii. Computes the standard deviation over the workload 
index in order to measure the deviations between 
its involved elements. 

iii. Sends workload information to its manager. 
2. Decision-making: In this step the manager decides 

whether it is necessary to perform a load balancing 
operation or not. For this purpose it executes the 
two following actions: 

i. Determines the imbalance/saturation state. 
 If we consider that the standard deviation measures 
the average deviation between the processing time of an 
element and the processing time of its group 
(Site/Cluster/Grid), we can say that this element is in 
balance state when this deviation is small. Indeed this 
implies that processing time of each element converges 
to the processing time of its group. 
 In practice, we define a balance threshold, noted ε, 
from which we can say that the standard deviation tends 
to zero and hence the element is balanced. 
 An element can be balanced while being saturated. 
In this particular case, it is not useful to start an intra 
Site/Cluster/Grid load balancing since CE’s / Sites / 
Clusters will remain overloaded. To measure saturation 
we introduce another threshold called saturation 
threshold noted by δ. When the current workload of the 
element borders its capacity, it is obvious that it is 
useless to balance since all belonging components are 
saturated. 
ii. Partitioning. For an imbalance case, we determine 

the overloaded elements (sources) and the under-
loaded ones (receivers), depending on processing 
time of every element relatively to average 
processing time of the associated group. 

3. Tasks transfer: In order to transfer tasks from 
overloaded elements to under loaded ones, we 
propose the following heuristic: 

a. Evaluate the total amount of load: ”Supply”, 
available on receiver elements. 

b. Compute the total amount of load: ”Demand”, 
required by source elements 

c. If the supply is much lower than the demand 
(supply is far to satisfying the request) it is not 
recommended to start local load balancing. We 
introduce a third threshold, called expectation 
threshold ρ , to measure relative deviation between 
supply and demand.  

d. Otherwise performs tasks transfer regarding 
communication cost induced by this transfer and 
according to criteria selection. 

 
Load balancing algorithm: We define three levels of 
load balancing algorithms: intra-site, intra-cluster and 
intra-Grid load balancing algorithm. 
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 Each algorithm is triggered when the group 
manager notes that there is a load imbalance between 
the elements which are under its control. To do this 
report, the group manager receives, in a periodic way, 
workload information from each element. Based on this 
information and on estimated balance threshold �, it 
analyzes the current load of the group. According to the 
result of this analysis, it decides whether to start a local 
balancing in the case of imbalance state, or just to 
inform its manager of the higher level about his current 
load. 
 
Notations: Given a Grid computing whose topology is 
illustrated by Fig. 1, we use the following notations in 
the description of various load balancing algorithms: 
1. Thresholds: Balance threshold ε, Saturation 

threshold δ and Expectation threshold ρ, defined 
above. 

2. Computing element parameters:  
* CEijk: ith computing element of jth site Sjk of kth 

cluster Ck; 
* SPDijk: computing capability of CEijk expressed in 

number of computational unities executed per time 
unity; 

* SATijk: Capacity of CEijk, it is the maximum 
number of computational unities which CEijk can 
queued ; 

* PERijk: specific period of CEijk, during which it 
evaluates and sends its workload information to its 
CE’s manager; 

* LODijk: Current workload of CEijk expressed in 
number of computational unities waiting to be 
executed on CEijk. 

 We define the processing time of CEijk by: TEXijk = 
LODijk / SPDijk 
3. Site parameters:  
*  Sjk: jth site Sjk of kth cluster Ck; 
* Njk: number of available CE's of Sjk; 
* PERjk: specific period of Sjk, during which it 

evaluates and sends its workload information to its 
sites manager; 

* LBjk: bandwidth of LAN connection between the 
CE's within Sjk; 
 From this information, we define by aggregation 
the following parameters: 

* 
∑
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the processing times of Sjk; 
4. Cluster parameters  
* Ck: kth cluster of the Grid; 
* Nk: number of available sites of Ck; 
* PERk: specific period of Grid manager, during 

which it estimates its workload information; 
* LB: Various bandwidth connections inter-clusters; 

* 
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Grid processing times.  
 Intra site load balancing algorithm: This algorithm 
is considered as the kernel of our load balancing 
strategy. The neighbourhood idea which privilege local 
load balancing in first, lets us think that it is the most 
frequently requested level. It is executed when CE’s 
managers find that there exists an imbalance between 
computer elements under their control. At this level, 
communication costs are not taken into account in the 
tasks transfer since the CE’s of the same site are inter-
connected by a LAN network, whose communication 
cost is constant. Indeed, for any destination of the 
migration task, we will have the same transfer cost. 
 Intra cluster load balancing algorithm: This 
algorithm, source -initiated, is executed only when 
some CE’s managers fail to balance locally the 
overload computing. Knowing the global state of each 
own site, the sites manager can evenly distribute the 
global overload between its sites (tasks migration 
between sites of the same cluster). Contrary to the intra-
site level, in this level algorithm we must take account 
of the communication cost between sites. A task can be 
transferred only if, the sum of its latency in the site 
source and its cost transferring, is lower than its latency 
on the site receiver. This precaution will avoid making 
useless tasks migration.  
 Intra Grid load balancing algorithm: This third 
level algorithm performs a global load balancing among 
all clusters of the Grid. It is started in the extreme case 
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where majority of the sites managers fail to locally 
balance their overload. This load balancing level must, 
as far as possible, be avoided because inter clusters 
communication costs are very significant. This over 
cost is due primarily to the strong heterogeneity of the 
Grid resources. This algorithm proceeds in the same 
way as the intra-cluster algorithm with two major 
differences: 
1. The Grid manager does not have a higher level; 
thus it does not send any information about its 
workload. 
2. It is useless to test at the end of the algorithm if 

load balancing is successful or not, because there 
are not other possible alternatives. 

 
Experimental study: All the experiments were 
performed on PC Pentium IV of 3 GHz, with 1 GB 
RAM and running under Windows XP. In order to 
obtain reliable results, we reiterated the same 
experimentations more than ten (10) times. For every 
CE we generate an random speed varying between 10 
and 30 computing units per time unity. Tasks were 
randomly submitted during a fixed period between [0 - 
100sec]. Number of instructions per task varied 
between 300 and 1500 computing units. 
 
Experiments 1: In this first set of experiments, we 
focused to the response time according to the number of 
tasks in one hand and then to the number of CE’s in 
other hand. We have remarked the following: 
1. In practically all cases we obtained an 

improvement in response time greater than 10%.  
2. For a number of CE’s fixed at 80 and for a number 

of tasks varying from 5000 to 25000 by step of 
5000, the improvement varies from 10.18% to 
17.41%. These results shows in a very clear way 
that the proposed strategy allowed to reduce in a 
very significant way the means response time of 
the tasks. The best results are obtained for a 
number of tasks equal to 25000, which leads us to 
think that our load balancing strategy is interesting 
if we have a large number of tasks. 

3. For a number of tasks fixed at 20000 and for a 
number of CE’s varying from 20 to 100 by step of 
20, we obtain a gain between 10.39% and 27.42%. 
The best improvements are reached when CE’s 
number is 60. In this context the Grid is a stable 
state (neither overloaded nor completely idle). 

 
Experiments 2: During this experiment, we interested 
to communication time. We fixed at each time the 
number of CE's and we varied the number of tasks. 
Results of the experiments are gathered in Fig. 3. 
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Fig. 3: Variation of communication time 
 
 The variation of this metric is very sensitive to the 
initial distribution of the tasks and to the number of 
CE's having a high speed. 
 For a number of tasks equal to 20000, the curve 
associated with a number of CE's equal to 20 reached 
its maximum which is normal. Indeed, for this value 
and to reach a balancing, it is necessary to transfer more 
tasks because of the randomly distribution of the tasks. 
 However, for the number of tasks equal to 16000, 
the curve associated with a number of CE's equal to 80 
reached its minimum in time of communication. This 
result is explained by the fact that the randomly 
distribution of the tasks was rather equitable. 
 

CONCLUSION 
 
 In this study, we addressed the problem of load 
balancing in large scale distributed systems. We 
proposed a load balancing strategy based on a tree 
representation of a Grid. The model allows 
transforming any Grid architecture into a unique tree 
with at most four levels. From this generic tree, we can 
derive three sub-models depending on the elements that 
compose a Grid. Using this model, we defined a 
hierarchical load balancing strategy that privileges local 
balancing in first (load balance within sites without 
communication between sites). The first results of our 
experimentations are very promising and lead to a 
better load balancing between CE’s of a Grid without 
high computing overhead. We have appreciably 
improved the metrics defined, in particular average 
response time. In the future, we plan to integrate our 
load balancing strategy on known simulators in the field 
of the Grids, like GridSim[10]. This will allow us to 
measure the effectiveness of our strategy in existing 
simulators. We also envisage to develop our strategy as 
a service of GLOBUS middleware[11].  
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