
Journal of Computer Science 4 (3): 205-210, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Zuriati Ahmad Zukarnain, Faculty of Computer Science and Information Technology,
 Universiti Putra Malaysia, Selangor, Malaysia 603 89466565

205

Analysis of String Matching Compression Algorithms

Krishnaveny Nadarajan and Zuriati Ahmad Zukarnain

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia,
Selangor, Malaysia 603 89466565

Abstract: The improvement rate in microprocessor speed by far exceeds the improvement in DRAM
memory. This increasing processor-memory performance gap is the primary obstacle to improved
computer system performance. As a result, the size of main memory has increased gradually. To utilize
main memory’s resources effectively, data compression can be applied. Through compression, the data
can be compressed by eliminating redundant elements. Thus, this study incorporates compression to
main memory in order to fully utilize its resources and improve performance of data access. This
project evaluates the performance of the compression algorithms in order to increase the performance
of memory access. The compression algorithms are string matching based which are LZW and LZSS.
Through simulation, the effectiveness and compressibility of the algorithms were compared. The
performances of the algorithms were evaluated in term of compression time, decompression time and
compressed size. The simulation result shows that LZSS is an efficient compression algorithm
compared to LZW.

Key words: LZSS, LZW, string matching, lossless compression

INTRODUCTION

 Data compression is a technique of encoding
information using fewer bits than an unencoded
representation would use through specific encoding or
compression algorithm. All forms of data, which
includes text, numerical and image, contain redundant
elements. Through compression, the data can be
compressed by eliminating the redundant elements[21].
 Data compression techniques use a model to
function. The input stream, generated from a data
source, is fed into a compressor. The compressor then
codes and compresses data. To regenerate original data
from the compressed data, decoder is used. The decoder
applies the reverse algorithm of that used by the
compressor. Moreover, the decoder has some prior
knowledge as to how the data is being compressed[4].
 Data compression is divided into two major
categories, which is lossless compression technique and
lossy compression technique. In lossless compression,
no information is lost and the decompressed data are
identical to the original uncompressed data. While, in
lossy compression, the decompressed data may be an
acceptable approximation to the original uncompressed
data[9].
 Lossless compression technique is grouped into
two, statistical analysis based compression and string

matching compression algorithm. This project focuses
on analyzing string matching compression algorithm.
 The increase of processor clock speed caused the
gap between processor, main memory and disk space to
widen. As a result, the size of cache and main memory
increased. This performance gap affects the reliability
and the performance of the memory resource access
overall. Thus, this study incorporates compression to
main memory in order to fully utilize its resources.

RELATED WORKS

 All forms of data contain redundant elements.
Through compression, these redundant elements can be
eliminated. First algorithm for compressing data was
introduced by Claude Shannon[3]. At present there are
lots of techniques available for compressing data, each
tailored to match the needs of a particular application.
 Compression techniques can be classified into two
categories, lossless compression techniques and lossy
compression techniques. The classification is based on
the relationship between inputs and outputs after a
compression or expansion cycle is complete. In lossless
compression, the output exactly matches with the input
after a compression or expansion cycle. Lossless
techniques are mainly applicable to data files where a
single bit loss can render the file useless. In contrast, a

J. Computer Sci., 4 (3): 205-210, 2008

 206

lossy compression technique does not yield an exact
copy of input after a compression.
 Navarro et al., 1999 presented compressed pattern
matching algorithms for the Lempel-Ziv-Welch (LZW)
compression which run faster than a decompression
followed by a search[1]. However, the algorithms are
slow in comparison with pattern matching in
uncompressed text if compared the CPU time. This
mean the LZW compression did not speed up the
pattern matching.
 Matias et al., 1999, resolved the issue of online
optimal parsing by showing that for all dictionary
construction schemes with the prefix property greedy
parsing with a single step look ahead is optimal on all
input strings this scheme is called flexible parsing or
(FP)[2]. Kniesser et al., 2003, proposed a method for
compressing the scan test patterns using LZW that does
not require the scan chain to have a particular
architecture or layout[3]. This method leverages the
large number of Don’t-Cares in test vectors in order to
improve the compression ratio significantly. Efficient
hardware decompression architecture is also presented
using existing in-chip embedded memories.

STRING MATCHING COMPRESSION
ALGORITHM

 The string matching compression algorithms that
were analyzed are LZSS (Ziv-Lempel-Storer-
Szymanski) and LZW (Ziv-Lempel-Welch) algorithm.

LZSS algorithm: The LZSS compression algorithm
makes use of two buffers, which are dictionary buffer
and look ahead buffer. The dictionary buffer contains
the last N symbols of source that have been processed,
while look ahead buffer contains the next symbols to be
processed. The algorithm attempts to match two or
more symbols from the beginning of the look ahead
buffer to a string in the dictionary buffer, if no match is
found, the first symbol in the look ahead buffer is
output as a 9 bit symbol and is also shifted into the
dictionary[12].
 If a match is found, the algorithm continues to scan
for the longest match. It is intended that the dictionary
reference should be shorter than the string it replaces.
The LZSS algorithm compress series of strings by
converting the strings into a dictionary offset and string
length. For example, if the string mnop appeared in the
dictionary at position 1234, it may be encoded as
{offset = 1234, length = 4}.
 The LZSS dictionary is not an external dictionary
that lists all known symbol strings. The larger N, the
longer it takes to search the whole dictionary for a

match and the more bits will be required to store the
offset into the dictionary. Typically dictionaries contain
an amount of symbols that can be represented by a
whole power of 2. A 432 symbol dictionary would
require 9 bits to represent all possible offsets. If need to
use 9 bits, the 512 symbol dictionary might needed to
have more entries.
 Since dictionaries are sliding windows, once the (N
+ 1)th symbol is processed and added to the dictionary,
the first symbol is removed. Additional new symbols
cause an equal number of the oldest symbols to slide
out. In the example above, after encoding mnop as
{offset = 1234, length = 4}, the sliding window would
shift over 4 characters and the first 4 symbols (offsets 0
... 3) would slide off the front of the sliding window. m,
n, o and p would then be entered the dictionary into
positions (N - 4), (N - 3), (N - 2) and (N - 1)[21].

LZW algorithm: The LZW Algorithm maintains a
dictionary of strings with their codes for both
compression and decompression process. When any of
the strings in the dictionary appears in the input to the
compressor, the code for that string is substituted, the
decompressor, when it reads such a code, replaces it
with the corresponding string from dictionary. As
compression occurs, new strings are added to the
dictionary. The dictionary is represented as a set of
trees, with each tree having a root corresponding to a
character in the alphabet. In default case, there are 256
trees with all possible 8 bit characters[21].
 At any time, the dictionary contains all one
character strings plus some multiple character strings.
By the mechanism by which strings are added to the
dictionary for any multiple character string in the
dictionary, all of its leading substrings are also in the
dictionary. For example, if the string PRADA is in the
dictionary, with a unique code word, then the strings
PRA and DA are also in the dictionary, each with its
own unique code word.
 The algorithm will always match the input to the
longest matching string in the dictionary. The
transmitter partitions the input into strings that are in
the dictionary and converts each string into its
corresponding code word. Since all one character
strings are always in the dictionary, all of the input can
be partitioned into strings in the dictionary. The
receiver accepts a stream of code words and converts
each code word to its corresponding character strings[4].

MATERIALS AND METHODS

 An important criterion in performance evaluation
of the compression algorithm is the selection of

J. Computer Sci., 4 (3): 205-210, 2008

 207

Table 4: Details of Files in Calgary Corpus
File name Description Size (bytes)
bib Bibliography 111261
book1 Fiction book 768771
book2 Non-fiction book 610856
geo Geophysical data 102400
news USENET batch file 377109
obj1 Object code for VAX 21504
obj2 Object code for Apple Mac 246814
paper1 Technical paper 53161
paper2 Technical paper 82199
pic Black and white fax picture 513216
progc Source code in "C" 39611
progl Source code in LISP 71646
progp Source code in PASCAL 49379
trans Transcript of terminal session 93695

evaluation technique. There are three techniques
available, which are analytical modeling, simulation
and measurement. For this project, simulation technique
is selected. This is due to the fact that simulation
technique allows incorporations of more details while
undertaking fewer assumptions.
 Several performance metric have been selected to
evaluate the performance of LZSS and LZW
compression algorithm. Following are the selected
performance metrics:

• Compression time : Amount of time the

algorithm takes to
compress a file or data

• Decompression time : Amount of time the
algorithm takes to
decompress a file or data

• Compressed size (%) : Amount of compression
achieved

(Size of the input data - Size of the compressed data)

Size of input data

 To test the performance of the algorithm, standard
test file, Calgary Corpus is used. The Calgary Corpus is
the most referenced corpus in the data compression
field and is the de facto standard for lossless
compression evaluation. Calgary Corpus consists of
text files, images and other achieve files. Details of files
in the Calgary Corpus are in Table 1.

RESULT AND DISCUSSION

 This section analyzes and discuses the results
obtained for the performance metrics from the
simulation using the standard test files of Calgary
Corpus. The efficiency and compressibility
performance of LZSS and LZW algorithm is evaluated

0

5

10

15

20

25

30

B
ib

B
oo

k
1

B
oo

k
2

G
eo

N
ew

s

O
bj

 1

O
bj

 2

Pa
pe

r 1

Pa
pe

r 2

Pi
c

pr
og

c

Pr
og

 l

Pr
og

p

Tr
an

s

Test files

C
om

pr
es

sio
n

Ti
m

e
(s)

LZSS LZW

Fig. 1: Compression time for dictionary size 2K

in term of compression time, compressed size (%) and
decompression time. The performances of the
algorithms were analyzed under different size of
dictionary. For this project purpose, the evaluated
dictionary size is 2K, 4K and 6K.
 Figure 1 shows the result of compression time of
the test files when the dictionary size is set to 2K. LZSS
has less compression time compared to LZW, except
for the case of pic file.
 When compressing the pic file, LZW gives better
results. The reason for this exception is the uncommon
content of this file, which contains a lot of nulls. When
the length component of LZSS is just 5 bits, LZSS can
put a pointer to no more than 32 bits. LZW, however,
can have a pointer to an infinite string and will look for
the longest match in the dictionary. When using LZW,
each entry has an old string and a new letter, hence it
can save much longer strings.
 LZW with a pointer of 9 bits build a file that
contains the 256 possible characters of ASCII. This will
put the pairs (0, 1) (1, 2)…(254, 255) into the
dictionary of LZW, according to the algorithm of LZW.
If a 0 is added after the last 255, the pair (255,0) will be
added and these numbers will use up the entire
dictionary. The dictionary has 512 entries. The first 256
entries are of the single characters, while the other 256
entries are of the pairs.
 LZW can handle these pairs better because LZSS
saves one bit for character or pointer flag, several bits
for the pointer and several bits for length component.
Usually LZSS does not replace a pair of characters by a
pointer because of the high price, but even if LZSS
replaces the pair, the gain will be small, while LZW can
save more bits when pointing just to a pair of
characters. Thus, LZW algorithm compress image file
faster than LZSS algorithm[22].
 Figure 2 and 3 show the result when the dictionary
size in increased to 4K and 6K. LZSS still compressed
faster than LZW except for the pic file.
 Figure 4 shows the compression time under three
different size of dictionary for a file from the Calgary

J. Computer Sci., 4 (3): 205-210, 2008

 208

0

5
10

15

20
25

30

35

40
45

Test files

C
om

pr
es

si
on

 T
im

e
(s

)

LZSS LZW
B

ib

B
oo

k
1

B
oo

k
2

G
eo

N
ew

s

O
bj

 1

O
bj

 2

Pa
pe

r 1

Pa
pe

r 2

Pi
c

pr
og

c

Pr
og

 l

Pr
og

p

Tr
an

s

Fig. 2: Compression time for dictionary size 4K

0
5

10
15
20
25
30
35
40
45
50

Test files

C
om

pr
es

sio
n

Ti
m

e
(s)

LZSS LZW

B
ib

B
oo

k
1

B
oo

k
2

G
eo

N
ew

s

O
bj

 1

O
bj

 2

Pa
pe

r 1

Pa
pe

r 2

Pi
c

pr
og

c

Pr
og

 l

Pr
og

p

Tr
an

s

Fig. 3: Compression time for dictionary size 6K

0

10

20

30

40

50

2K 4K 6K

Dictionary Size

C
om

pr
es

si
on

 ti
m

e
(s

)

LZSS

LZW

Fig. 4: Compression time for file Book 1

Corpus, which is Book 1. For compression time, it can
be seen that as the dictionary size increases from 2K to
6K, the amount of time both algorithm takes to
compress a file also increases.
 The compression time increases as the dictionary
size increases. During compression, searching for a
match in a large dictionary requires large amount of
time, thus increases the compression time. The graph
also shows that LZSS compression algorithm require
less amount of time to compress a file than LZW
algorithm.
 Figure 5 shows the result of compressed size
achieved with the dictionary size of 2K. LZSS

0

10

20

30
40

50

60

70

80

90

100

Test files

C
om

pr
es

se
d

si
ze

 (%
)

LZSS

LZW

B
ib

B
oo

k
1

B
oo

k
2

G
eo

N
ew

s

O
bj

 1

O
bj

 2

Pa
pe

r 1

Pa
pe

r 2 Pi
c

Pr
og

c

Pr
og

 l

Pr
og

p

T
ra

ns

Fig. 5: Compressed size for dictionary size 2K

0

10
20
30
40
50
60
70
80
90

100

Test files

C
om

pr
es

se
d

si
ze

 (%
)

LZSS

LZW

B
ib

B
oo

k
1

B
oo

k
2

G
eo

N
ew

s

O
bj

 1

O
bj

 2

Pa
pe

r 1

Pa
pe

r 2 Pi
c

Pr
og

c

Pr
og

 l

Pr
og

p

T
ra

ns

Fig. 6: Compressed size for dictionary size 4K

0
10
20
30
40
50
60
70
80
90

100

bi
b

bo
ok

1

bo
ok

2

ge
o

ne
w

s

ob
j1

ob
j2

pa
pe

r1

pa
pe

r2 pi
c

pr
og

c

pr
og

l

pr
og

p

tr
an

s
Test files

C
om

pr
es

se
d

si
ze

 (%
)

LZSS

LZW

Fig. 7: Compressed size for dictionary size 6K

algorithm produce high percentage of compressibility
compared to LZW, except in the case of pic file.
 Figure 6 and 7 show the result when the dictionary
size in increased to 4K and 6K. LZSS algorithm has
high percentage of compressed size compared to LZW
algorithm except for the pic file.
 Figure 8 shows the compressed size under three
different size of dictionary for a file from the Calgary
Corpus, which is Book 1. For compressed size, as the
dictionary size is increased from 2K-6K, the percentage
of compressibility achieved also increases. If the
dictionary size is large, it can store more characters or
strings, thus, during compression, the compressor will

J. Computer Sci., 4 (3): 205-210, 2008

 209

0

10

20

30

40

50

60

70

2K 4K 6K
Dictionary Size

C
om

pr
es

se
d

Si
ze

 (%
)

LZSS

LZW

Fig. 8: Compressed size for file book1

0

1

2

3

B
ib

B
oo

k
1

B
oo

k
2

G
eo

N
ew

s

O
bj

 1

O
bj

 2

Pa
pe

r 1

Pa
pe

r 2 Pi
c

Pr
og

c

Pr
og

 l

Pr
og

p

Tr
an

s

Test files

D
ec

om
pr

es
si

on
 T

im
e

(s
)

LZSS LZW

Fig. 9: Decompression time

only output the index or reference to the character in the
dictionary. This contributes to high percentage of
compressibility.
 The compressibility achieved through LZSS is
higher than LZW algorithm. It is because, in LZSS, a
file can be built containing the single characters or
(offset, length) pairs as described previously. Such a
file will be compressed by LZSS, always in a better
manner than by LZW. The compressibility is dependent
on the pointer size of LZSS.
 LZW always puts a pointer, while LZSS uses
pointers only in the appropriate cases. If LZSS creates
fewer pointers, it will indicate that LZSS has chosen not
to put a pointer because it is less adequate. In contrast,
LZW puts a pointer because this is its usual behavior
and that pointer is more adequate[22].
 Figure 9 shows the result of decompression time
for both LZSS and LZW algorithm. The graph show
that LZSS algorithm requires slightly lower amount of
time to decompress a file compared to LZW algorithm
except for pic file, where LZW decompress faster. The
amount of time needed to decompress a file is same to
all size of dictionary.
 This is due to the fact that decompression process
is reverse of compression process using string marching

algorithm. During decompression, the decompressor
does not require to search through the dictionary. As
each code is encountered, it is translated into
corresponding character string to produce output.

CONCLUSION

 The objectives of this project had been achieved
through simulation study. The simulation result shows
that overall LZSS compression algorithm is an efficient
algorithm compared to LZW compression algorithm.
LZSS achieved high percentage of compressibility,
compression speed and decompression speed. LZSS
algorithm able to compress or decompress a file faster
compared to LZW algorithm. However, when
compressing pic file, LZW algorithm gives better
result. The reason for this is the uncommon content of
this file which contains a lot of nulls. LZW algorithm
can have a pointer to an infinite string, while LZSS
only have pointer to a finite string.
 If there is a long sequence of the same character,
LZW can compress it in a constant few bytes assuming
the length component is long enough to grip the number
of the characters. LZSS, however, has to construct the
pointers step by step and it will have pointers to two
bytes or three bytes.
 The compression time increases as the dictionary
size increases. During compression, searching for a
match in a large dictionary requires large amount of
time, thus increases the compression time. The
compressed size (%) increases as the dictionary size
increases. The percentage of compression achieved is
high with large size dictionary.
 Data compression provide increased network
throughput without an increase in transmission channel
bandwidth. Compressing data allows a user to keep
more information in the system memory. The
importance of compression gets much more prominent
when downloading files as the available network
bandwidth has not kept pace with the size of
applications or physically transporting files as the
storage capacity of magnetic storage devices, like
floppy disks, have not kept pace with the size of
applications.
 One future direction of this project is to enhance
the LZSS compression algorithm in order to achieve
high compressibility for image compression. The result
obtained from this study shows LZSS algorithm
compress better except for images. So, the LZSS
algorithm could be studied in term of the length size
and pointer variation for better image compression.

J. Computer Sci., 4 (3): 205-210, 2008

 210

REFERENCES

1. Navarro, G. and M. Ranot, 1999. A general

practical approach to pattern matching over Ziv-
Lempel compressed text. Proceeding of 10th
Annual Symposium on Combinatorial Pattern
Matching, pp: 14-36.

2. Matias, Y. and T. Sahinalp, 1999. On optimality of
parsing in dynamic dictionary based data
compression. ACM SIAM Symposium on Discrete
Algorithms.

3. Knieser, M., G. Wolff, A. Papachristou, J. Weyer
and R. McIntyr, 2003. A technique for high ratio
LZW compression. IEEE Transactions on
Communications.

4. Kasera, S. and N. Jain, 2005. A survey of lossless
compression techniques.

5. Abali, B., H. Franke, X. Shen, D. Poff and B.
Smith, 2001. Performance of hardware compressed
main memory. Proceedings of 7th International
Symposium on High-Performance Computer
Architecture (HPCA), pp: 73-81, January 2001.

6. Ziv, J. and A. Lempel, 1977. A universal algorithm
for sequential data compression. IEEE Trans.
Inform. Theory, 337-349.

7. Ziv, J. and A. Lempel, 1978. Compression of
individual sequences via variable-rate coding.
IEEE Trans. Inform. Theory, pp: 530-536.

8. Willard, L., A. Lempel, J. Ziv and M. Cohn, 1984.
Apparatus and method for compressing data
signals and restoring the compressed data signals.
US patent - US4464650, 1984.

9. Storer, J.A. and T.G. Szymanski, 1982. Data
compression via textual substitution. J. ACM,
928-951.

10. Welch, T.A., 1984. A technique for high
performance data compression. IEEE Comput.,
8-19.

11. Bell, T.C., I.H. Witten and J.G. Cleary, 1988.
Modeling for text compression. Technical Report,
The University of Calgary, Calgary, Alberta
Canada, pp: 327-39.

12. Horspool, R.N., 1991. Improving LZW.
Proceeding Data Compression Conference (DCC
91), Snowbird, Utah, IEEE Computer Society
Press, Los Alamitos, CA, pp: 332-341.

13. Tao, T. and A. Mukherjee, 2004. LZW based
compressed pattern matching. Proceeding Data
Compression Conference (DCC '04), pp: 568-601.

14. Klein, S.T. and Y. Wiseman, 2000. Parallel
Huffman decoding. Proceeding Data Compression
Conference DCC-2000, Snowbird, Utah,
pp: 383-392.

15. Hirschberg, D.S. and L.M. Stauffer, 1994. Parsing
algorithms for dictionary compression on the
PRAM. IEEE Comput. Society Press, pp: 136-145.

16. De Agostino, S. and J.A. Storer, 1995. Near
optimal compression with respect to a static
dictionary on a practical massively parallel
architecture. IEEE Comput. Society Press,
pp: 172-181.

17. De Agostino, S. and J.A. Storer, 1992. Parallel
algorithms for optimal compression using
dictionaries with the prefix property. IEEE
Comput. Society Press, pp: 52-61.

18. Ekman, M. and P. Stenstrom, 2005. A Robust Main
Memory Compression Scheme. International
Symposium on Computer Architecture.

19. Kenneth, B. and C. Krste, 2006. Energy aware
lossless data compression. ACM Trans. Comput.
Syst., 24: 250-291.

20. Motgi, N. and A. Mukherjee, 2001. Network
conscious text compression systems (NCTCSys).
Proceedings of the International Conference on
Information and Theory: Coding and Computing.

21. William S., 2002. High-Speed Networks and
Internets: Performance and Quality of Service.
2nd Edn., Prentice Hall.

22. Yair W., 2004. The relative efficiency of data
compression by lzw and lzss. Computer Science
Department, Bar-Ilan University.

23. Franti, P., E. Ageenko, P. Kopylov, S. Grohn and
F. Berger, 2001. Compression of map images for
real-time applications. Research Report A-2001-1,
Department of Computer Science, University of
Joensuu.

24. Michihiro, S., O. Toshihiro, I. Hideyuki and I.
Tomoo, 2005. A huffman-based coding with
efficient test application. IEEE Comput.

25. Michael, J., G. Francis, D. Papachristou and D.
McIntyre, 2003. A technique for high ratio LZW
compression. IEEE Comput.

