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Abstract: Due to the large size of the database, the entire training dataset could not be used to 
construct the classifiers. One popular solution is to separate stream data into chunks, learn a base 
classifier from each chunk and then integrate all base classifiers to form Multiple classifier system 
(MCS). Sometimes this data streams does not include all the classes in its equal proportion as in the 
entire training data set. So we have newly introduced a method of Re-Sampling based on the statistical 
value of the class attribute. In the Proposed Method, the probability of occurrences of every class for 
the entire training data set have been estimated. Based on the probability, thresholds have been fixed 
for all the classes. When the data set have been selected randomly, the probabilities of the classes have 
been checked against the thresholds. The sample, which satisfies all the thresholds, is allowed to 
construct the Model. Otherwise, Re-sampling is performed and the process is repeated until the sample 
satisfies all the thresholds for the classes. The proposed method yields more accuracy than the one 
which does not have threshold on classes in the random samples. We have also compared the accuracy 
of different classifiers. Experimental results and comparative studies demonstrate the efficiency and 
efficacy of our method. 
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INTRODUCTION 

 
 Classification has been identified as an important 
problem in the emerging field of data mining. While 
classification is a well-studied problem, only recently 
has there been focus on algorithms that can handle large 
databases. The intuition is that by classifying larger 
datasets, we will be able to improve the accuracy of the 
classification model[1,2]. 
 In classification, there are given a set of example 
records, called a training set, where each record consists 
of several fields or attributes. Attributes are either 
continuous, coming from an ordered domain, or 
categorical, coming from an unordered domain. One of 
the attributes, called the classifying attribute, indicates 
the class to which each example belongs. The goal of 
classification is to assign a new object to a class from a 
given set of classes based on the attribute values of the 
object. Different methods have been proposed for the 
task of classification such as Decision Tree, K-Nearest 
Neighbor, Back Propagation Networks etc. Accuracy is 
an important factor in assessing the success of 

Classifier. It evaluates how accurately a given classifier 
will label the future data[3]. 
 
Literature review: Because of the large size of the 
database, we couldn’t use the entire training data set to 
construct the classifier. Random sampling has been 
often used to handle large datasets when building a 
classifier[5,6]. 
 In the literature, many of the MCSs using random 
sampling have been described to increase the 
accuracy of the classifier. Most of the combination 
methods used in such systems assume that classifiers 
forming the MCS make "independent" classification 
errors. This assumption is necessary to guarantee an 
increase of classification accuracy with respect to the 
accuracies provided by individual classifiers[7,8]. 
 Recently, some researchers proposed a different 
approach to the development of MCSs based on the 
concept of Dynamic classifier selection to increase the 
accuracy. Roughly speaking, selection-based MCSs 
are based on a function that for each test pattern, 
dynamically  select  the classifier that correctly classify  
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it. The authors pointed out that selection-based MCSs, 
as compared with the combination-based ones, do 
not need of the assumption of "independent" 
classifiers. For each test pattern, selection-based 
MCSs need just one classifier that correctly 
classifies it[9,10,11]. 
 Chan and Stolfo[12,13] considered partitioning the 
data into subsets that fit in memory and then developing 
a classifier on each subset in parallel. The output of 
multiple classifiers is combined using various 
algorithms to reach the final classification. Their studies 
showed that, the multiple classifiers system built using 
the random sample did not achieve better accuracy than 
a single classifier built using the entire training data. It 
is because of the class label attribute was not distributed 
similarly in the random sample as like in the entire 
training data set.  
 Some times, the proportion of the class attribute in 
the random sample is not similar to the one in the entire 
training data set. To the best of our knowledge, no 
method has considered the Probability of the class label 
attribute in the random samples. In our newly Proposed 
Method, the probability of occurrences of every class 
for the entire training data set have been estimated. 
Based on the probability of the class label attribute in 
the training set, thresholds have been fixed for all the 
classes. When the data set have been selected randomly, 
the probabilities of the classes have been checked 
against the thresholds. The sample, which satisfies all 
the thresholds is allowed to construct the Model. 
Otherwise Re-sampling performed.  
  
Re-sampling based on threshold (RST) 
Problem definition: Let us consider a classification 
task for M data classes 1…M. The threshold value for 
M classes are T1,T2…TM. Each class is assumed to 
represent a set of specific patterns, each pattern being 
characterized by a feature vector X. Let us also assume 
that L different classifiers, Cj, j = 1,.,L, have been 
trained separately to solve the classification task at 
hand. Let Cj(X) € {1,…., M} indicate the class label 
assigned to pattern X by the  classifier Cj. In all 
iterations, a random sample has been selected based on 
the threshold value of the class label attribute. 
 
Fixing thresholds for the classes: Let us consider the 
total number of samples in the training data set is N. 
The total number of samples in classes 1,2,,…,M is 
N1,N2,…NM respectively. Initially, the probability of 
occurrence of M data classes have been computed as 
follows: 
      Ni 
Pi =        where i = 1,2,..,M 
      N 

 In every iterations, a set of random sample R of 
size K has been selected. The threshold Ti is computed 
as:  
Ti = Pi * K *0.75  where i= 1,2,…M 
 Then the total number of training samples in each 
class K1,K2,…,KM for the random sample R is 
computed. If  
K1 >= T1 and K2 >= T2 and….and KM >= TM 
then the sample R is allowed to construct a classifier. 
Otherwise sample R is rejected and the process of 
random sample selection have been repeated until all 
the classifiers have been constructed.  
  

RESULTS 
 
 To analyze the accuracy of the classifier, the 
earthquake data has been taken. India and adjoining 
regions bound by 0oN-40oN latitude and 65oE-100oE 
longitude are having 24637 earthquakes from the year 
1000 onwards with different magnitude[4]. 
 The earthquake data samples were collected after 
removing duplicates, aftershocks and earthquakes 
without any magnitude. Table 1 shows the details of 
earthquake data samples. 
 
Table 1:  Earth Quake Data Samples 
Yr Mo Dy Hrs Min Secs Lat Lon Dep   Mag 
1973 1 2 16 25 36 36.08 71.31 137    4.8 
1973 1 2  22 25 57 31.24 88.09 33    5.2 
-  - - - - -- - -      - 
-  - - - - -- - -      - 
 
 In the earthquake data sample, a number of 
continuous attributes like year, month, day, hour, 
minute, second, latitude, longitude, depth and 
magnitude are there. The attribute magnitude has been 
considered as the class label attribute and we have 
categorized it in to three categories. The magnitude 7 
and above is in category 1, the magnitude from 5.5 to 7 
is in category 2 and the magnitude below 5.5 is in 
category 3. From the entire data set, 20000 data 
samples have been used as training data and 4637 have 
been used as the test data.  
Our experiments have mainly aimed to: 
1. Compare the accuracy of Decision Trees which 

is built by non RST with the one built by RST.  
2. Compare the accuracy of non RST based K-

Nearest Neighbor with the RST based K-Nearest 
Neighbor by varying K value from 1 to 25. 

3. Compare the accuracy of non RST based Back 
Propagation Network with the RST based Back 
Propagation Network for the different number 
of hidden units from 1 to 5. 

4. Compare the accuracies of Decision tree, Back 
Propagation Network and the K-Nearest 
Neighbor. 
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5. Compare the accuracy of combination based 
MCS without RST and the one with RST. 

 The Probability of occurrences of the classes for 
the entire training sample has been estimated. The 
category 1, 2 and 3 are having the probability 0.11%, 
3.11% and 96.8% respectively. When constructing 
classifiers, 30% of the random sample has been chosen 
and the probability of occurrences of all categories of 
the classes have been estimated.  
 
Decision tree: A decision tree construction process is 
concerned with identifying the splitting attributes and 
splitting criteria at every level of the tree. If samples at 
a node belong to two or more classes, then a test is 
made at the node that will result in a split. This process 
is recursively repeated for each of the new intermediate 
nodes until a completely discriminating tree is 
obtained.[1,2]. Table 2 shows the performances of 
Decision tree for various set of random samples in 
different iterations. 
 
K-nearest neighbor: It classifies each record in a 
dataset based on a combination of the classes of the k 
records that are most similar to it in the training dataset. 
The algorithm assumes that similar cases behave 
similarly. The Euclidean distance is used to measure the 
distance between two vectors. K-Nearest 
Neighbor(KNN) produced different Accuracies for 
different value of K[3]. 
 In all iteration, the experiments have been 
carried out for the neighborhood size ranging from 1 
to 25 for the same set of samples. The result related to 
the neighborhood size that provided the highest 
accuracy have been reported in all iterations. Table 3 
shows the Accuracy of KNN for different set of samples 
in different iterations 
 
Back propagation network (BPN): The Network 
learns by iteratively processing a set of training 
samples, comparing the network’s prediction for each 
sample with the actual known class label. For each 
training sample, the weights are modified so as to 
minimize the mean squared error between the 
network’s prediction and the actual class. These 
modifications are made in the “backwards” direction, 
that is from the output layer, through the hidden layers 
down to the first hidden layer[14]. 
 To construct the Network, the data samples are 
normalized into the values in between 0 to 1. Initially 
the weights and bias have been initialized to the values 
in between -1 and 1. The learning rate has assumed as 
the value 0.9. The weights and bias have been modified 
during learning process.[14,15]. 

Table 2: Accuracy of decision tree for the different random samples  
Iter  Prob. of samples  Un Accu  
ation ----------------------------------- Ssatis of 
 Cat. 1 Cat.  2 Cat.  3 fied.cat DT 
1 0.06 2.51 97.43 1 65.45 
2 0.02 2.29 97.69 1,2 63.12 
3 0.05 3.42 96.53 1 64.23 
4 0.00 2.94 97.06 1 65.76 
5 0.01 3.11 96.88 1 62.68 
6 0.15 3.13 96.72 2 66.34 
7 0.04 2.43 97.53 1 64.92 
8 0.10 2.45 97.45 Nil 68.15 
 
Table 3: Accuracy of KNN in different iterations 
Iter  Prob. of samples  Un Accu  
 ----------------------------------- Ssatis of 
Ation Cat. 1 Cat.  2 Cat.  3 fied.cat DT 
1 0.05 2.93 97.02 1 76.02 
2 0.07 2.22 97.71 1,2 75.61 
3 0.01 2.36 97.63 1 75.01 
4 0.09 2.13 97.78 2 74.95 
5 0.04 2.01 97.95 1,2 77.23 
6 0.03 2.98 96.99 1 76.51 
7 0.06 2.41 97.53 1 77.02 
8 0.01 2.67 97.32 1 75.69 
9 0.09 1.92 97.99 2 76.45 
10 1.12 2.49 96.39 Nil 78.67 
 
Table 4: Accuracy of BPN for different number of hidden units 
Ite Accuracy of MLP for different Number of Highest 
Ration Hidden units Accuracy 
 --------------------------------------------------------- 
 1 2 3 4 5 
1 69.12 69.41 69.53 69.07 69.01 69.53 
2 67.91 67.98 67.89 68.03 67.85 68.03 
3 68.23 68.76 68.04 68.94 68.51 68.94 
4 70.59 70.12 70.73 69.99 70.32 70.73 
5 69.74 69.13 69.67 69.95 69.81 69.95 
6 72.81 72.94 72.54 73.05 72.91 73.05 
7 74.09 73.93 73.91 74.02 74.14 74.14 
 
Table 5: Accuracy of BPN in different iterations 
Iter  Prob. of samples  Un Accu  
 ----------------------------------- Ssatis of 
Ation Cat. 1 Cat.  2 Cat.  3 fied.cat DT 
1 0.05 2.49 97.46 1 69.53 
2 0.08 2.31 97.61 2 68.03 
3 0.01 2.89 97.10 1 68.94 
4 0.04 2.57 97.39 1 70.73 
5 0.03 2.09 97.88 1,2 69.95 
6 0.00 2.60 97.40 1 73.05 
7 1.02 2.78 96.20 Nil 74.14 
 
 The network has trained for different number of 
hidden units from 1 to 5. Different accuracies have been 
produced by different number of hidden units for the 
same set of data samples. Table 4 shows the accuracy 
of BPN for different number of hidden units for the 
same set of samples. For each data set, the results 
related to the number of hidden units, which produced 
the highest accuracy have been reported. Table 5 shows 
the Accuracy of BPN for different set of samples in 
various iterations. 
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Fig. 1: Comparison of RST based classifiers with the 

non RST based classifiers 
 
Combination of multiple classifier systems: The 
different classification techniques such as Decision tree 
classifier C1, K Nearest Neighbor classifier C2 and the 
Neural Network classifier C3 are combined using 
simple voting method to form MCS. 
 The performances of the best individual classifier 
which has built using non TCC based samples in each 
technique has been selected to form MCS and it 
produced 82.45% of accuracy for the test samples. The 
RST based classifiers in each technique have been 
combined using simple voting method and it has 
produced 84.23% accuracy. Figure 1 Compares the 
accuracy of RST based classifiers with the Non RST 
based Classifiers. 
 

CONCLUSION 
 
 The main objective of this study was to compare 
the Accuracy of RST based Classifiers with the Non 
RST based Classifiers. Reported result showed that our 
Proposed RST always outperforms the other in 
individual model and also in combination Model.  
 Decision tree has relatively faster learning speed. 
The predictive performance of Decision Trees was not 
as strong as on unseen data as that obtained on the 
training data. The choice of neighbourhood size is 
always a critical problem for the KNN. We have 
experimented by varying the size of K from 1 to 25 and 
the KNN have been robust to the size of 
neighbourhood.  
 BPN has slow training time. There is always a trial 
and error for choosing a number of Hidden Units. So 
we have tried a different number of hidden units for the 
same set of random sample. Neural networks have high 
tolerance to noisy data as well as their ability to classify 
patterns on which they have not been trained. Neural 
networks could out perform other techniques because 
they “learn” and improve over time whereas the other 
techniques are static. Neural network involves long 
training times.  

REFERENCES 
 
1. Berson, A., S. Smith and K. Thearling, 2000. 

Building Data Mining Applications for CRM. Tata 
McGraw-Hill Edn., pp: 123-139. 

2. Arun, K.P., 2001. Data Mining Techniques. 
University Press, pp: 153-159. 

3. Ian, H.W.E.F., 1999. Data Mining–Practical 
Machine Learning Tools and Techniques with 
JAVA Implementations. Morgan kaufmann 
Publishers, pp: 159-169. 

4. McNutt, M. and T.H. Heaton, 1981. An Evaluation 
of the Seismic-Window Theory for Earthquake 
Prediction, pp: 12-16.  

5. Giorgio, G. and F. Roli, 1999. Methods for 
dynamic classifier selection. 10th Intl. Conf. on 
Image Analysis and Processing, pp: 659-664. 

6. Xingquan, Z., X. Wu and Y. Yang, 2004. Dynamic 
classifier selection for effective mining from noisy 
data streams. 4th IEEE Intl. Conf. on Data Mining, 
pp: 305-312. 

7. Xu, L., A. Krzyzak and C.Y. Suen, 1992. 
Methods for combining multiple classifiers and 
their applications to handwriting recognition. 
IEEE Trans. on Systems, Man and Cyb., 22: 
418-435. 

8. Huang, Y.S. and C.Y. Suen, 1995. A method of 
combining multiple experts for the recognition of 
unconstrained handwritten numerals. IEEE 
Trans. on Pattern Analysis and Machine 
Intelligence, 17: 90-94.  

9. Srihari, S.N. et al., 1994. Decision combination 
in multiple classifiers systems. IEEE Trans. on 
Pattern Analysis and Machine Intelligence, 16: 
66-75.  

10. Kittler, et al., 1998. On combining classifiers. 
IEEE Trans. on Pattern Analysis and Machine 
Intelligence, 20: 226-239. 

11. Woods, K. et al., 1997. Combination of 
multiple classifiers using local accuracy 
estimates. IEEE Trans. on Pattern Analysis and 
Machine Intelligence, 19: 405-410. 

12. Philip, K.C. and S.J. Stolfo, 1993. Experiments on 
multistrategy learning by meta learning. In Proc. 
2nd Intl. Conf. on Mgmt., pp: 314-323.  

13. Philip, K.C. and S.J. Stolfo 1993. Meta learning for 
multistrategy and parallel learning. In Proc. 2nd 
Intl. Workshop on Multistrategy Learning, pp: 150-
165. 

14. Hansen, L.K. and P. Salamon, 1990. Neural 
network ensembles. IEEE Trans. on PAMI, 12: 
993-1001. 

15. Suen, C.Y. et al., 1995. The combination of 
multiple classifiers by a neural network 
approach. Intl. J. Pattern Recognition and 
Artificial Intelligence, 9: 579-597.  


