
Journal of Computer Science 3 (12): 924-933, 2007
ISSN 1549-3636
© 2007 Science Publications

924

A New Algorithm for Subset Matching Problem

Yangjun Chen

University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9

Abstract: The subset matching problem is to find all occurrences of a pattern string p of length m in a
text string t of length n, where each pattern and text position is a set of characters drawn from some
alphabet Σ. The pattern is said to occur at text position i if the set p[j] is a subset of the set t[i + j - 1],
for all j (1 ≤ j ≤ m). This is a generalization of the ordinary string matching and can be used for finding
matching subtree patterns. In this research, we propose a new algorithm that needs O(n⋅m) time in the
worst case. But its average time complexity is O(n + m⋅nlog1.5).

Key words: String matching, tree pattern matching, subset matching, trie, suffix tree, probabilistic

analysis

INTRODUCTION

 The subset matching problem is a generalization of
the ordinary string matching problem, by which both
the pattern and text are sequences of sets (of
characters). Formally, the text t is a string of length n
and the pattern p is a string of length m. Each text
position t[i] and each pattern position p[j] is a set of
characters (not a single character), taken from a certain
alphabet Σ (see the definition given in[7]). Strings, in
which each location is a set of characters, will be called
set-strings to distinguish them from ordinary strings.
Pattern p is said to match text t at position i if p[j] ⊆ t[i
+ j - 1], for all j (1 ≤ j ≤ m). As an example, consider
the set-strings t and p shown in Figure 1.
 Figure 1(a) shows a matching case, by which we
have p[j] ⊆ t[i + j - 1] for i = 1 and j = 1, 2, 3, while
Figure 1(b) illustrates an unmatching case since for i =
2 we have p[2] ⊄ t[i + 2 - 1].
 This problem was defined in[5] and is of interest, as
it was shown (also in[5] and its improved version[7]) that
the well-known tree pattern matching problem can be
linearly reduced to this problem. In addition, as shown
in[8], this problem can also be used to solve general
string matching and counting matching[10,11] and
enables us to design efficient algorithms for several
geometric pattern matching problems. Up to now, the
best way for solving subset matching is based on the
construction of superimposed codes (bit strings[3,4]) for
the characters in Σ � and the convolution operation of
vectors[1]. The superimposed codes are generated in
such way that no bit string (for a character) is contained
in a boolean sum of k other bit strings, where k is the
largest size of the sets in both t and p. As indicated in[6],

Fig. 1: Example of set match

such superimposed codes can be generated in
O(n⋅log2m) time. In addition, by decomposing a subset
matching into several smaller problems[5], the
convolution operation can also be done in O(n⋅log2m)
time by using Fourier transformation[1] (if the
cardinality of Σ �is bounded by a constant). Therefore,
the algorithm discussed in[6] needs only O(n⋅log2m)
time.
 In this research, we explore a quite different way to
solve this problem. The main idea of our algorithm is to
transform a subset matching problem into another
subset matching problem by constructing a trie over the
text string. In the new subset matching problem, t is
reduced to a different string t’, in which each position is

a
b
c a

c

a
b
c b

c
d
e

d
e

c

t t1 t2 t3 t4 t5 t6 t7

a
c

a
c

c

p p1 p2 p3

a match

(a)

a
b
c a

c

a
b
c b

c
d
e

d
e

c

t t1 t2 t3 t4 t5 t6 t7

a
c

a
c

c

p p1 p2 p3

not a match

(b)

J. Computer Sci., 3 (12): 924-933, 2007

 925

an integer (instead of a set of characters); and p is
changed to another string p’, in which each position
remains a set (of integers). This transformation gives us
a chance to use the existing technique for string
matching to solve the problem. Concretely, we will
generate a suffix tree over t’ and search the suffix tree
against p’ in a way similar to the traditional methods.
The algorithm runs in O(n⋅m) time in the worst case and
in O(n + m⋅nlog1.5) on average.

ALGORITHM DESCRIPTION

 Assume that Σ � = {1, ..., k}. We construct a 0-1
matrix T = (aij) for t = t1t2 ... tn such that aij = 1 if i ∈ �tj

and aij = 0 if i ∉ �tj (see Figure 2 for illustration.) In the
same way, we construct another 0-1 matrix P = (bij) for
p = p1p2 ... pm.
 Then, each column in T (P) can be considered as a
bit string representing a set in t (resp. p). (In the
following discussion, we use b(ti) (b(pj)) to denote the
bit string for ti (resp. pj).)
 In a next step, we construct a (compact) trie over
all b(ti)’s, denoted by trie(T), as illustrated in Figure
3(a).

Fig. 2: A 0-1 matrix for a text string

Fig. 3: A trie and set-string transformation

 In this trie, for each node, its left outgoing edge is
labeled with a string beginning with 0 and its right
outgoing edge is labeled with a string beginning with 1;
and each path from the root to a leaf node represents a
bit string that is different from the others. In addition,
each leaf node v in trie(T) is associated with a set
containing all those ti’s that have the same string
represented by the path from the root to v. Then, t can
be transformed as follows:

- Number all the leaf nodes of the trie from left to
right (see Figure 3).

- Replace each ti in t with an integer that numbers
the leaf node, with which a set containing ti is
associated.

 For example, the text string t shown in Figure 1(a)
will be transformed into a string t’ as shown in Figure
3(b), in which each position is an integer. For this
example, t1 and t4 are replaced by 5, t2 by 4, t3 by 3, t5
and t6 by 1 and t7 by 2.
 In order to find all the sets in t, which contain a
certain pj, we will search trie(T) against b(pj) as below.

• Denote the ith position in b(pj) by b(pj)[i].
• Let v (in trie(T)) be the node encountered and

b(pj)[i] be the position to be checked. Denote the
left and right outgoing edges of v by el and er,
respectively. We do the following checkings:
- If b(pj)[i] = 1, we will explore the right outgoing

edge er of v.
- If b(pj)[i] = 0, we will explore both el and er.

 In fact, this definition just corresponds to the
process of checking whether a set contains another as a
subset. That is, if b(pj)[i] = 1, we compare only the
label of er, denoted by l(er), with the corresponding
substring in b(pj) according to the following criteria: if
one bit in b(pj) is 1, the corresponding bit in l(er) must
be one; if one bit in b(pj) is 0, it does not matter
whether the corresponding bit in l(er) is 1 or 0. If they
match, we move to the right child of v. If b(pj)[i] = 0,
we will check both l(el) and l(er).
For example, to find all the ti’s in the text string t shown
in Figure 1(a), which match p1 in p shown in the same
figure, we will search the trie against b(p1) = 10100. For
this, part of the trie will be traversed as illustrated by
the heavy lines in Figure 4(a).
 This shows that in t there are three sets t1, t2 and t4
containing p1. But in t’, t1 and t4 are represented by 5
and t2 is represented by 4. So we associate {4, 5} with
p1 and replace p1 in p with {4, 5}. In this way, we will
transform p into another string p’, in which each
position remains a set containing some integers that
represent all those sets in t, which contain the
corresponding set at the same position in p (see Figure
4(b) for illustration.) Each set in p’ can be represented
by a bit string of length l, where l is the number of
different sets (ti’s) in t. If i belongs to the set, the ith
position is set to 1; otherwise, it is set to 0.
Formally, the above transformation defines two
functions as below:

ft: Sett → � I,

a
b
c
d
e

1 2 3 4 5 6

1 1 0 1 0 0
1 0 1 1 0 0
1 1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

{t1, t4} {t3}

{t5, t6}

5 4 3

0 1

0 1100 0100 1100

011 100
1 2

{t7}

{t2} (a)

t: t1 t2 t3 t4 t5 t6 t7

t’: 5 4 3 5 1 1 2
� (b)

J. Computer Sci., 3 (12): 924-933, 2007

 926

where, Sett is the set of all ti’s in t and Ι = {1, ..., l}; and
ft(ti) = a if a is the number for a leaf node in trie(T),
with which a set containing ti is associated; and

fp: Setp → 2I,

where, Setp is the set of all pj’s in p and 2I is the set
containing all the subsets of Ι , i.e., the power set of Ι;
and ft(pj) = b if b is a set of integers each labeling an
leaf node in trie(T), which is encountered when
searching trie(T) against b(pj).

Fig. 4: Trie searching and set-string transformation

 Obviously, these two functions satisfy the
following property.

Lemma 1: Let ti be a set in t and pj be a set in p.
Assume that ft(ti) = a and fp(pj) = b. Then, we have ti ⊇
�pj if and only if a ∈ b.

Proof: It can be directly derived from the above
definition of the string transformations.
 In a next step, we construct a suffix tree over t’ =
t1’t2’ ... tn’, the transformed t, using a well-known
algorithm such as the algorithms discussed in[12,13]. We
remark that the alphabet for t’ is {1, ..., l} (l ≤ 2k} since
each ti’ ∈ {1, ..., l}. It is a relatively large. But it is a
sorted set, which is constructed when we number the
leaf nodes of the trie for t. Therefore, the construction
of the suffix tree over t’ requires only O(n) time. (More
exactly, using McCreight’s algorithm[12], we need
O(logl⋅n) time. logl = log2k = k.
For example, for the string shown in Figure 3(b), we
will generate a suffix as shown in Figure 5.

Fig. 5: The suffix tree for t’

 In this tree, each internal node v is associated with
an integer (denoted as int(v)) to indicate the position (in
p’) to be checked when searching; and each edge is
labeled with a substring and all the labels along a path
(from the root to a leaf node) form a suffix in t’, plus $,
a special symbol, which makes every suffix not a prefix
of any other. So a leaf node can be considered as a
pointer to a suffix. In order to find all the substrings in
t, which match p, we will explore the suffix tree for the
transformed string t’ against the transformed string p’ =
p1’p2’ ... pm’ as follows (note that each pi’ (i ∈ {1, ...,
m}) is a set.)

• Search the suffix tree from the root.
• Let v be the node encountered and pi’ be the set to

be checked.
• Let e1, ..., eq be v’s outgoing edges. Let l(ej) =

1j
l ...

hj
l (for some h) be the label of ej (1 ≤ j ≤ q). Then,

for any ej = (vj, uj) (1 ≤ j ≤ q), if
1j

l ∈ pi+int(v)-1’, 2jl

∈ pi+int(v)’, ... and
hj

l ∈ pi+int(v)+h-1’, the subtree

rooted at uj will be continually explored.
Otherwise, the subtree will not be searched any
more. In addition, we notice that the symbol $ is
always ignored when we check the labels
associated with the edges in trie(T)

In the above process, if we can find an edge e = (v, u)
with l(e) = l1 ... lg ... such that lg is checked against pm’
with lg ∈ pm’, any leaf node in the subtree rooted at u
indicates a substring in t, which matches p.
 The following is the formal description of the
whole process.

Algorithm Subset-Matching
begin
1. Let t = t1t2 ... tn and p = p1p2 ... pm;
2. Transform t to t’ = t1’t2’ ... tn’ and p to p’ = p1’ ...

pm’ by using the trie constructed over t;
3. Construct a suffix tree tsuffix over t’;
4. Search tsuffix against p’;
5. for any e = (v, u) in tsuffix with l(e) = l1 ... lg ... such

that lg is checked against pm’ with lg ∈ pm’ do
6. {return all the leaf nodes in the subtree rooted at

u;}
end

Example 1: By applying the above algorithm to the
problem shown in Figure 1(a), trie(T) shown in Figure
3(a) will be first generated and t will be transformed to
t’ as shown in Figure 3(b). Then, by searching trie(T)
against each pi one by one, we will transform p to p’ as

2
100 {t1, t4} {t3}

{t5, t6}

5 4 3

0 1

0 1100 0100 1100

011
1

{t7}

{t2} (a)

a
c

a
c

c

p’ p1’ p2’ p3’

p p1 p2 p3

(b)

2$ 1 5 35112$ 435112$

1

2 2 3 2 7

4 1 6 5

435112$ 112$ 12$ 2$

J. Computer Sci., 3 (12): 924-933, 2007

 927

shown in Figure 4(b). The suffix tree for t’ is shown in
Figure 5. Finally, we will search the suffix tree against
p’ as shown by the heavy edges in Figure 6.

Fig. 6: Illustration for suffix searching

 For this simple example, only one path in the suffix
tree is explored. But multiple paths may be searched in
general.

Proposition 1: Let t = t1t2 ... tn and p = p1p2 ... pm. The
algorithm Subset-Matching will find all ti’s (1 ≤ i ≤ n -
m) such that ti+1ti+2...ti+m-1 matches p.

Proof: Let n1 →� n2 ... →� nm → � nm+1 be a path that is
visited when searching the trie against p’. Let li = l(ni,
ni+1) denote the label associated with the edge (ni, ni+1)
(1 ≤ i ≤ m). Then, we must have li ∈ pi’ (1 ≤ i ≤ m). In
terms of Lemma 1, the substring in t: ft

-1(l1) ... ft
-1(lm)

definitely matches fp
-1(p1’) ... fp

-1(pm’) = p1p2 ... pm. We
remark that all the suffixes represented by the leaf
nodes in the subtree rooted at nm+1 have l1 ... lm as the
prefix. So, each of these suffixes corresponds to a
substring in t, which matches p.
 The time complexity of the algorithm consists of
four parts: C1, C2, C3 and C4, which are defined and
estimated below.
 C1 is the time used for constructing the trie for t. In
the case that Σ is fixed, it needs only O(n) time.
 C2 is the time spent on generating p’ for p. Let A
represent the largest number of the edges visited when
searching trie(T) against a b(pi) in p (1 ≤ i ≤ m). Then,
C2 is bounded by O(A⋅m).
 C3 is the cost for constructing the suffix tree over
t’. It is O(n).
 C4 is the cost for searching the suffix tree against
p’. It is bounded by O(A’⋅m), where A’ is the largest
edges explored during the searching of the suffix tree.
 Therefore, the whole computation process runs in
time O(n + A⋅m + A’⋅m). In the worst case, it is O(m⋅n).

Averagely, however, both A and A’ are on the order of
O(nlog1.5) as shown in the subsequent section.

ANALYSIS OF A AND A’

 In this section, we give a simple analysis of the
average value of A. A precise probabilistic analysis is
given in Section 5.
 In order to analyze the average cost of A, we
consider a ‘worse’ case that the trie is not compact, i.e.,
each edge is labeled with a single bit (instead of a bit
string), which makes the analysis easier. In Figure 7(b),
we show a non-compact trie for a set of bit strings
shown in Figure 7(a).

Fig. 7: A non-compact trie

 For such a non-compact trie T, the searching of it
against a bit string s = s[1]s[2] ... s[k] is performed in a
similar way to a compact trie, but simpler:

• Let v be the node encountered and s[i] be the

position to be checked.
• If s[i] = 1, we move to the right child of v.
• If s[i] = 0, both the right and left child of v will be

visited.

 In the following, we use cs(T) to represent the
expected number of the edges visited when searching T
against s. In addition, we use s’, s’’, s’’’, ... to designate
the patterns obtained by circularly shifting the bits of s
to the left by 1, 2, 3, ... positions.
 Obviously, if the first bit of s is 0, we have, for the
expected cost of a random string s,

 cs(T) = 1 + cs’(T1) + cs’(T2) (1)

where, T1 and T2 represent the two subtrees of the root
of T. See Figure 8 for illustration.

Fig. 8: Illustration for trie searching

{ }

{t1, t4} {t7} {t3, t5}

0 1

0 1 0

0 1

{t6} {t2}

1

0 1 0 1

{ }

t1: 001
t2: 010
t3: 011
t4: 001
t5: 011
t6: 110
t7: 111

(a) (b)

1 0

T1 T2

v If s[i] = 0, move along both
Edges labeled with 0 and 1.

2$ 1 5 35112$ 435112$

1

2 2 3 2 7

4 1 6 5

435112$ 112$ 12$ 2$

Since 5 ∈ p1’ = {4, 5},
the searching along this edge
Continues.

Although 4 ∈ p1’ = {4, 5},
3 ∉ p2’ = {4, 5} and therefore
the searching stops here.

Since 4 ∈ p2’ = {4, 5} and 3 ∈ p3’ = {2, 3, 4, 5}, the searching shows
that the prefix of the first suffix of t’ matches p’.

J. Computer Sci., 3 (12): 924-933, 2007

 928

 It is because in this case, the search has to proceed
in parallel along the two subtrees with s changing
cyclically to s’.
 If the first bit in s is 1, we have

 cs(T) = 1 + cs’(T2) (2)

since in this case the search proceeds only in T2.
 In order to get the expectation of cs(T), we make
the following assumption.
 For each ti in t, each element in ti is taken from Σ
with probability p = 1/2, independently from all the
other tj’s and all the other elements in ti.
 Under this assumption, T1 and T2 will have almost

the same size �
�

�
�
�

�

2
N , where N is the number of the nodes

in T. So (1) and (2) can be rewritten as follows:

 cs(N) = 1 + 2cs’(�
�

�
�
�

�

2
N), (3)

and

 cs(N) = 1 + cs’(�
�

�
�
�

�

2
N). (4)

 From (3) and (4), we get the following recurrence
equation:

 cs(N) = 1 +
2
3 cs’(�

�

�
�
�

�

2
N). (5)

 Solving the above recursion, we get

 cs(N) = O(1.5logN) = O(Nlog1.5). (6)

 In terms of (6), we have the following proposition.

Proposition 2: A is on the order of O(nlog1.5).

Proof: The number of the nodes in trie(T) is bounded
by O(kn). So the average value of A is O((kn)log1.5) =
O(nlog1.5).
 Since only O(nlog1.5) edges are visited on average
when searching trie(T) against a b(pj) in p, the size of
the set of all those ti’s that contain pj is on the order of
O(nlog1.5) and so is A.

IMPROVEMENTS

 The above process can be significantly improved.
 For p, we can also generate a trie over b(pj)’s,
denoted by trie(P), where P represents the 0-1 matrix
for p, which is constructed in the same way as T for t.
But for ease of control, we will establish non-compact
tries for both t and p as illustrated in Figure 9.

Fig. 9: Two non-compact tries

 We will search these two tries simultaneously with
the above containment checking simulated.
For this purpose, we will maintain a stack, stack, in
which each entry is of the form {v, u} with v ∈� trie(T)
and u ∈ �trie(P). During the process, each time we
encounter a node v in trie(T) and a node u in trie(P), we
will manipulate stack as below.

• Let v1 and v2 be two children of v with edge (v, v1)

labeled by 0 and edge (v, v2) by 1; and u1 and u2 be
two children of u with edge (u, u1) labeled by 0 and
edge (u, u2) by 1;

• Push three pairs {v2, u2}, {v2, u1} and {v1, u1} (in
the order specified) into stack.

• If v is a leaf node, put the number associated with v
into a set associated with u to record the fact the
sets represented by v contain the sets represented
by u.

Below is the formal description of the algorithm. In the
algorithm, the following two symbols are used:

• Num(v) - a number associated with a leaf node v in

trie(T).
• Matching(u) - a sorted set (of integers) associated

with a leaf node u in trie(P). Each integer in the set
represents one or more sets in t, which contain the
sets represented by u.

Algorithm p-transformation(trie(T), trie(P))
begin
1. v0 ← root of trie(T); u0 ← root of trie(P);
2. push(stack, {v0, u0});
 (*push (v0, u0) into stack.*)
3. while stack not empty do
4. {{v, u} ← pop(stack);
5. if v is a leaf node then
 matching(u) ← matching(u) ∪ {num(v)};
6. else {
7. let v1 and v2 be two children of v with (v, v1) labeled

by 0 and (v, v2) by 1;

0

0 1 1 1

1

1

0

0

0

0

0

0

0

0

0

0 1 1 0

1 0

{t5, t6} {t7} {t3} {t2} {t1, t4}

0 0

0

1

0

1

0 1

0

{p3} {p1, p2}

(a) (b)

J. Computer Sci., 3 (12): 924-933, 2007

 929

8. let u1 and u2 be two children of u with (u, u1)
labeled by 0 and (u, u2) by 1;

9. push(stack, {v2, u2}); push(stack, {v2, u1});
push(stack, {v1, u1});}

10. }
end

 By the above algorithm, each pj in p will be
transformed to a set of integers. Applying this
algorithm to the tries shown in Figure 5(a) and (b), we
will get the same result as shown in Figure 4(b). But we
search trie(T) against only two paths instead of three. In
addition, p1 and p2 are replaced with the same set {4,
5}. So we implement P’ as a pointer sequence with
each pointer pointing to a set of integers.
 In general, for all those pj’s that share the same
prefix, the prefix is checked only once, which enables
us to save much time.
 The worse case time complexity C can be analyzed
as follows.
Each pair {v, u} generated during the process, v and u
must be on the same level in trie(T) and trie(P),
respectively. Let Nt be he numbers of different sets (ti’s)
and Np the numbers of different sets (pj’s) in p. We have

 C = () ()inuminum P

k

i
T ⋅�

=1

 = NT⋅NP
() ()

�
= ⋅

⋅k

i PT

PT

NN
inuminum

1

 = O(kNt⋅Np),

where numT(i) (numP(i)) represents the number of the
nodes on level i in trie(T) (resp. in trie(P)).
Now we analyze the average time of this algorithm.
 We simply use T and P to represent trie(T) and
trie(P), respectively. Denote rootT the root of T and
rootP the root of P. Let T1 be the left subtree of rootT
and T2 the right subtree of rootT. Let P1 be the left
subtree of rootP and P2 the right subtree of rootP. Then,
we have the following recurrence equations:

C(T, P) = 1 + C(T1, P1) + C(T2, P1) + C(T2, P2), (7)

(*rootP has both the left and right child nodes.*)

 C(T, P) = 1 + C(T1, P1) + C(T2, P1), (8)

(*rootP has only the left node.*)

 C(T, P) = 1 + C(T2, P2), (9)

(*rootP has only the right child node.*)

where C(T, P) represents the average number of the
pairs (v, u) created during the process with v ∈ T and u
∈ P.
From the above equations, we get

 C(n, m) = 1 + 2C(�
�

�
�
�

�

2
N , �

�

�
�
�

�

2
M), (10)

which leads to the following proposition.

Proposition 3: C(n, m) ≤� nlog1.5mlog1.5.

Proof: We prove the proposition by induction on n and
m.

Basic step: When n = 1 and m = 1, the proposition
trivially holds.

Induction step: Assume that the propsotion holds for a
< n and b < m. That is, we have C(a, b) ≤ � alog1.5blog1.5 for
any a < n and any b < m. Then, in terms of (10) and the
induction hypothesis, we have

 C(n, m) = 1 + 2C(�
�

�
�
�

�

2
N , �

�

�
�
�

�

2
M)

 ≤ (1/(nlog1.5mlog1.5) +
 1/(2log1.52log1.5))nlog1.5mlog1.5

 = (1/(nlog1.5mlog1.5) +
 1/2.25) nlog1.5mlog1.5.

 For n ≥ 2 and m ≥ 2, 1/(nlog1.5mlog1.5) < 1/2.25. So
C(n, m) ≤� nlog1.5mlog1.5.
 Proposition 3 shows that the average cost the
algorithm p-transformation is on the order of
O(nlog1.5mlog1.5).

PROBABILISTICAL ANALYSIS

In terms of the analysis conducted in Section 3, we
have the following two recurrences:

 cs(T) = 1 + cs’(T1) + cs’(T2) (11)

 cs(T) = 1 + cs’(T2) (12)

where T1 and T2 represent the two subtrees of the root
of T.
Given N (N ≥ 2) random nodes in T, the probability that

 |T1| = q, |T2| = N – q (13)

J. Computer Sci., 3 (12): 924-933, 2007

 930

can be estimated by the Bernoulli probabilities

 () () pNp

p

N −
��
�

	

�

�
2
1

2
1 = ��

�

	

�

�

p

N
N2
1 (14)

 Let cs, N denote the expected cost of searching a trie
of size N against s. We have the following recurrences
 if s starts with 0,

 cs, N = 1+ � ��
�

	

�

�

q
qsN

c
N

',12

2 , N ≥� 2; (15)

if s starts with 1,

 cs, N = 1 + � ��
�

	

�

�

q
qsN

c
N

',12

1 , N ≥ �2. (16)

 Let λi = 1 if ith bit in s is 1 and λi = 2 if ith bit in s
is 0. The above recurrence can be rewritten as follows

 cs,N = 1+ � ��
�

	

�

�

q
qsN

c
N

',
1

12

λ - δN,0 - δN,1, (17)

where δN,,j (j = 0, 1) is equal to 1 if N = j; otherwise
equal to 0.

Proposition 4: The exponential generating function of
the average cost cs, N

 Cs(z) = �

≥0
!,

n
n
z

ns
n

c (18)

satisfies the relation

 Cs(z) = λ1e
z/2Cs’ �

�

	

�

�

2
z +ez - 1 - z. (19)

Proof: In terms of equation (17), Cs(z) can be rewritten
as follows

Cs(z) = () !
0

1,0,,'2
1

11 n
z

n p
nnps

n n

c
p

n
� �
≥ �

�

�

	

�

�
−−��

�

	

�

�
+ δδλ

 = �
≥0

!
n

n
z n

+ () !,'
0

2
1

1 n
z

ps
p n

n n

c
p

n
� �

≥
��
�

	

�

�
λ

 - �
≥0

!0,
n

n
z

n
nδ - �

≥0
!1,

n
n
z

n
nδ

 = ez+λ� () ()
()��

≥
−

−

0
!

2/
,'!

2/

n
pn

z
ps

p
p

z pnp

c - 1 - z

 = λ1e
z/2 ()2'

z
sC +ez - 1 - z (20)

In the same way, we will get Cs’(z), Cs’’(z), ... and so on.
Concretely, we will have the following equations:

 Cs(z) = λ1e

z/2 ()2'
z

sC +ez - 1 - z, (21)

 Cs’(z) = λ2e

z/2 ()2''
z

sC +ez - 1 - z

 Cs(m-1)

 (z)= λmez/2 ()2
z

sC +ez - 1 - z.

 These equations can be solved by successive
transportation. For instance, when we transport the
expression of Cs’(z) given by the second equation in
(11), we have

 Cs(z) = a(z)+λ1e

z/2 ()2
za +λ1λ2e

z/2
22/ze ()2

z
s '' 2

C (22)

where a(z) = ez - 1 - z.
 In a next step, we transport Cs’’’ into the equation
given in (22). This kind of transformation continues
until the relation is only on Cs itself. Then, we have

 Cs(z) = λ1λ2 ... λmexp �
�

�
�

�
�
�

	

�

� −
m

z
2
1

1 Cs(m
z

2
) + (23)

 ()[] ()()jj
j

zz
m

j
j expzexp

222
1

1

0
21 11 −−−�

−

=
λλλ �

 = 2m-k exp �
�

�
�

�
�
�

	

�

� −
m

z
2
1

1 Cs(m
z

2
) +

 ()[] ()()jj
j

zz
m

j
j expzexp

222
1

1

0
21 11 −−−�

−

=
λλλ �

where k is the number of 1s in s.
Let α = 2m-k, β = 1- m2

1 , λ = m2
1
�and

 A(z) = ()[] ()()jj
j

zz
m

j
j expzexp

222
1

1

0
21 11 −−−�

−

=
λλλ � .

We have

 Cs(z) = αeβzCs(λz)+A(z) (24)

This equation can be solved by iteration as discussed
above:

 Cs(z) = () ()�
∞

=
−
−

0
1
1

j

jj zAzexp
j λβα λ

λ = (25)

() ()()()[]��
−

=

∞

=

− +−−
1

0 2222
1

21
0

11)(2
m

h

z
h

j

kmj
mjhmjhzexpzexpλλλ �

J. Computer Sci., 3 (12): 924-933, 2007

 931

Using Taylor formula to expand exp(z) and
()()()mjhmjhzexp

22
1

22
1 11 +− in Cs(z) given by the above sum

and then extract the Taylor coefficients, we get

 cs,N = � �
−

= ≥

−1

0 0

)(
21)(2

m

h j
jh

kmj
h nDλλλ � (26)

where D00(n) = 1 and for j > 0 and h > 0,

 Djh(n) = 1 - (1 - 2-mj-h)n - n2-mj-h(1 - 2-mj-h)n-1 (27)

We notice that N ≤ min{n, 2k}. So �cs,N = O(N0.5) ≤
O(n0.5). This shows that the average time complexity of
Algorithm Set-Matching is on the order of O(n+ m⋅n0.5).
In the following, we show how to evaluate cs,N.
First, we define

 φ(x) = � �
−

= ≥

−1

0 0

)(
21)(2

m

h j
jh

kmj
h nDλλλ � , (x ≥� 0) (28)

Then, we perform the following computations to
evaluate φ(x):

1. Define the Mellin transformation of φ(x) ([8], p.

453):

 φ*(σ) = dxxx 1

0
)(−

∞

�
σφ (29)

2. Derive an expression for φ*(σ), which reveals

some of its singularities.
3. Evaluate the reversal Mellin transformation

 φ(x) = �
∞+

∞−

−
ic

ic
i

dx σσφ σ
π)(*2

1 -1 < c < -)1(m
k− (30)

The integral (30) is evaluated by using Cauchy’s
theorem as a sum of residues to the right of the vertical
line {c + iy | y ∈� ℜ}, where ℜ �represents the set of all
real numbers. This compuation method was first
proposed in [14]. The following is just an extended
explanation of it.
 Remember that Djh(x) = 1 - (1 - 2-mj-h)x - x2-mj-h(1 -
2-mj-h)x-1. We rewrite it under the form

 Djh(x) = 1 - jhxe α− - βjhx jhxe α− (31)

with αjh = - log(1 - 2-mj-h) and βjh = 2-mj-h(1 - 2-mj-h)-1.

Now we consider the following expansion, which is
valid for small values of x:

 (- log(1 - x))-σ = x-σ(1 - 2
αx + O(|σ|2x2)) .(32)

Let x = 2-mj-h. Then, we have (by using the above
expansion)

 αjh = (- log(1 - 2-mj-h))-(-1) ~ (2mj+h). (33)

In addition, for small values 2-mj-h, we also have

 βjh = 2-mj-h(1 - 2-mj-h)-1 = O(2-mj). (34)

Following the classical properties of Mellin
transformation, we have the following proposition.

Proposition 5. Denote Djh*(σ) the Mellin
transformation of Djh(x). We have

 Djh*(σ) = dxxx 1

0
)(−

∞

�
σφ (35)

 = - (αjh)
-σΓ(σ) − βjh(αjh)

-σ−1σΓ(σ)

provided -1 < Re(σ) < 0, where Γ(σ) is the Euler
Gamma function.

Proof. The following formulas are well-known:

 �
∞

−− −
0

1)1(dxxe x σ = Γ(σ) -1 < Re(σ) < 0 (36)

 �
∞

−−

0

1)(dxxxe x σ = σΓ(σ)-1 < Re(σ) (37)

 �
∞

−

0

1)(dxxaxf σ = dxxxfa 1

0
)(−

∞
−
�

σσ for a > 0 (38)

In terms of these formulas, we have

 Djh*(σ) = dxxxD jh�
∞

−

0

1)(σ (39)

= �
∞

−−−
0

1)1(dxxe jhx σα - �
∞

−−

0

1dxxxe jhx
jh

σαβ

= - (αjh)
-σΓ(σ) − βjh(αjh)

-σ−1σΓ(σ).

Now we try to evaluate the following two sums:

 ωh(σ) = �
≥

−−

0

)()(2
j

jh
kmj σα , (40)

 υh(σ) =
1

0

)()(2
−−

≥

−�
σ

αβ
j

jhjh
kmj .

From (33) and (34), we can see that the two sums given
by (40) are uniformly and absolutely convergent when
σ is in the following stripe:

J. Computer Sci., 3 (12): 924-933, 2007

 932

 Stripe: -1 < Re(σ) < - (1 - m
k). (41)

Furthermore, in terms of (33) and (34), both ωh(σ) and
υh(σ) can be approximated by the following sum:

 ϖh(σ) = �
≥

+−

0

)()2(2
j

hmjkmj σ (42)

When Re(σ) < σ0 = - (1 - m
k), this series can be

summed exactly:

 ϖh(σ) = σ
σ

mkm

h
+−−21

12 . (43)

Thus, φ*(σ) is defined in Stripe and can be computed as
follows

 φ*(σ) = �
∞

−

0

1)(dxxx σφ (44)

= � � �
∞

−−

= ≥

−

0

1
1

0 0

)())(2(dxxxD
m

h j
jh

kmj σλλλ�

=- �
−

=
Γ+

1

0
21)())()((

m

h
hh σσσυσωλλλ �

= - σ
σλλλσσ mkm

m

h

h
h +−−−

−

=
�+Γ

21
1

1

0
21 2)1)((� .

From this, we can observe all the sigularities (poles),
i.e., σ = 0, at which Γ(σ) is not defined; and all those

values of σ, at which (1 -)(02 σσ −m) becomes 0:

 σj = σ0 + 2log
2

m
ijπ , (j = 0, 1± , 2± , ...) (45)

To compute the integral in (21), we consider the
following integral

 φN(x) = dxx
NLi

σ
π σφ −
�)(*2

1 , (46)

where LN is a rectangular contour oriented clockwise as
shown in Figure 10.

 LN = 4321
NNNN LLLL +++ , (47)

 1
NL = { }2log

)12(||
m
Nuiuc π+≤+ ,

 2
NL = { }m

k
m
N vciv 32log

)12(≤≤+ + π ,

 3
NL = { }2log

)12(
3 ||

m
N

m
k uiu π+≤+ ,

 4
NL = { }

m
k

m
N vciv 32log

)12(≤≤− + π ,

where N is an integer. This contour is of a similar type
used in ([9], p. 132).

Let i
Nφ be the integral along i

NL (i = 1, 2, 3, 4). Then,

)(xNφ = 1
Nφ (x) + 2

Nφ (x) + 3
Nφ (x) + 4

Nφ (x). Furthermore,
we have the following results:

)(lim 1 xNN
φ

∞→
 = φ(x),

)(lim 2 xN
N

φ
∞→

 = O(1),

�
∞

−≤ L
mk

N dxx σσφφ |)(*||)(|)3/(3

= O(x-k/(3m)), and

)(lim 4 xN
N

φ
∞→

 = O(1).

Thus, we have
)(lim xN

N
φ

∞→
 = φ(x) + O(x-k/(3m)). (48)

Fig. 10: The rectangular contour LN

On the other hand,)(lim xN
N

φ
∞→

can be evaluated as the

sum of the residues of the integrand, i.e., φ*(σ)x-σ,
inside LN. Concretely, we have

)(lim xN
N

φ
∞→

 = - �
∈

− =
))(*(

),)(*(
σφα

σ ασσφ
Pole

x (49)

 = - σ

σφα ασ
σφασ −

∈ →
� − x

Pole
)(*)lim(

))(*(
.

Within ∞L , φ*(σ) has the following poles:

 α = 0, and

 α = σj = σ0 + 2log
2

m
ijπ (j = 0, 1± , 2± , ...)

The contribution of the pole α = 0 is O(1); and the
contribution of α = σ0 is

σ
σσ

φσσ −

→
− xx)(*)(lim 0

0

 (50)

= �
−

=

Γ+− 1

0
212log

)()1(0000 2
m

h

h
hmx σσσσ λλλ � .

4
NL

3
NL

2
NL

1
NL

v

u

b/3m -1+k/m c -1

J. Computer Sci., 3 (12): 924-933, 2007

 933

Finally, the contribution of each σj (j = 0, 1± , 2± , ...)

 σ
σσ

φσσ −

→
− xx)(*)(lim 0

0

 (51)

= �
−

=

− Γ+−
1

0
222

2 00 2)()1)(log(
m

h

h
hjjm

ij xexpx σπσ λλλσσ � . (42)

So we have

)(lim xN
N

φ
∞→

 (52)

= �
−

=

Γ+− 1

0
2log

)()1(0000 2
m

h

h
mx σσσσ λλλ� +

��
−

=

−

−∞=

− Γ+−
1

0
21

1

2
2 2)()1)(log(0

m

h

h
hj

j
jm

ij jxexpx σπσ λλλσσ �

 + ��
−

=

+∞

=

− Γ+−
1

0
21

1
2

2 2)()1)(log(0
m

h

h
hj

j
jm

ij jxexpx σπσ λλλσσ � =

�
−

=

Γ+− 1

0
2log

)()1(0000 2
m

h

h
mx σσσσ λλλ� .

From this, we know that

 Cs,n = O(0σ−n) = O(m
k

n −1).

CONCLUSION

 In this research, a new algorithm for the subset-
matching problem is proposed. The main idea of the
algorithm is to represent each set ti in the text string t as
a single integer a and each set pj in the pattern string p
as a set b of integers such that a ∈ b if and only if pj ⊆
�ti. This is done by constructing a trie structure over t. In
this way, we transform the original problem into a
different subset matching problem, which can be
efficiently solved by generating a suffix tree over the
new text string that has an integer at each position. In
the worst case, the algorithm runs in O(n + l⋅m) time,
where l is the number of different sets (ti’s) in t. But its
average time complexity is O(n + m⋅nlog1.5).

REFERENCES

1. Aho, A.V., J.E. Hopcroft and J.D. Ullman, 1974.

The Design and Analysis of Computer Algorithms.
Addison-Wesley Publishing Com., London.

2. Churchill, R.V., 1958. Operational Mathematics.
McGraw-Hill Book Company, NewYork.

3. Faloutsos, C., 1985. Access Methods for Text.
ACM Computing Surveys, 17 (1): 49-74.

4. Faloutsos, C., 1992. Signature Files, In:
Information Retrieval: Data Structures and
Algorithms, Frakes W.B. and R. Baeza-Yates,
(Ed.). Prentice Hall, New Jersey, pp: 44-65.

5. Cole, R. and R. Hariharan, 1997. Tree pattern
matching and subset matching in randomized O(n
log^3 m) time. Proceedings of the Twenty Ninth
Annual Symposium on the Theory of Computing,
pp: 66-75.

6. Cole, R. and R. Hariharan, 2002. Verifying
candidate matches in sparse and wildcard
matching, in Proc. of the 34th ACM Symposium
on Theory of Computing, Montreal, QC, Canada,
pp: 592-601.

7. Cole, R. and R. Hariharan, 2003. Tree pattern
matching to subset matching in linear time, SIAM,
J. Comput. 2 (4): 1056-1066.

8. Indyk, P., 1997. Deterministic superimposed
coding with applications to pattern matching. In
Proceeding. 38th Annual Symposium on
Foundations of Computer Science, Florida, USA,
pp: 127-136.

9. Knuth, D.E., 1973. The Art of Computer
Programming: Sorting and Searching, Addison-
Wesley Pub. London.

10. Muthukrishan, S. and K. Palem, 1994. Non-
standard Stringology: Algorithms and Complexity,
in Proceeding 26th ACM Symposium on Theory
of Computing, pp: 770-779.

11. Muthukrishan, S., 1995. New results and open
problems related to non-standard stringology,
proceeding 6th annual symposium on
combinatorial pattern matching, pp: 298-317.

12. McCreight, E., 1976. A space-economical
suffix tree construction algorithm, J. ACM
23 (2): 262-272.

13. Ukkonen, E., 1995. Constructing suffix tree on-line
in linear time, Algorithmica 14 (3): 249-260.

14. Flajolet, P. and C. Puech, 1986. Partial match
retrieval of multidimentional data, J. ACM, 33
(2) 371-407.

