
Journal of Computer Science 3 (4): 195-198, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: S. Sathiyabama, Assis. Prof.r, Department of MCA, K.S. Rangasamy College of Technologyy,
Tiruchengode-637 209, India, Tel: 9443419843, E-mail: sathyaaksrct@yahoo.com

195

An Efficient Implementation of Re-Sampling Technique for

High Performance Multiple Classifier Systems

1S.Sathiyabama, 2K. Thyagarajah and 3D.Ayyamuthukumar

1Department of MCA, K.S. Rangasamy College of Technology, Tiruchengode-637 209, India
2P.S.N.A..College of Engineering and Technology, Dindigul – 22, India

3Department of CSE, K.S. Rangasamy College of Technology, Tiruchengode-637 209, India

Abstract: Due to the large size of the database, the entire training dataset could not be used to
construct the classifiers. One popular solution is to separate stream data into chunks, learn a base
classifier from each chunk and then integrate all base classifiers to form Multiple classifier system
(MCS). Sometimes this data streams does not include all the classes in its equal proportion as in the
entire training data set. So we have newly introduced a method of Re-Sampling based on the statistical
value of the class attribute. In the Proposed Method, the probability of occurrences of every class for
the entire training data set have been estimated. Based on the probability, thresholds have been fixed
for all the classes. When the data set have been selected randomly, the probabilities of the classes have
been checked against the thresholds. The sample, which satisfies all the thresholds, is allowed to
construct the Model. Otherwise, Re-sampling is performed and the process is repeated until the sample
satisfies all the thresholds for the classes. The proposed method yields more accuracy than the one
which does not have threshold on classes in the random samples. We have also compared the accuracy
of different classifiers. Experimental results and comparative studies demonstrate the efficiency and
efficacy of our method.

Key words: Accuracy, classifier, euclidean distance, sampling, threshold, normalization

INTRODUCTION

 Classification has been identified as an important
problem in the emerging field of data mining. While
classification is a well-studied problem, only recently
has there been focus on algorithms that can handle large
databases. The intuition is that by classifying larger
datasets, we will be able to improve the accuracy of the
classification model[1,2].
 In classification, there are given a set of example
records, called a training set, where each record consists
of several fields or attributes. Attributes are either
continuous, coming from an ordered domain, or
categorical, coming from an unordered domain. One of
the attributes, called the classifying attribute, indicates
the class to which each example belongs. The goal of
classification is to assign a new object to a class from a
given set of classes based on the attribute values of the
object. Different methods have been proposed for the
task of classification such as Decision Tree, K-Nearest
Neighbor, Back Propagation Networks etc. Accuracy is
an important factor in assessing the success of

Classifier. It evaluates how accurately a given classifier
will label the future data[3].

Literature review: Because of the large size of the
database, we couldn’t use the entire training data set to
construct the classifier. Random sampling has been
often used to handle large datasets when building a
classifier[5,6].
 In the literature, many of the MCSs using random
sampling have been described to increase the
accuracy of the classifier. Most of the combination
methods used in such systems assume that classifiers
forming the MCS make "independent" classification
errors. This assumption is necessary to guarantee an
increase of classification accuracy with respect to the
accuracies provided by individual classifiers[7,8].
 Recently, some researchers proposed a different
approach to the development of MCSs based on the
concept of Dynamic classifier selection to increase the
accuracy. Roughly speaking, selection-based MCSs
are based on a function that for each test pattern,
dynamically select the classifier that correctly classify

J. Computer Sci., 3 (4): 195-198, 2007

 196

it. The authors pointed out that selection-based MCSs,
as compared with the combination-based ones, do
not need of the assumption of "independent"
classifiers. For each test pattern, selection-based
MCSs need just one classifier that correctly
classifies it[9,10,11].
 Chan and Stolfo[12,13] considered partitioning the
data into subsets that fit in memory and then developing
a classifier on each subset in parallel. The output of
multiple classifiers is combined using various
algorithms to reach the final classification. Their studies
showed that, the multiple classifiers system built using
the random sample did not achieve better accuracy than
a single classifier built using the entire training data. It
is because of the class label attribute was not distributed
similarly in the random sample as like in the entire
training data set.
 Some times, the proportion of the class attribute in
the random sample is not similar to the one in the entire
training data set. To the best of our knowledge, no
method has considered the Probability of the class label
attribute in the random samples. In our newly Proposed
Method, the probability of occurrences of every class
for the entire training data set have been estimated.
Based on the probability of the class label attribute in
the training set, thresholds have been fixed for all the
classes. When the data set have been selected randomly,
the probabilities of the classes have been checked
against the thresholds. The sample, which satisfies all
the thresholds is allowed to construct the Model.
Otherwise Re-sampling performed.

Re-sampling based on threshold (RST)
Problem definition: Let us consider a classification
task for M data classes 1…M. The threshold value for
M classes are T1,T2…TM. Each class is assumed to
represent a set of specific patterns, each pattern being
characterized by a feature vector X. Let us also assume
that L different classifiers, Cj, j = 1,.,L, have been
trained separately to solve the classification task at
hand. Let Cj(X) € {1,…., M} indicate the class label
assigned to pattern X by the classifier Cj. In all
iterations, a random sample has been selected based on
the threshold value of the class label attribute.

Fixing thresholds for the classes: Let us consider the
total number of samples in the training data set is N.
The total number of samples in classes 1,2,,…,M is
N1,N2,…NM respectively. Initially, the probability of
occurrence of M data classes have been computed as
follows:
 Ni
Pi = where i = 1,2,..,M
 N

 In every iterations, a set of random sample R of
size K has been selected. The threshold Ti is computed
as:
Ti = Pi * K *0.75 where i= 1,2,…M
 Then the total number of training samples in each
class K1,K2,…,KM for the random sample R is
computed. If
K1 >= T1 and K2 >= T2 and….and KM >= TM
then the sample R is allowed to construct a classifier.
Otherwise sample R is rejected and the process of
random sample selection have been repeated until all
the classifiers have been constructed.

RESULTS

 To analyze the accuracy of the classifier, the
earthquake data has been taken. India and adjoining
regions bound by 0oN-40oN latitude and 65oE-100oE
longitude are having 24637 earthquakes from the year
1000 onwards with different magnitude[4].
 The earthquake data samples were collected after
removing duplicates, aftershocks and earthquakes
without any magnitude. Table 1 shows the details of
earthquake data samples.

Table 1: Earth Quake Data Samples
Yr Mo Dy Hrs Min Secs Lat Lon Dep Mag
1973 1 2 16 25 36 36.08 71.31 137 4.8
1973 1 2 22 25 57 31.24 88.09 33 5.2
- - - - - -- - - -
- - - - - -- - - -

 In the earthquake data sample, a number of
continuous attributes like year, month, day, hour,
minute, second, latitude, longitude, depth and
magnitude are there. The attribute magnitude has been
considered as the class label attribute and we have
categorized it in to three categories. The magnitude 7
and above is in category 1, the magnitude from 5.5 to 7
is in category 2 and the magnitude below 5.5 is in
category 3. From the entire data set, 20000 data
samples have been used as training data and 4637 have
been used as the test data.
Our experiments have mainly aimed to:
1. Compare the accuracy of Decision Trees which

is built by non RST with the one built by RST.
2. Compare the accuracy of non RST based K-

Nearest Neighbor with the RST based K-Nearest
Neighbor by varying K value from 1 to 25.

3. Compare the accuracy of non RST based Back
Propagation Network with the RST based Back
Propagation Network for the different number
of hidden units from 1 to 5.

4. Compare the accuracies of Decision tree, Back
Propagation Network and the K-Nearest
Neighbor.

J. Computer Sci., 3 (4): 195-198, 2007

 197

5. Compare the accuracy of combination based
MCS without RST and the one with RST.

 The Probability of occurrences of the classes for
the entire training sample has been estimated. The
category 1, 2 and 3 are having the probability 0.11%,
3.11% and 96.8% respectively. When constructing
classifiers, 30% of the random sample has been chosen
and the probability of occurrences of all categories of
the classes have been estimated.

Decision tree: A decision tree construction process is
concerned with identifying the splitting attributes and
splitting criteria at every level of the tree. If samples at
a node belong to two or more classes, then a test is
made at the node that will result in a split. This process
is recursively repeated for each of the new intermediate
nodes until a completely discriminating tree is
obtained.[1,2]. Table 2 shows the performances of
Decision tree for various set of random samples in
different iterations.

K-nearest neighbor: It classifies each record in a
dataset based on a combination of the classes of the k
records that are most similar to it in the training dataset.
The algorithm assumes that similar cases behave
similarly. The Euclidean distance is used to measure the
distance between two vectors. K-Nearest
Neighbor(KNN) produced different Accuracies for
different value of K[3].
 In all iteration, the experiments have been
carried out for the neighborhood size ranging from 1
to 25 for the same set of samples. The result related to
the neighborhood size that provided the highest
accuracy have been reported in all iterations. Table 3
shows the Accuracy of KNN for different set of samples
in different iterations

Back propagation network (BPN): The Network
learns by iteratively processing a set of training
samples, comparing the network’s prediction for each
sample with the actual known class label. For each
training sample, the weights are modified so as to
minimize the mean squared error between the
network’s prediction and the actual class. These
modifications are made in the “backwards” direction,
that is from the output layer, through the hidden layers
down to the first hidden layer[14].
 To construct the Network, the data samples are
normalized into the values in between 0 to 1. Initially
the weights and bias have been initialized to the values
in between -1 and 1. The learning rate has assumed as
the value 0.9. The weights and bias have been modified
during learning process.[14,15].

Table 2: Accuracy of decision tree for the different random samples
Iter Prob. of samples Un Accu
ation ----------------------------------- Ssatis of
 Cat. 1 Cat. 2 Cat. 3 fied.cat DT
1 0.06 2.51 97.43 1 65.45
2 0.02 2.29 97.69 1,2 63.12
3 0.05 3.42 96.53 1 64.23
4 0.00 2.94 97.06 1 65.76
5 0.01 3.11 96.88 1 62.68
6 0.15 3.13 96.72 2 66.34
7 0.04 2.43 97.53 1 64.92
8 0.10 2.45 97.45 Nil 68.15

Table 3: Accuracy of KNN in different iterations
Iter Prob. of samples Un Accu
 ----------------------------------- Ssatis of
Ation Cat. 1 Cat. 2 Cat. 3 fied.cat DT
1 0.05 2.93 97.02 1 76.02
2 0.07 2.22 97.71 1,2 75.61
3 0.01 2.36 97.63 1 75.01
4 0.09 2.13 97.78 2 74.95
5 0.04 2.01 97.95 1,2 77.23
6 0.03 2.98 96.99 1 76.51
7 0.06 2.41 97.53 1 77.02
8 0.01 2.67 97.32 1 75.69
9 0.09 1.92 97.99 2 76.45
10 1.12 2.49 96.39 Nil 78.67

Table 4: Accuracy of BPN for different number of hidden units
Ite Accuracy of MLP for different Number of Highest
Ration Hidden units Accuracy

 1 2 3 4 5
1 69.12 69.41 69.53 69.07 69.01 69.53
2 67.91 67.98 67.89 68.03 67.85 68.03
3 68.23 68.76 68.04 68.94 68.51 68.94
4 70.59 70.12 70.73 69.99 70.32 70.73
5 69.74 69.13 69.67 69.95 69.81 69.95
6 72.81 72.94 72.54 73.05 72.91 73.05
7 74.09 73.93 73.91 74.02 74.14 74.14

Table 5: Accuracy of BPN in different iterations
Iter Prob. of samples Un Accu
 ----------------------------------- Ssatis of
Ation Cat. 1 Cat. 2 Cat. 3 fied.cat DT
1 0.05 2.49 97.46 1 69.53
2 0.08 2.31 97.61 2 68.03
3 0.01 2.89 97.10 1 68.94
4 0.04 2.57 97.39 1 70.73
5 0.03 2.09 97.88 1,2 69.95
6 0.00 2.60 97.40 1 73.05
7 1.02 2.78 96.20 Nil 74.14

 The network has trained for different number of
hidden units from 1 to 5. Different accuracies have been
produced by different number of hidden units for the
same set of data samples. Table 4 shows the accuracy
of BPN for different number of hidden units for the
same set of samples. For each data set, the results
related to the number of hidden units, which produced
the highest accuracy have been reported. Table 5 shows
the Accuracy of BPN for different set of samples in
various iterations.

J. Computer Sci., 3 (4): 195-198, 2007

 198

60
65
70
75
80

85
90
95

100

D T KNN MLP MCS

Classifiers

A
cc
ur
ac
y

 Accuracy of Non RST based Classifiers
Accuracy of RST based Classifiers

Fig. 1: Comparison of RST based classifiers with the

non RST based classifiers

Combination of multiple classifier systems: The
different classification techniques such as Decision tree
classifier C1, K Nearest Neighbor classifier C2 and the
Neural Network classifier C3 are combined using
simple voting method to form MCS.
 The performances of the best individual classifier
which has built using non TCC based samples in each
technique has been selected to form MCS and it
produced 82.45% of accuracy for the test samples. The
RST based classifiers in each technique have been
combined using simple voting method and it has
produced 84.23% accuracy. Figure 1 Compares the
accuracy of RST based classifiers with the Non RST
based Classifiers.

CONCLUSION

 The main objective of this study was to compare
the Accuracy of RST based Classifiers with the Non
RST based Classifiers. Reported result showed that our
Proposed RST always outperforms the other in
individual model and also in combination Model.
 Decision tree has relatively faster learning speed.
The predictive performance of Decision Trees was not
as strong as on unseen data as that obtained on the
training data. The choice of neighbourhood size is
always a critical problem for the KNN. We have
experimented by varying the size of K from 1 to 25 and
the KNN have been robust to the size of
neighbourhood.
 BPN has slow training time. There is always a trial
and error for choosing a number of Hidden Units. So
we have tried a different number of hidden units for the
same set of random sample. Neural networks have high
tolerance to noisy data as well as their ability to classify
patterns on which they have not been trained. Neural
networks could out perform other techniques because
they “learn” and improve over time whereas the other
techniques are static. Neural network involves long
training times.

REFERENCES

1. Berson, A., S. Smith and K. Thearling, 2000.

Building Data Mining Applications for CRM. Tata
McGraw-Hill Edn., pp: 123-139.

2. Arun, K.P., 2001. Data Mining Techniques.
University Press, pp: 153-159.

3. Ian, H.W.E.F., 1999. Data Mining–Practical
Machine Learning Tools and Techniques with
JAVA Implementations. Morgan kaufmann
Publishers, pp: 159-169.

4. McNutt, M. and T.H. Heaton, 1981. An Evaluation
of the Seismic-Window Theory for Earthquake
Prediction, pp: 12-16.

5. Giorgio, G. and F. Roli, 1999. Methods for
dynamic classifier selection. 10th Intl. Conf. on
Image Analysis and Processing, pp: 659-664.

6. Xingquan, Z., X. Wu and Y. Yang, 2004. Dynamic
classifier selection for effective mining from noisy
data streams. 4th IEEE Intl. Conf. on Data Mining,
pp: 305-312.

7. Xu, L., A. Krzyzak and C.Y. Suen, 1992.
Methods for combining multiple classifiers and
their applications to handwriting recognition.
IEEE Trans. on Systems, Man and Cyb., 22:
418-435.

8. Huang, Y.S. and C.Y. Suen, 1995. A method of
combining multiple experts for the recognition of
unconstrained handwritten numerals. IEEE
Trans. on Pattern Analysis and Machine
Intelligence, 17: 90-94.

9. Srihari, S.N. et al., 1994. Decision combination
in multiple classifiers systems. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 16:
66-75.

10. Kittler, et al., 1998. On combining classifiers.
IEEE Trans. on Pattern Analysis and Machine
Intelligence, 20: 226-239.

11. Woods, K. et al., 1997. Combination of
multiple classifiers using local accuracy
estimates. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 19: 405-410.

12. Philip, K.C. and S.J. Stolfo, 1993. Experiments on
multistrategy learning by meta learning. In Proc.
2nd Intl. Conf. on Mgmt., pp: 314-323.

13. Philip, K.C. and S.J. Stolfo 1993. Meta learning for
multistrategy and parallel learning. In Proc. 2nd
Intl. Workshop on Multistrategy Learning, pp: 150-
165.

14. Hansen, L.K. and P. Salamon, 1990. Neural
network ensembles. IEEE Trans. on PAMI, 12:
993-1001.

15. Suen, C.Y. et al., 1995. The combination of
multiple classifiers by a neural network
approach. Intl. J. Pattern Recognition and
Artificial Intelligence, 9: 579-597.

