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Abstract: The improvement rate in microprocessor speed by far exceeds the improvement in DRAM 
memory. This increasing processor-memory performance gap is the primary obstacle to improved 
computer system performance. As a result, the size of main memory has increased gradually. To utilize 
main memory’s resources effectively, data compression can be applied. Through compression, the data 
can be compressed by eliminating redundant elements. Thus, this study incorporates compression to 
main memory in order to fully utilize its resources and improve performance of data access. This 
project evaluates the performance of the compression algorithms in order to increase the performance 
of memory access. The compression algorithms are string matching based which are LZW and LZSS. 
Through simulation, the effectiveness and compressibility of the algorithms were compared. The 
performances of the algorithms were evaluated in term of compression time, decompression time and 
compressed size. The simulation result shows that LZSS is an efficient compression algorithm 
compared to LZW.  
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INTRODUCTION 

 
 Data compression is a technique of encoding 
information using fewer bits than an unencoded 
representation would use through specific encoding or 
compression algorithm. All forms of data, which 
includes text, numerical and image, contain redundant 
elements. Through compression, the data can be 
compressed by eliminating the redundant elements[21]. 
 Data compression techniques use a model to 
function. The input stream, generated from a data 
source, is fed into a compressor. The compressor then 
codes and compresses data. To regenerate original data 
from the compressed data, decoder is used. The decoder 
applies the reverse algorithm of that used by the 
compressor. Moreover, the decoder has some prior 
knowledge as to how the data is being compressed[4]. 
 Data compression is divided into two major 
categories, which is lossless compression technique and 
lossy compression technique. In lossless compression, 
no information is lost and the decompressed data are 
identical to the original uncompressed data. While, in 
lossy compression, the decompressed data may be an 
acceptable approximation to the original uncompressed 
data[9]. 
 Lossless compression technique is grouped into 
two, statistical analysis based compression and string 

matching compression algorithm. This project focuses 
on analyzing string matching compression algorithm. 
 The increase of processor clock speed caused the 
gap between processor, main memory and disk space to 
widen. As a result, the size of cache and main memory 
increased. This performance gap affects the reliability 
and the performance of the memory resource access 
overall. Thus, this study incorporates compression to 
main memory in order to fully utilize its resources. 
 

RELATED WORKS 
 
 All forms of data contain redundant elements. 
Through compression, these redundant elements can be 
eliminated. First algorithm for compressing data was 
introduced by Claude Shannon[3]. At present there are 
lots of techniques available for compressing data, each 
tailored to match the needs of a particular application.  
 Compression techniques can be classified into two 
categories, lossless compression techniques and lossy 
compression techniques. The classification is based on 
the relationship between inputs and outputs after a 
compression or expansion cycle is complete. In lossless 
compression, the output exactly matches with the input 
after a compression or expansion cycle. Lossless 
techniques are mainly applicable to data files where a 
single bit loss can render the file useless.  In contrast, a 
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lossy compression technique does not yield an exact 
copy of input after a compression. 
 Navarro et al., 1999 presented compressed pattern 
matching algorithms for the Lempel-Ziv-Welch (LZW) 
compression which run faster than a decompression 
followed by a search[1]. However, the algorithms are 
slow in comparison with pattern matching in 
uncompressed text if compared the CPU time. This 
mean the LZW compression did not speed up the 
pattern matching. 
 Matias et al., 1999, resolved the issue of online 
optimal parsing by showing that for all dictionary 
construction schemes with the prefix property greedy 
parsing with a single step look ahead is optimal on all 
input strings this scheme is called flexible parsing or 
(FP)[2].  Kniesser et al., 2003, proposed a method for 
compressing the scan test patterns using LZW that does 
not require the scan chain to have a particular 
architecture or layout[3]. This method leverages the 
large number of Don’t-Cares in test vectors in order to 
improve the compression ratio significantly. Efficient 
hardware decompression architecture is also presented 
using existing in-chip embedded memories.  
 

STRING MATCHING COMPRESSION 
ALGORITHM 

 
 The string matching compression algorithms that 
were analyzed are LZSS (Ziv-Lempel-Storer-
Szymanski) and LZW (Ziv-Lempel-Welch) algorithm. 
 
LZSS algorithm: The LZSS compression algorithm 
makes use of two buffers, which are dictionary buffer 
and look ahead buffer. The dictionary buffer contains 
the last N symbols of source that have been processed, 
while look ahead buffer contains the next symbols to be 
processed. The algorithm attempts to match two or 
more symbols from the beginning of the look ahead 
buffer to a string in the dictionary buffer, if no match is 
found, the first symbol in the look ahead buffer is 
output as a 9 bit symbol and is also shifted into the 
dictionary[12].  
 If a match is found, the algorithm continues to scan 
for the longest match. It is intended that the dictionary 
reference should be shorter than the string it replaces. 
The LZSS algorithm compress series of strings by 
converting the strings into a dictionary offset and string 
length. For example, if the string mnop appeared in the 
dictionary at position 1234, it may be encoded as 
{offset = 1234, length = 4}. 
 The LZSS dictionary is not an external dictionary 
that lists all known symbol strings. The larger N, the 
longer it takes to search the whole dictionary for a 

match and the more bits will be required to store the 
offset into the dictionary. Typically dictionaries contain 
an amount of symbols that can be represented by a 
whole power of 2. A 432 symbol dictionary would 
require 9 bits to represent all possible offsets. If need to 
use 9 bits, the 512 symbol dictionary might needed to 
have more entries. 
 Since dictionaries are sliding windows, once the (N 
+ 1)th symbol is processed and added to the dictionary, 
the first symbol is removed. Additional new symbols 
cause an equal number of the oldest symbols to slide 
out. In the example above, after encoding mnop as 
{offset = 1234, length = 4}, the sliding window would 
shift over 4 characters and the first 4 symbols (offsets 0 
... 3) would slide off the front of the sliding window. m, 
n, o and p would then be entered the dictionary into 
positions (N - 4), (N - 3), (N - 2) and (N - 1)[21]. 
 
LZW algorithm: The LZW Algorithm maintains a 
dictionary of strings with their codes for both 
compression and decompression process. When any of 
the strings in the dictionary appears in the input to the 
compressor, the code for that string is substituted, the 
decompressor, when it reads such a code, replaces it 
with the corresponding string from dictionary. As 
compression occurs, new strings are added to the 
dictionary. The dictionary is represented as a set of 
trees, with each tree having a root corresponding to a 
character in the alphabet. In default case, there are 256 
trees with all possible 8 bit characters[21]. 
 At any time, the dictionary contains all one 
character strings plus some multiple character strings. 
By the mechanism by which strings are added to the 
dictionary for any multiple character string in the 
dictionary, all of its leading substrings are also in the 
dictionary. For example, if the string PRADA is in the 
dictionary, with a unique code word, then the strings 
PRA and DA are also in the dictionary, each with its 
own unique code word.    
 The algorithm will always match the input to the 
longest matching string in the dictionary. The 
transmitter partitions the input into strings that are in 
the dictionary and converts each string into its 
corresponding code word. Since all one character 
strings are always in the dictionary, all of the input can 
be partitioned into strings in the dictionary. The 
receiver accepts a stream of code words and converts 
each code word to its corresponding character strings[4]. 
 

MATERIALS AND METHODS 
 
 An important criterion in performance evaluation 
of   the   compression   algorithm   is   the   selection  of  
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Table 4: Details of Files in Calgary Corpus 
File name Description Size (bytes) 
bib Bibliography  111261 
book1 Fiction book 768771 
book2 Non-fiction book  610856 
geo Geophysical data 102400 
news USENET batch file 377109 
obj1 Object code for VAX 21504 
obj2 Object code for Apple Mac 246814 
paper1 Technical paper 53161 
paper2 Technical paper 82199 
pic Black and white fax picture 513216 
progc Source code in "C" 39611 
progl Source code in LISP 71646 
progp Source code in PASCAL 49379 
trans Transcript of terminal session 93695 

 
evaluation technique. There are three techniques 
available, which are analytical modeling, simulation 
and measurement. For this project, simulation technique 
is selected. This is due to the fact that simulation 
technique allows incorporations of more details while 
undertaking fewer assumptions. 
 Several performance metric have been selected to 
evaluate the performance of LZSS and LZW 
compression algorithm. Following are the selected 
performance metrics: 
 
• Compression time : Amount of time the 

algorithm takes to 
compress a file or data 

• Decompression time : Amount of time the 
algorithm takes to 
decompress a file or data 

• Compressed size (%) : Amount of compression 
achieved 

 
(Size of the input data - Size of the compressed data)

Size of input data
 

 
 To test the performance of the algorithm, standard 
test file, Calgary Corpus is used. The Calgary Corpus is 
the most referenced corpus in the data compression 
field and is the de facto standard for lossless 
compression evaluation. Calgary Corpus consists of 
text files, images and other achieve files. Details of files 
in the Calgary Corpus are in Table 1. 
 

RESULT AND DISCUSSION 
 
 This section analyzes and discuses the results 
obtained for the performance metrics from the 
simulation using the standard test files of Calgary 
Corpus. The efficiency and compressibility 
performance  of  LZSS and LZW algorithm is evaluated  
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Fig. 1: Compression time for dictionary size 2K 
 
in term of compression time, compressed size (%) and 
decompression time. The performances of the 
algorithms were analyzed under different size of 
dictionary. For this project purpose, the evaluated 
dictionary size is 2K, 4K and 6K.  
 Figure 1 shows the result of compression time of 
the test files when the dictionary size is set to 2K. LZSS 
has less compression time compared to LZW, except 
for the case of pic file. 
 When compressing the pic file, LZW gives better 
results. The reason for this exception is the uncommon 
content of this file, which contains a lot of nulls. When 
the length component of LZSS is just 5 bits, LZSS can 
put a pointer to no more than 32 bits. LZW, however, 
can have a pointer to an infinite string and will look for 
the longest match in the dictionary. When using LZW, 
each entry has an old string and a new letter, hence it 
can save much longer strings. 
 LZW with a pointer of 9 bits build a file that 
contains the 256 possible characters of ASCII. This will 
put the pairs (0, 1) (1, 2)…(254, 255) into the 
dictionary of LZW, according to the algorithm of LZW. 
If a 0 is added after the last 255, the pair (255,0) will be 
added and these numbers will use up the entire 
dictionary. The dictionary has 512 entries. The first 256 
entries are of the single characters, while the other 256 
entries are of the pairs.  
 LZW can handle these pairs better because LZSS 
saves one bit for character or pointer flag, several bits 
for the pointer and several bits for length component. 
Usually LZSS does not replace a pair of characters by a 
pointer because of the high price, but even if LZSS 
replaces the pair, the gain will be small, while LZW can 
save more bits when pointing just to a pair of 
characters. Thus, LZW algorithm compress image file 
faster than LZSS algorithm[22]. 
 Figure 2 and 3 show the result when the dictionary 
size in increased to 4K and 6K. LZSS still compressed 
faster than LZW except for the pic file. 
 Figure 4 shows the compression time under three 
different  size  of  dictionary  for a file from the Calgary  
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Fig. 2: Compression time for dictionary size 4K 
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Fig. 3: Compression time for dictionary size 6K 
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Fig. 4: Compression time for file Book 1 
 
Corpus, which is Book 1. For compression time, it can 
be seen that as the dictionary size increases from 2K to 
6K, the amount of time both algorithm takes to 
compress a file also increases.  
 The compression time increases as the dictionary 
size increases. During compression, searching for a 
match in a large dictionary requires large amount of 
time, thus increases the compression time. The graph 
also shows that LZSS compression algorithm require 
less amount of time to compress a file than LZW 
algorithm.  
 Figure 5 shows the result of compressed size 
achieved   with   the   dictionary   size    of   2K.   LZSS  
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Fig. 5: Compressed size for dictionary size 2K 
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Fig. 6: Compressed size for dictionary size 4K 
 

0
10
20
30
40
50
60
70
80
90

100

bi
b

bo
ok

1

bo
ok

2

ge
o

ne
w

s

ob
j1

ob
j2

pa
pe

r1

pa
pe

r2 pi
c

pr
og

c

pr
og

l

pr
og

p

tr
an

s
Test files

C
om

pr
es

se
d 

si
ze

 (%
)

LZSS

LZW

 
 
Fig. 7: Compressed size for dictionary size 6K 
 
algorithm produce high percentage of compressibility 
compared to LZW, except in the case of pic file. 
 Figure 6 and 7 show the result when the dictionary 
size in increased to 4K and 6K. LZSS algorithm has 
high percentage of compressed size compared to LZW 
algorithm except for the pic file. 
 Figure 8 shows the compressed size under three 
different size of dictionary for a file from the Calgary 
Corpus, which is Book 1. For compressed size, as the 
dictionary size is increased from 2K-6K, the percentage 
of compressibility achieved also increases. If the 
dictionary size is large, it can store more characters or 
strings,  thus,  during  compression, the compressor will  
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Fig. 8: Compressed size for file book1 
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Fig. 9: Decompression time 
 
only output the index or reference to the character in the 
dictionary. This contributes to high percentage of 
compressibility.   
 The compressibility achieved through LZSS is 
higher than LZW algorithm. It is because, in LZSS, a 
file can be built containing the single characters or 
(offset, length) pairs as described previously. Such a 
file will be compressed by LZSS, always in a better 
manner than by LZW. The compressibility is dependent 
on the pointer size of LZSS.  
 LZW always puts a pointer, while LZSS uses 
pointers only in the appropriate cases. If LZSS creates 
fewer pointers, it will indicate that LZSS has chosen not 
to put a pointer because it is less adequate. In contrast, 
LZW puts a pointer because this is its usual behavior 
and that pointer is more adequate[22]. 
 Figure 9 shows the result of decompression time 
for both LZSS and LZW algorithm. The graph show 
that LZSS algorithm requires slightly lower amount of 
time to decompress a file compared to LZW algorithm 
except for pic file, where LZW decompress faster. The 
amount of time needed to decompress a file is same to 
all size of dictionary.  
 This is due to the fact that decompression process 
is reverse of compression process using string marching 

algorithm. During decompression, the decompressor 
does not require to search through the dictionary. As 
each code is encountered, it is translated into 
corresponding character string to produce output. 
 

CONCLUSION 
 
 The objectives of this project had been achieved 
through simulation study. The simulation result shows 
that overall LZSS compression algorithm is an efficient 
algorithm compared to LZW compression algorithm. 
LZSS achieved high percentage of compressibility, 
compression speed and decompression speed. LZSS 
algorithm able to compress or decompress a file faster 
compared to LZW algorithm. However, when 
compressing pic file, LZW algorithm gives better 
result. The reason for this is the uncommon content of 
this file which contains a lot of nulls. LZW algorithm 
can have a pointer to an infinite string, while LZSS 
only have pointer to a finite string.  
 If there is a long sequence of the same character, 
LZW can compress it in a constant few bytes assuming 
the length component is long enough to grip the number 
of the characters. LZSS, however, has to construct the 
pointers step by step and it will have pointers to two 
bytes or three bytes. 
 The compression time increases as the dictionary 
size increases. During compression, searching for a 
match in a large dictionary requires large amount of 
time, thus increases the compression time. The 
compressed size (%) increases as the dictionary size 
increases. The percentage of compression achieved is 
high with large size dictionary. 
 Data compression provide increased network 
throughput without an increase in transmission channel 
bandwidth. Compressing data allows a user to keep 
more information in the system memory. The 
importance of compression gets much more prominent 
when downloading files as the available network 
bandwidth has not kept pace with the size of 
applications or physically transporting files as the 
storage capacity of magnetic storage devices, like 
floppy disks, have not kept pace with the size of 
applications. 
 One future direction of this project is to enhance 
the LZSS compression algorithm in order to achieve 
high compressibility for image compression. The result 
obtained from this study shows LZSS algorithm 
compress better except for images. So, the LZSS 
algorithm could be studied in term of the length size 
and pointer variation for better image compression. 
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