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Abstract: A fast distance-based algorithm for outlier detection will be proposed. It was found that 
the proposed algorithm reduced the number of distance calculations compared to the nested-
loop algorithm. Test results were performed on different well-known data sets. The results showed 
that the proposed algorithm gave a reasonable amount of CPU time saving.  
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INTRODUCTION 

 
 There is a need for pre-processing of the raw data 
in many fields, such as data mining, information 
retrieval, machine learning and pattern recognition. 
Zhang et. al [1] argue for the importance of data pre-
processing and present the following reasons: (1) real 
world data is impure; (2) high performance data mining 
systems require high quality data and (3) quality data 
yields high quality patterns. Therefore, developing 
efficient data-preprocessing techniques is a critical task 
that requires considerable research efforts. 
 Data pre-processing involves many tasks including 
detecting outliers, recovering incomplete data and 
correcting errors. These tasks often present themselves 
as less glamorous. However, they are more critical than 
further steps in many application areas [1]. 
 Outlier detection is an important pre-processing 
task. It has many practical applications in several areas, 
such as fraud detection[2], identifying computer network 
intrusions and bottlenecks [3], criminal activities in E-
commerce and detection of suspicious activities [4]. 
Knorr and NG [5] defined outliers as those data points 
(vectors) with values different from those of the 
remaining set of data. Different approaches have been 
proposed to detect outliers, and a good review can be 
found in [6]. 
 One of the most popular approaches for detecting 
outliers is the distance-based approach [7-12]. In this 
approach, the distance of a point from its k nearest 
points (or neighbors) is calculated. If the neighboring 
points are relatively close, then the point is considered 
normal. However, if the neighboring points are far 

away, then the point is considered an outlier. One of the 
advantages of this approach is that no explicit 
distribution needs to be defined to detect outliers. 
Moreover, this approach can be applied to any feature 
space for which a distance measure can be defined [7-9]. 
Commonly, the Euclidean distance is used as the 
distance function. A detailed discussion on the 
usefulness, the meaning, and the knowledge of 
distance-based outliers with a description of the real-
life application domains for which this notion of outlier 
is relevant, can be found in [7, 13, 14]. 
 Given a distance measure on a feature space, the 
distance-based approach for outlier detection is defined 
as follows[5]. A point q in a data set is an outlier with 
respect to the parameters M and d, if there are less than 
M points within the distance d from q, where the values 
of M and d, are decided by the user. The problem with 
this approach is that it suffers from exponential 
computational growth as it is founded on the principle 
that for each point q, there may be a need to calculate 
the distances between q and all data points (objects) in 
the dataset. The computational complexity is directly 
proportional to both the dimensionality of the data and 
the number of objects.  
 Hence, it is beneficial to look for  techniques that 
can manage to produce outputs identical to the existing 
ones, but  can  efficiently decide, at least, on the 
distances between points without calculation (i.e., with 
lower runtime) [2, 7] and/or with fewer distance 
calculations (i.e., distance calculations are performed 
between fewer points). In this paper, we propose an 
algorithm to detect outliers in a shorter time than most 
of the existing outliers-detecting algorithms. Given a 
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query point q, the proposed algorithm satisfies (a) as it 
can decide on the status of a large number of points, 
with respect to q, without the need to perform 
arithmetic operations. It also satisfies (b) because it 
only needs to perform an actual distance calculation on 
points that have been determined to fall within a 
particular area around q. 
 In the rest of this paper, we briefly present some of 
the existing approaches proposed to find outliers, then 
we present our algorithm and show how it may save 
calculations. After that, we present a section where we 
investigate the efficiency of the proposed algorithm and 
Nested Loop (NL) algorithm by running both 
algorithms on different data sets to detect outliers 
 

RELATED WORK 
 
 Many algorithms have been proposed to find 
outliers efficiently. Knorr, Ng and Tucakov, in [7], 
propose the Nested-Loop (NL) algorithm to find 
outliers. In NL, each data point in the data set is 
compared to each point in the data set to determine its 
M nearest neighbors. NL has quadratic complexity as 
we must make all pairwise distance computations 
between the data points. Knorr et al. also suggested the 
use of  spatial indexing structures such as R-trees and 
X-trees to find the nearest neighbors of each candidate 
point. This suggestion may work well for low-
dimensional data sets. However, index structures can 
lead to poor performance as the dimensionality 
increases [8, 12]. 
 In [8], Ramaswamy et al. modified the definition of 
outliers introduced in [7] and consider as outliers the top 
n points whose distances to their kth nearest neighbors 
are the greatest. To detect outliers, a partition-based 
algorithm is presented that partitions the input points 
using a clustering algorithm and, then, prunes those 
partitions that cannot contain outliers. One shortcoming 
of this definition is that it only considers the distance to 
the kth neighbor and ignores information about closer 
points [14]. 
 Bay and Schwabacher [12] present an algorithm, 
which is based on NL and uses randomization and 
pruning rule with near linear time performance. 
However, the algorithm depends on the data ordering, 
which, as the authors in the paper state, can lead to a 
poor performance. In addition, the algorithm can 
perform poorly when the data does not contain outliers. 
In this paper, we propose a new algorithm to speed up 
NL. The proposed algorithm is presented in the next 
section. 

PROPOSED ALGORITHM  
 
 Given a query point, q, if a circle (in two 
dimensional space), centered at q, is drawn with radius 
d, as shown in Fig. 1, then we count the number of data 
points inside the circle. If the count is less than M, then 
the point is considered an outlier, otherwise, the point is 
normal (not outlier). This can be done by checking 
whether each data point is inside (intersect) or outside 
the circle. 
 However, finding the points that are inside a circle 
may require a large amount of distance calculations. 
Instead, for each query point q, we first test the points 
inside the square that touches the interior of the circle, 
as shown in Fig. 2 (shaded area) and count the number 
of points (countSmall) inside the square. If countSmall 
is greater than M, then q is not an outlier, and there is 
no need to test the rest of the points in the dataset. 
Otherwise, we count the number of points (countLarge) 
inside the shaded area of the larger square touching the 
outer side of the circle, as shown in Fig.3 and store 
these points (e.g., their coordinates) in an array for later 
processing. If the value of countSmall, plus the value of 
countLarge is less than M, then q is an outlier. 
Otherwise, we perform distance calculations for the 
points that are stored in the array only. 

 
Fig. 1: A circle with radius d, centered at the query 

point q 

 
Fig. 2: A square (shaded) that touches the interior of 

the circle 
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Fig. 3: A larger square touching the outer side of the 

circle 
  
The proposed algorithms is as follows: 
Given a set X of N number of data points, let 
countSmall be the number of points inside the small 
(shaded) square (shown in Fig. 2). Let countLarge be 
the number of points inside the large square but not 
inside the small square (shaded area in Fig. 3). Let 
NewArray be an empty array of type X. 

For each query point, q, do  
Begin 

countSmall = 0 
countLarge = 0 
// The i-Loop 
For i = 1, …, N  //for each point, xi 

If x is inside the small square  
then 

countSmall = countSmall + 1 
If countSmall > M  

then  
Exit from i loop (q is not an outlier, 

go to Next i) 
Else 

If x is inside the large square  
then 

countLarge = countLarge + 1 
store x in NewArray 

Next i 
If countLarge + countSmall < M  

then  
go to End (q is an outlier) 

Else 
// Perform distance calculations for the 
// points in the NewArray. 
For each point in NewArray, do 
   If dist(q, x) <= d  

then 
add 1 to countSmall 

If countSmall < M then go to End (q is an 
outlier)  

End 
 It can be easily observed that the proposed 
algorithm has some advantages over the NL in avoiding 
distance calculation and gaining computational savings 
because: 
1. There is a provision for an early exit, from the i-

Loop, on satisfying the condition “countSmall > 
M”. It is possible that some points may not be 
tested. 

2. There is a provision for another early exit on the 
condition “countLarge + countSmall < M” 
without the need to perform any distance 
calculations.  

3. Distance calculation, in the worst case, is needed to 
be performed for those points that are stored in the 
“NewArray” only. This makes the proposed 
algorithm better than the NL algorithm. 

 
RESULTS AND DISCUSSION 

 
 In this section, we will investigate the efficiency of 
the new proposed algorithm, compared with NL, when 
applied on different data sets to detect outliers. The 
proposed algorithm generates outputs that are identical 
to the outputs of NL. The choice of M and d is based on 
the heuristics discussed in [7]. The performance of the 
proposed algorithm is reported in terms of CPU time 
and percentage of savings compared to NL. 
 In our tests, five data sets which are obtained from 
the UCI Repository of Machine Learning Databases [15] 
have been tested. These are  Breast, Letter, Pima, 
Segmentation and Wine data sets. The description of 
these data sets is shown in Table 1. N is the number of 
points, and D represents the dimensionality of data. 
 
Table 1. Description of datasets  

DataSet N D 
Breast 699 10 
Letter 20000 16 
Pima 768 8 
Segmentation 2310 19 
Wine 178 13 

  
For each data set, the value of M is the same for both 
the proposed algorithm and NL. The same applies for 
the values of d.  
 Table 2 shows the CPU run time for the Proposed 
algorithm and NL. It shows that the performance of the 
proposed algorithm has a significant speed 
improvement over NL in all cases.  
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Table 2: The CPU run time (in seconds) of the proposed 
algorithm and NL. 
Data Set NL New 
Breast 3.6 2.7 
Letter 4147 2913 
Pima 3.7 2.3 
Segmentation 67 41 
Wine 0.45 0.31 

  
Table 3 shows the percentage CPU time savings 
obtained from the proposed algorithm compared to NL. 
It shows that good CPU time savings is achieved and, 
on average, up to 32.5% of the CPU time can be saved. 
 
Table 3: percentage savings of the proposed algorithm 
compared to NL. 

Data Set %Savings 
Breast 25 
Letter 30 
Pima 38 
Segmentation 39 
Wine 31 

 It is clear from the two tables above that the 
proposed algorithm gains significant CPU time savings 
over NL.  

CONCLUSION 
 
 Distance-based outlier detection methods 
distinguish an object as an outlier on the basis of the 
distance between it and its nearest neighbors. Despite 
the fact that they are simple to implement, they suffer 
exponential computational growth as most of them are 
founded on the principle that for each point (object) q, 
there may be a need to calculate the distances between  
q and all data points (objects) in the dataset. The 
computational complexity is directly proportional to 
both the dimensionality of the data and the number of 
objects. In this paper, we have proposed an algorithm 
that produces the same output as NL with fewer 
distance calculations. It is important to note that the 
proposed algorithm performs more comparison 
operations than NL. However, tests have shown that 
these operations are trivial tasks for most compilers, 
and thus, they are less computationally demanding than 
arithmetic operations. The test results present a 
significant increase in efficiency over NL when applied 
to five bench-marked data sets. 
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