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Abstract:  The subset matching problem is to find all occurrences of a pattern string p of length m in a 
text string t of length n, where each pattern and text position is a set of characters drawn from some 
alphabet Σ. The pattern is said to occur at text position i if the set p[j] is a subset of the set t[i + j - 1], 
for all j (1 ≤ j ≤ m). This is a generalization of the ordinary string matching and can be used for finding 
matching subtree patterns. In this research, we propose a new algorithm that needs O(n⋅m) time in the 
worst case. But its average time complexity is O(n + m⋅nlog1.5). 
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INTRODUCTION 
 
 The subset matching problem is a generalization of 
the ordinary string matching problem, by which both 
the pattern and text are sequences of sets (of 
characters). Formally, the text t is a string of length n 
and the pattern p is a string of length m. Each text 
position t[i] and each pattern position p[j] is a set of 
characters (not a single character), taken from a certain 
alphabet Σ (see the definition given in[7]). Strings, in 
which each location is a set of characters, will be called 
set-strings to distinguish them from ordinary strings. 
Pattern p is said to match text t at position i if p[j] ⊆ t[i 
+ j - 1], for all j (1 ≤ j ≤ m). As an example, consider 
the set-strings t and p shown in Figure 1. 
 Figure 1(a) shows a matching case, by which we 
have p[j] ⊆ t[i + j - 1] for i = 1 and j = 1, 2, 3, while 
Figure 1(b) illustrates an unmatching case since for i = 
2 we have p[2] ⊄ t[i + 2 - 1]. 
 This problem was defined in[5] and is of interest, as 
it was shown (also in[5] and its improved version[7]) that 
the well-known tree pattern matching problem can be 
linearly reduced to this problem. In addition, as shown 
in[8], this problem can also be used to solve general 
string matching and counting matching[10,11] and 
enables us to design efficient algorithms for several 
geometric pattern matching problems. Up to now, the 
best way for solving subset matching is based on the 
construction of superimposed codes (bit strings[3,4]) for 
the characters in Σ � and the convolution operation of 
vectors[1]. The superimposed codes are generated in 
such way that no bit string (for a character) is contained 
in a boolean sum of k other bit strings, where k is the 
largest size of the sets in both t and p. As indicated in[6],  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Example of set match 
 
such superimposed codes can be generated in 
O(n⋅log2m) time. In addition, by decomposing a subset 
matching into several smaller problems[5], the 
convolution operation can also be done in O(n⋅log2m) 
time by using Fourier transformation[1] (if the 
cardinality of Σ �is bounded by a constant). Therefore, 
the algorithm discussed in[6]  needs only O(n⋅log2m) 
time. 
 In this research, we explore a quite different way to 
solve this problem. The main idea of our algorithm is to 
transform a subset matching problem into another 
subset matching problem by constructing a trie over the 
text string. In the new subset matching problem, t is 
reduced to a different string t’, in which each position is  
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an integer (instead of a set of characters); and p is 
changed to another string p’, in which each position 
remains a set (of integers). This transformation gives us 
a chance to use the existing technique for string 
matching to solve the problem. Concretely, we will 
generate a suffix tree over t’ and search the suffix tree 
against p’ in a way similar to the traditional methods. 
The algorithm runs in O(n⋅m) time in the worst case and 
in O(n + m⋅nlog1.5) on average.  
 

ALGORITHM DESCRIPTION 
 
 Assume that Σ � = {1, ..., k}. We construct a 0-1 
matrix T = (aij) for t = t1t2 ... tn such that aij = 1 if i ∈ �tj 

and aij = 0 if i ∉ �tj (see Figure 2 for illustration.) In the 
same way, we construct another 0-1 matrix P = (bij) for 
p = p1p2 ... pm. 
 Then, each column in T (P) can be considered as a 
bit string representing a set in t (resp. p). (In the 
following discussion, we use b(ti) (b(pj)) to denote the 
bit string for ti (resp. pj).) 
 In a next step, we construct a (compact) trie over   
all b(ti)’s, denoted by trie(T), as illustrated in Figure 
3(a). 
 
 
 
 
 
 

Fig. 2: A 0-1 matrix for a text string 
 
 
 
 
 
 
 
 
 
 

Fig. 3: A trie and set-string transformation 
 
 In this trie, for each node, its left outgoing edge is 
labeled with a string beginning with 0 and its right 
outgoing edge is labeled with a string beginning with 1; 
and each path from the root to a leaf node represents a 
bit string that is different from the others. In addition, 
each leaf node v in trie(T) is associated with a set 
containing all those ti’s that have the same string 
represented by the path from the root to v. Then, t can 
be transformed as follows: 

- Number all the leaf nodes of the trie from left to 
right (see Figure 3).  

- Replace each ti in t with an integer that numbers 
the leaf node, with which a set containing ti is 
associated. 

 For example, the text string t shown in Figure 1(a) 
will be transformed into a string t’ as shown in Figure 
3(b), in which each position is an integer. For this 
example, t1 and t4 are replaced by 5, t2 by 4, t3 by 3, t5 
and t6 by 1 and t7 by 2. 
 In order to find all the sets in t, which contain a 
certain pj, we will search trie(T) against b(pj) as below. 
 
• Denote the ith position in b(pj) by b(pj)[i]. 
• Let v (in trie(T)) be the node encountered and 

b(pj)[i] be the position to be checked. Denote the 
left and right outgoing edges of v by el and er, 
respectively. We do the following checkings: 
- If b(pj)[i] = 1, we will explore the right outgoing 

edge er of v. 
- If b(pj)[i] = 0, we will explore both el and er. 

 
 In fact, this definition just corresponds to the 
process of checking whether a set contains another as a 
subset. That is, if b(pj)[i] = 1, we compare only the 
label of er, denoted by l(er), with the corresponding 
substring in b(pj) according to the following criteria: if 
one bit in b(pj) is 1, the corresponding bit in l(er) must 
be one; if one bit in b(pj) is 0, it does not matter 
whether the corresponding bit in l(er) is 1 or 0. If they 
match, we move to the right child of v. If b(pj)[i] = 0, 
we will check both l(el) and l(er). 
For example, to find all the ti’s in the text string t shown 
in Figure 1(a), which match p1 in p shown in the same 
figure, we will search the trie against b(p1) = 10100. For 
this, part of the trie will be traversed as illustrated by 
the heavy lines in Figure 4(a). 
 This shows that in t there are three sets t1, t2 and t4 
containing p1. But in t’, t1 and t4 are represented by 5 
and t2 is represented by 4. So we associate {4, 5} with 
p1 and replace p1 in p with {4, 5}. In this way, we will 
transform p into another string p’, in which each 
position remains a set containing some integers that 
represent all those sets in t, which contain the 
corresponding set at the same position in p (see Figure 
4(b) for illustration.) Each set in p’ can be represented 
by a bit string of length l, where l is the number of 
different sets (ti’s) in t. If i belongs to the set, the ith 
position is set to 1; otherwise, it is set to 0. 
Formally, the above transformation defines two 
functions as below: 

ft: Sett → � I, 
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where, Sett is the set of all ti’s in t and Ι = {1, ..., l}; and 
ft(ti) = a if a is the number for a leaf node in trie(T), 
with which a set containing ti is associated; and 
 

fp: Setp → 2I, 
 
where, Setp is the set of all pj’s in p and 2I is the set 
containing all the subsets of Ι , i.e., the power set of Ι; 
and ft(pj) = b if b is a set of integers each labeling an 
leaf node in trie(T), which is encountered when 
searching trie(T) against b(pj).   
 
 
 
 
 
 
 
 
 
 
Fig. 4: Trie searching and set-string transformation 
 
 Obviously, these two functions satisfy the 
following property. 
 
Lemma 1: Let ti be a set in t and pj be a set in p. 
Assume that ft(ti) = a and fp(pj) = b. Then, we have ti ⊇ 
�pj if and only if a ∈ b. 
 
Proof: It can be directly derived from the above 
definition of the string transformations. 
 In a next step, we construct a suffix tree over t’ = 
t1’t2’ ... tn’, the transformed t, using a well-known 
algorithm such as the algorithms discussed in[12,13]. We 
remark that the alphabet for t’ is {1, ..., l} (l ≤ 2k} since 
each ti’ ∈ {1, ..., l}. It is a relatively large. But it is a 
sorted set, which is constructed when we number the 
leaf nodes of the trie for t. Therefore, the construction 
of the suffix tree over t’ requires only O(n) time. (More 
exactly, using McCreight’s algorithm[12], we need 
O(logl⋅n) time. logl = log2k = k.  
For example, for the string shown in Figure 3(b), we 
will generate a suffix as shown in Figure 5. 
 
 
 
 
 
 
 

Fig. 5: The suffix tree for t’ 

 In this tree, each internal node v is associated with 
an integer (denoted as int(v)) to indicate the position (in 
p’) to be checked when searching; and each edge is 
labeled with a substring and all the labels along a path 
(from the root to a leaf node) form a suffix in t’, plus $, 
a special symbol, which makes every suffix not a prefix 
of any other. So a leaf node can be considered as a 
pointer to a suffix. In order to find all the substrings in 
t, which match p, we will explore the suffix tree for the 
transformed string t’ against the transformed string p’ = 
p1’p2’ ... pm’ as follows (note that each pi’ (i ∈ {1, ..., 
m}) is a set.) 
 
• Search the suffix tree from the root. 
• Let v be the node encountered and pi’ be the set to 

be checked. 
• Let e1, ..., eq be v’s outgoing edges. Let l(ej) = 

1j
l ... 

hj
l (for some h) be the label of ej (1 ≤ j ≤ q). Then, 

for any ej = (vj, uj) (1 ≤ j ≤ q), if 
1j

l ∈ pi+int(v)-1’, 2jl  

∈ pi+int(v)’, ... and 
hj

l  ∈ pi+int(v)+h-1’, the subtree 

rooted at uj will be continually explored. 
Otherwise, the subtree will not be searched any 
more. In addition, we notice that the symbol $ is 
always ignored when we check the labels 
associated with the edges in trie(T) 

 
In the above process, if we can find an edge e = (v, u) 
with l(e) = l1 ... lg ... such that lg is checked against pm’ 
with lg ∈ pm’, any leaf node in the subtree rooted at u 
indicates a substring in t, which matches p. 
 The following is the formal description of the 
whole process.  
 
Algorithm Subset-Matching 
begin 
1. Let t = t1t2 ... tn and p = p1p2 ... pm; 
2. Transform t to t’ = t1’t2’ ... tn’ and p to p’ = p1’ ... 

pm’ by using the trie constructed over t; 
3. Construct a suffix tree tsuffix over t’; 
4. Search tsuffix against p’; 
5. for any e = (v, u) in tsuffix with l(e) = l1 ... lg ... such 

that lg is checked against pm’ with lg ∈ pm’ do 
6. {return all the leaf nodes in the subtree rooted at 

u;} 
end 
 
Example 1: By applying the above algorithm to the 
problem shown in Figure 1(a), trie(T) shown in Figure 
3(a) will be first generated and t will be transformed to 
t’ as shown in Figure 3(b). Then, by searching trie(T) 
against each pi one by one, we will transform p to p’ as 

2 
100 {t1, t4} {t3} 

{t5, t6} 

5 4 3 

0 1 

0 1100 0100 1100 

011 
1 

{t7} 

{t2} (a) 

a 
c 

a 
c 

c 

p’ p1’ p2’ p3’ 

p p1 p2 p3 

(b) 

2$ 1 5 35112$ 435112$ 

1 

2 2 3 2 7 

4 1 6 5 

435112$ 112$ 12$ 2$ 



J. Computer Sci., 3 (12): 924-933, 2007 
 

 927 

shown in Figure 4(b). The suffix tree for t’ is shown in 
Figure 5. Finally, we will search the suffix tree against 
p’ as shown by the heavy edges in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6: Illustration for suffix searching 

 
 For this simple example, only one path in the suffix 
tree is explored. But multiple paths may be searched in 
general. 
 
Proposition 1: Let t = t1t2 ... tn and p = p1p2 ... pm. The 
algorithm Subset-Matching will find all ti’s (1 ≤ i ≤ n - 
m) such that ti+1ti+2...ti+m-1 matches p. 
 
Proof: Let n1 →� n2 ... →� nm → � nm+1 be a path that is 
visited when searching the trie against p’. Let li = l(ni, 
ni+1) denote the label associated with the edge (ni, ni+1) 
(1 ≤ i ≤ m). Then, we must have li ∈ pi’ (1 ≤ i ≤ m). In 
terms of Lemma 1, the substring in t: ft

-1(l1) ... ft
-1(lm) 

definitely matches fp
-1(p1’) ... fp

-1(pm’) = p1p2 ... pm. We 
remark that all the suffixes represented by the leaf 
nodes in the subtree rooted at nm+1 have l1 ... lm as the 
prefix. So, each of these suffixes corresponds to a 
substring in t, which matches p.    
 The time complexity of the algorithm consists of 
four parts: C1, C2, C3 and C4, which are defined and 
estimated below. 
 C1 is the time used for constructing the trie for t. In 
the case that Σ is fixed, it needs only O(n) time. 
 C2 is the time spent on generating p’ for p. Let A 
represent the largest number of the edges visited when 
searching trie(T) against a b(pi) in p (1 ≤ i ≤ m). Then, 
C2 is bounded by O(A⋅m). 
 C3 is the cost for constructing the suffix tree over 
t’. It is O(n). 
 C4 is the cost for searching the suffix tree against 
p’. It is bounded by O(A’⋅m), where A’ is the largest 
edges explored during the searching of the suffix tree. 
 Therefore, the whole computation process runs in 
time O(n + A⋅m + A’⋅m). In the worst case, it is O(m⋅n). 

Averagely, however, both A and A’ are on the order of 
O(nlog1.5) as shown in the subsequent section. 

ANALYSIS OF A AND A’ 
 
 In this section, we give a simple analysis of the 
average value of A. A precise probabilistic analysis is 
given in Section 5. 
 In order to analyze the average cost of A, we 
consider a ‘worse’ case that the trie is not compact, i.e., 
each edge is labeled with a single bit (instead of a bit 
string), which makes the analysis easier. In Figure 7(b), 
we show a non-compact trie for a set of bit strings 
shown in Figure 7(a).  
 
 
 
 
 
 
 
 

Fig. 7: A non-compact trie 
 
 For such a non-compact trie T, the searching of it 
against a bit string s = s[1]s[2] ... s[k] is performed in a 
similar way to a compact trie, but simpler: 
 
• Let v be the node encountered and s[i] be the 

position to be checked. 
• If s[i] = 1, we move to the right child of v. 
• If s[i] = 0, both the right and left child of v will be 

visited. 
 
 In the following, we use cs(T) to represent the 
expected number of the edges visited when searching T 
against s. In addition, we use s’, s’’, s’’’, ... to designate 
the patterns obtained by circularly shifting the bits of s 
to the left by 1, 2, 3, ... positions. 
 Obviously, if the first bit of s is 0, we have, for the 
expected cost of a random string s, 
 
   cs(T) = 1 + cs’(T1) + cs’(T2) (1) 
 
where, T1 and T2 represent the two subtrees of the root 
of T.  See Figure 8 for illustration. 
 
 
 
 
 
 

Fig. 8: Illustration for trie searching 
 

{ } 

{t1, t4} {t7} {t3, t5} 

0 1 

0 1 0 

0 1 

{t6} {t2} 

1 

0 1 0 1 

{ } 

t1: 001 
t2: 010 
t3: 011 
t4: 001 
t5: 011 
t6: 110 
t7: 111 

(a) (b) 

1 0 

T1 T2 

v If s[i] = 0, move along both 
Edges labeled with 0 and 1. 

2$ 1 5 35112$ 435112$ 

1 

2 2 3 2 7 

4 1 6 5 

435112$ 112$ 12$ 2$ 

Since 5 ∈ p1’ = {4, 5}, 
the searching along this edge 
Continues. 

Although 4 ∈ p1’ = {4, 5}, 
3 ∉ p2’ = {4, 5} and therefore 
the searching stops here. 

Since 4 ∈ p2’ = {4, 5} and 3 ∈ p3’ = {2, 3, 4, 5}, the searching shows 
that the prefix of the first suffix of t’ matches p’. 
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 It is because in this case, the search has to proceed 
in parallel along the two subtrees with s changing 
cyclically to s’. 
 If the first bit in s is 1, we have 
 
    cs(T) = 1 + cs’(T2) (2) 
 
since in this case the search proceeds only in T2. 
 In order to get the expectation of cs(T), we make 
the following assumption. 
 For each ti in t, each element in ti is taken from Σ 
with probability p = 1/2, independently from all the 
other tj’s and all the other elements in ti.  
 Under this assumption, T1 and T2 will have almost 

the same size �
�

�
�
�

�

2
N , where N is the number of the nodes 

in T. So (1) and (2) can be rewritten as follows: 
 

   cs(N) = 1 + 2cs’( �
�

�
�
�

�

2
N ), (3) 

and  

   cs(N) = 1 + cs’( �
�

�
�
�

�

2
N ). (4) 

 From (3) and (4), we get the following recurrence 
equation: 
 

   cs(N) = 1 + 
2
3 cs’( �

�

�
�
�

�

2
N ). (5) 

 
 Solving the above recursion, we get 
 
   cs(N) = O(1.5logN) = O(Nlog1.5). (6) 
 
 In terms of (6), we have the following proposition. 
 
Proposition 2: A is on the order of O(nlog1.5). 
 
Proof: The number of the nodes in trie(T) is bounded 
by O(kn). So the average value of A is O((kn)log1.5) = 
O(nlog1.5). 
 Since only O(nlog1.5) edges are visited on average 
when searching trie(T) against a b(pj) in p, the size of 
the set of all those ti’s that contain pj is on the order of 
O(nlog1.5) and so is A. 

 
IMPROVEMENTS 

 
 The above process can be significantly improved. 
 For p, we can also generate a trie over b(pj)’s, 
denoted by trie(P), where P represents the 0-1 matrix 
for p, which is constructed in the same way as T for t. 
But for ease of control, we will establish non-compact 
tries for both t and p as illustrated in Figure 9. 

 
 
 
 
 
 
 
 
 
Fig. 9: Two non-compact tries 
 
 We will search these two tries simultaneously with 
the above containment checking simulated. 
For this purpose, we will maintain a stack, stack, in 
which each entry is of the form {v, u} with v ∈� trie(T) 
and u ∈ �trie(P). During the process, each time we 
encounter a node v in trie(T) and a node u in trie(P), we 
will manipulate stack as below. 
 
• Let v1 and v2 be two children of v with edge (v, v1) 

labeled by 0 and edge (v, v2) by 1; and u1 and u2 be 
two children of u with edge (u, u1) labeled by 0 and 
edge (u, u2) by 1; 

• Push three pairs {v2, u2}, {v2, u1} and {v1, u1} (in 
the order specified) into stack. 

• If v is a leaf node, put the number associated with v 
into a set associated with u to record the fact the 
sets represented by v contain the sets represented 
by u. 

 
Below is the formal description of the algorithm. In the 
algorithm, the following two symbols are used: 
 
• Num(v) - a number associated with a leaf node v in 

trie(T). 
• Matching(u) - a sorted set (of integers) associated 

with a leaf node u in trie(P). Each integer in the set 
represents one or more sets in t, which contain the 
sets represented by u. 

 
Algorithm p-transformation(trie(T), trie(P)) 
begin 
1. v0 ← root of trie(T); u0 ← root of trie(P); 
2. push(stack, {v0, u0}); 
 (*push (v0, u0) into stack.*) 
3. while stack not empty do 
4. {{v, u} ← pop(stack); 
5. if v is a leaf node then 
  matching(u) ← matching(u) ∪ {num(v)}; 
6. else { 
7. let v1 and v2 be two children of v with (v, v1) labeled 

by 0 and (v, v2) by 1; 
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8. let u1 and u2 be two children of u with (u, u1) 
labeled by 0 and (u, u2) by 1; 

9. push(stack, {v2, u2}); push(stack, {v2, u1}); 
push(stack, {v1, u1});} 

10. } 
end 
 
 By the above algorithm, each pj in p will be 
transformed to a set of integers. Applying this 
algorithm to the tries shown in Figure 5(a) and (b), we 
will get the same result as shown in Figure 4(b). But we 
search trie(T) against only two paths instead of three. In 
addition, p1 and p2 are replaced with the same set {4, 
5}. So we implement P’ as a pointer sequence with 
each pointer pointing to a set of integers. 
 In general, for all those pj’s that share the same 
prefix, the prefix is checked only once, which enables 
us to save much time. 
 The worse case time complexity C can be analyzed 
as follows. 
Each pair {v, u} generated during the process, v and u 
must be on the same level in trie(T) and trie(P), 
respectively. Let Nt be he numbers of different sets (ti’s) 
and Np the numbers of different sets (pj’s) in p. We have 
 

   C = ( ) ( )inuminum P

k

i
T ⋅�

=1
 

  = NT⋅NP
( ) ( )

�
= ⋅

⋅k

i PT

PT

NN
inuminum

1

 = O(kNt⋅Np), 

 
where numT(i) (numP(i)) represents the number of the 
nodes on level i in trie(T) (resp. in trie(P)). 
Now we analyze the average time of this algorithm. 
 We simply use T and P to represent trie(T) and 
trie(P), respectively. Denote rootT the root of T and 
rootP the root of P. Let T1 be the left subtree of rootT 
and T2 the right subtree of rootT. Let P1 be the left 
subtree of rootP and P2 the right subtree of rootP. Then, 
we have the following recurrence equations: 
 
C(T, P) = 1 + C(T1, P1) + C(T2, P1) + C(T2, P2), (7) 
 
(*rootP has both the left and right child nodes.*) 
 
  C(T, P) = 1 + C(T1, P1) + C(T2, P1), (8) 
 
(*rootP has only the left node.*)   
 
  C(T, P) = 1 + C(T2, P2), (9) 
 
(*rootP has only the right child node.*) 

where C(T, P) represents the average number of the 
pairs (v, u) created during the process with v ∈ T and u 
∈ P. 
From the above equations, we get 
 

  C(n, m) = 1 + 2C( �
�

�
�
�

�

2
N , �

�

�
�
�

�

2
M ), (10) 

 
which leads to the following proposition. 
 
Proposition 3: C(n, m) ≤� nlog1.5mlog1.5. 
 
Proof: We prove the proposition by induction on n and 
m. 
 
Basic step: When n = 1 and m = 1, the proposition 
trivially holds. 
 
Induction step: Assume that the propsotion holds for a 
< n and b < m. That is, we have C(a, b) ≤ � alog1.5blog1.5 for 
any a < n and any b < m. Then, in terms of (10) and the 
induction hypothesis, we have 
 

 C(n, m) = 1 + 2C( �
�

�
�
�

�

2
N , �

�

�
�
�

�

2
M ) 

  ≤ (1/(nlog1.5mlog1.5) + 
  1/(2log1.52log1.5))nlog1.5mlog1.5 

  = (1/(nlog1.5mlog1.5) + 
   1/2.25) nlog1.5mlog1.5. 
 
 For n ≥ 2 and m ≥ 2, 1/(nlog1.5mlog1.5) < 1/2.25. So 
C(n, m) ≤� nlog1.5mlog1.5. 
 Proposition 3 shows that the average cost the 
algorithm p-transformation is on the order of 
O(nlog1.5mlog1.5). 

 
PROBABILISTICAL ANALYSIS 

 
In terms of the analysis conducted in Section 3, we 
have the following two recurrences: 
 
  cs(T) = 1 + cs’(T1) + cs’(T2) (11) 
 
  cs(T) = 1 + cs’(T2) (12) 
 
where T1 and T2 represent the two subtrees of the root 
of T. 
Given N (N ≥ 2) random nodes in T, the probability that 
 
  |T1| = q, |T2| = N – q (13) 
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can be estimated by the Bernoulli probabilities 
 

  ( ) ( ) pNp

p

N −
��
�

	



�

�
2
1

2
1  = ��

�

	



�

�

p

N
N2
1   (14) 

 
 Let cs, N denote the expected cost of searching a trie 
of size N against s. We have the following recurrences 
 if s starts with 0, 
 

  cs, N = 1+ � ��
�

	



�

�

q
qsN

c
N

',12

2 ,  N ≥� 2;  (15) 

  
if s starts with 1,  
 

  cs, N = 1 + � ��
�

	



�

�

q
qsN

c
N

',12

1 , N ≥ �2. (16) 

 
 Let λi = 1 if ith bit in s is 1 and λi = 2 if ith bit in s 
is 0. The above recurrence can be rewritten as follows 
 

  cs,N = 1+ � ��
�

	



�

�

q
qsN

c
N

',
1

12

λ - δN,0 - δN,1, (17) 

 
where δN,,j (j = 0, 1) is equal to 1 if N = j; otherwise 
equal to 0. 
 
Proposition 4: The exponential generating function of 
the average cost cs, N 
 
  Cs(z) = �

≥0
!,

n
n
z

ns
n

c  (18) 

 
satisfies the relation 
 

  Cs(z) = λ1e
z/2Cs’ �

�

	


�

�

2
z +ez - 1 - z.  (19) 

 
Proof: In terms of equation (17), Cs(z) can be rewritten 
as follows 
 

Cs(z) = ( ) !
0

1,0,,'2
1

11 n
z

n p
nnps

n n

c
p

n
� �
≥ �

�

�

	






�

�
−−��

�

	



�

�
+ δδλ   

 = �
≥0

!
n

n
z n

+ ( ) !,'
0

2
1

1 n
z

ps
p n

n n

c
p

n
� �

≥
��
�

	



�

�
λ  

  - �
≥0

!0,
n

n
z

n
nδ - �

≥0
!1,

n
n
z

n
nδ  

 = ez+λ� ( ) ( )
( )��

≥
−

−

0
!

2/
,'!

2/

n
pn

z
ps

p
p

z pnp

c - 1 - z 

 = λ1e
z/2 ( )2'

z
sC +ez  - 1 - z  (20) 

In the same way, we will get Cs’(z), Cs’’(z), ... and so on. 
Concretely, we will have the following equations: 
 
  Cs(z) = λ1e

z/2 ( )2'
z

sC +ez - 1 - z, (21) 
 
  Cs’(z) = λ2e

z/2 ( )2''
z

sC +ez - 1 - z  
 
  Cs(m-1)

 (z)= λmez/2 ( )2
z

sC +ez - 1 - z. 

 
 These equations can be solved by successive 
transportation. For instance, when we transport the 
expression of Cs’(z) given by the second equation in 
(11), we have 
 
 Cs(z) = a(z)+λ1e

z/2 ( )2
za +λ1λ2e

z/2
22/ze ( )2

z
s '' 2

C  (22) 

    
where a(z) = ez - 1 - z. 
 In a next step, we transport Cs’’’ into the equation 
given in (22). This kind of transformation continues 
until the relation is only on Cs itself. Then, we have 

 Cs(z) = λ1λ2 ... λmexp �
�


�
�

�
�
�

	


�

� −
m

z
2
1

1 Cs( m
z

2
) + (23) 

 ( )[ ] ( )( )jj
j

zz
m

j
j expzexp

222
1

1

0
21 11 −−−�

−

=
λλλ �  

 = 2m-k exp �
�


�
�

�
�
�

	


�

� −
m

z
2
1

1 Cs( m
z

2
) + 

  ( )[ ] ( )( )jj
j

zz
m

j
j expzexp

222
1

1

0
21 11 −−−�

−

=
λλλ �  

 
where k is the number of 1s in s. 
Let α = 2m-k, β = 1- m2

1 , λ  = m2
1
�and 

 A(z) = ( )[ ] ( )( )jj
j

zz
m

j
j expzexp

222
1

1

0
21 11 −−−�

−

=
λλλ � . 

We have 
 
  Cs(z) = αeβzCs(λz)+A(z)  (24) 
 
This equation can be solved by iteration as discussed 
above: 
 

  Cs(z) = ( ) ( )�
∞

=
−
−

0
1
1

j

jj zAzexp
j λβα λ

λ = (25) 

( ) ( )( )( )[ ]��
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=
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=

− +−−
1

0 2222
1

21
0

11)(2
m

h

z
h

j

kmj
mjhmjhzexpzexpλλλ �  
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Using Taylor formula to expand exp(z) and 
( )( )( )mjhmjhzexp

22
1

22
1 11 +−  in Cs(z) given by the above sum 

and then extract the Taylor coefficients, we get 
 

 cs,N = � �
−

= ≥

−1

0 0

)(
21 )(2

m

h j
jh

kmj
h nDλλλ �  (26) 

 
where D00(n) = 1 and for j > 0 and h > 0, 
 
 Djh(n) = 1 - (1 - 2-mj-h)n - n2-mj-h(1 - 2-mj-h)n-1 (27) 
 
We notice that N ≤ min{n, 2k}. So �cs,N = O(N0.5) ≤ 
O(n0.5). This shows that the average time complexity of 
Algorithm Set-Matching is on the order of O(n+ m⋅n0.5). 
In the following, we show how to evaluate cs,N.  
First, we define  
 

 φ(x) = � �
−

= ≥

−1

0 0

)(
21 )(2

m

h j
jh

kmj
h nDλλλ � , (x ≥� 0)  (28) 

 
Then, we perform the following computations to 
evaluate φ(x): 
 
1. Define the Mellin transformation of φ(x) ([8], p. 

453): 
 

 φ*(σ) = dxxx 1

0
)( −

∞

�
σφ   (29) 

 
2. Derive an expression for φ*(σ), which reveals 

some of its singularities. 
3. Evaluate the reversal Mellin transformation 
 

 φ(x) = �
∞+

∞−

−
ic

ic
i

dx σσφ σ
π )(*2

1    -1 < c < - )1( m
k−  (30) 

 
The integral (30) is evaluated by using Cauchy’s 
theorem as a sum of residues to the right of the vertical 
line {c + iy | y ∈� ℜ}, where ℜ �represents the set of all 
real numbers. This compuation method was first 
proposed in [14]. The following is just an extended 
explanation of it. 
 Remember that Djh(x) = 1 - (1 - 2-mj-h)x - x2-mj-h(1 - 
2-mj-h)x-1. We rewrite it under the form 
 
 Djh(x) = 1 - jhxe α− - βjhx jhxe α−  (31) 
 

with αjh = - log(1 - 2-mj-h) and βjh = 2-mj-h(1 - 2-mj-h)-1. 

Now we consider the following expansion, which is 
valid for small values of x: 

 (- log(1 - x))-σ = x-σ(1 - 2
αx + O(|σ|2x2)) .(32) 

 

Let x = 2-mj-h. Then, we have (by using the above 
expansion) 

 αjh = (- log(1 - 2-mj-h))-(-1) ~ (2mj+h).  (33) 

In addition, for small values 2-mj-h, we also have  

 βjh = 2-mj-h(1 - 2-mj-h)-1 = O(2-mj).  (34) 

Following the classical properties of Mellin 
transformation, we have the following proposition. 

Proposition 5. Denote Djh*(σ) the Mellin 
transformation of Djh(x). We have  

 Djh*(σ) =  dxxx 1

0
)( −

∞

�
σφ  (35) 

  = - (αjh)
-σΓ(σ) − βjh(αjh)

-σ−1σΓ(σ) 

provided -1 < Re(σ) < 0, where Γ(σ) is the Euler 
Gamma function.  

Proof. The following formulas are well-known: 

 �
∞

−− −
0

1)1( dxxe x σ  = Γ(σ) -1 < Re(σ) < 0 (36) 

 �
∞

−−

0

1)( dxxxe x σ  = σΓ(σ)-1 < Re(σ) (37) 

 �
∞

−

0

1)( dxxaxf σ  = dxxxfa 1

0
)( −

∞
−
�

σσ  for a > 0 (38) 

In terms of these formulas, we have 

 Djh*(σ) =  dxxxD jh�
∞

−

0

1)( σ  (39) 

= �
∞

−−−
0

1)1( dxxe jhx σα - �
∞

−−

0

1dxxxe jhx
jh

σαβ  

= - (αjh)
-σΓ(σ) − βjh(αjh)

-σ−1σΓ(σ).   

Now we try to evaluate the following two sums: 

 ωh(σ) = �
≥

−−

0

)( )(2
j

jh
kmj σα , (40) 

 υh(σ) = 
1

0

)( )(2
−−

≥

−�
σ

αβ
j

jhjh
kmj . 

From (33) and (34), we can see that the two sums given 
by (40) are uniformly and absolutely convergent when 
σ is in the following stripe: 
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 Stripe: -1 < Re(σ) < - (1 - m
k ). (41) 

Furthermore, in terms of (33) and (34), both ωh(σ) and 
υh(σ) can be approximated by the following sum: 

 ϖh(σ) = �
≥

+−

0

)( )2(2
j

hmjkmj σ  (42) 

When Re(σ) < σ0 = - (1 - m
k ), this series can be 

summed exactly: 

 ϖh(σ) = σ
σ

mkm

h
+−−21

12 . (43) 

Thus, φ*(σ) is defined in Stripe and can be computed as 
follows 

 φ*(σ) =  �
∞

−

0

1)( dxxx σφ  (44) 
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1
1

0 0

)( ))(2( dxxxD
m

h j
jh

kmj σλλλ�  

=- �
−

=
Γ+

1

0
21 )())()((

m

h
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=
�+Γ

21
1

1

0
21 2)1)(( � . 

From this, we can observe all the sigularities (poles), 
i.e., σ = 0, at which Γ(σ) is not defined; and all those 

values of σ, at which (1 - )( 02 σσ −m ) becomes 0: 

 σj = σ0 + 2log
2

m
ijπ , (j = 0, 1± ,  2± , ...) (45) 

To compute the integral in (21), we consider the 
following integral 

 φN(x) = dxx
NLi

σ
π σφ −
� )(*2

1 , (46) 

where LN is a rectangular contour oriented clockwise as 
shown in Figure 10. 

 LN  = 4321
NNNN LLLL +++ , (47) 

 1
NL  = { }2log

)12(||
m
Nuiuc π+≤+ , 

 2
NL  = { }m

k
m
N vciv 32log

)12( ≤≤+ + π , 

 3
NL  = { }2log

)12(
3 ||

m
N

m
k uiu π+≤+ ,  

 4
NL  = { }

m
k

m
N vciv 32log

)12( ≤≤− + π , 

 

where N is an integer. This contour is of a similar type 
used in ([9], p. 132). 

Let i
Nφ  be the integral along i

NL  (i = 1, 2, 3, 4). Then, 

)(xNφ = 1
Nφ (x) + 2

Nφ (x) + 3
Nφ (x) + 4

Nφ (x). Furthermore, 
we have the following results: 

 )(lim 1 xNN
φ

∞→
 = φ(x), 

 )(lim 2 xN
N

φ
∞→

 = O(1), 

�
∞

−≤ L
mk

N dxx σσφφ |)(*||)(| )3/(3  

= O(x-k/(3m)), and 

 )(lim 4 xN
N

φ
∞→

 = O(1). 

Thus, we have 
 )(lim xN

N
φ

∞→
 = φ(x) + O(x-k/(3m)). (48) 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: The rectangular contour LN 
 

On the other hand, )(lim xN
N

φ
∞→

can be evaluated as the 

sum of the residues of the integrand, i.e., φ*(σ)x-σ, 
inside LN. Concretely, we have 

)(lim xN
N

φ
∞→

 = - �
∈

− =
))(*(

),)(*(
σφα

σ ασσφ
Pole

x  (49) 

  = - σ

σφα ασ
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� − x
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)(*)lim(

))(*(
. 

Within ∞L , φ*(σ) has the following poles: 

 α = 0, and 

 α = σj = σ0 + 2log
2

m
ijπ  (j = 0, 1± ,  2± , ...) 

The contribution of the pole α = 0 is O(1); and the 
contribution of α = σ0 is 

σ
σσ
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Finally, the contribution of each σj (j = 0, 1± ,  2± , ...) 

 σ
σσ

φσσ −
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− xx)(*)(lim 0
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222
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So we have  
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From this, we know that  

 Cs,n = O( 0σ−n ) = O( m
k

n −1 ). 
 

CONCLUSION 
 
 In this research, a new algorithm for the subset-
matching problem is proposed. The main idea of the 
algorithm is to represent each set ti in the text string t as 
a single integer a and each set pj in the pattern string p 
as a set b of integers such that a ∈ b if and only if pj ⊆ 
�ti. This is done by constructing a trie structure over t. In 
this way, we transform the original problem into a 
different subset matching problem, which can be 
efficiently solved by generating a suffix tree over the 
new text string that has an integer at each position. In 
the worst case, the algorithm runs in O(n + l⋅m) time, 
where l is the number of different sets (ti’s) in t. But its 
average time complexity is O(n + m⋅nlog1.5). 
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