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Abstract: Problem statement: Knapsack problem is a typical NP complete problem. During last 
few decades, Knapsack problem has been studied through different approaches, according to the 
theoretical development of combinatorial optimization. Approach: In this study, modified 
evolutionary algorithm was presented for 0/1 knapsack problem. Results: A new 
objective_func_evaluation operator was proposed which employed adaptive repair function named 
as repair and elitism operator to achieve optimal results in place of problem specific knowledge or 
domain specific operator like penalty operator (which are still being used). Additional features had 
also been incorporated which allowed the algorithm to perform more consistently on a larger set of 
problem instances. Conclusion/Recommendations: This study also focused on the change in 
behavior of outputs generated on varying the crossover and mutation rates. New algorithm 
exhibited a significant reduction in number of function evaluations required for problems 
investigated. 
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 I. INTRODUCTION 

 
 Knapsack problem is a well known and well 
studied problem in combinatorial optimization being 
widely used in areas like network planning, network 
routing, parallel scheduling and budgeting[1]. 
Mathematically the 0-1 Knapsack problem may be 
formulated as:  
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where, xj the number of each kind of item is restricted 
to one or zero indicating its presence or absence in the 
knapsack. c is the capacity of the knapsack into which n 
types of objects may be placed. The object of type i has 
a profit pi and weight wi, associated with it. 
 Since the Knapsack problem is NP problem, 
various approaches presently available such as dynamic 
programming, backtracking, branch and bound etc. are 
not very useful for solving it. These exact algorithms 

have a running time that is bounded by an exponential 
function of length of input data, thus it is very difficult 
to obtain the exact solutions in case of many large scale 
knapsack instances which come from practical 
applications[2]. Hence, for those large scale instances, it 
has to rely on heuristic algorithms to obtain the near 
optimal solutions to them.  
 Amongst the Heuristic algorithms for knapsack 
problem, genetic algorithm is an effective method to 
solve the knapsack instances approximately. Genetic 
algorithm is a search technique to find exact or 
approximate solutions to optimization and search 
problems. Genetic algorithms are categorized as global 
search heuristics[3,4]. They work on the Darwin’s 
principle of natural selection and survival of the fittest. 
Evolutionary algorithm produces initial population with 
individuals selected at random. The fitness value of 
each individual of the population is worked out. If it 
does not satisfy the goal criterion then it is improved 
through crossover and mutation operators. Because of 
the incompatibility between the speed of convergence 
and the action for searching for the best solution, the 
simple evolutionary algorithm always behave slowly in 
convergence, easily in prematurity and plunges into 
local optimizations. The Evolutionary algorithm with 
adaptive repair operator is proposed in this study. It 
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leads the search direction of the population by 
collecting some better individuals from every 
generation by using the elitism operator and hence 
results in improving the searching efficiency. 
Furthermore, the computational cost implications of 
using adaptive repair function in the algorithm have 
also been evaluated. 
 
Evolutionary algorithm with adaptive repair 
operator: A modified algorithm called KNAP-GA is 
described in this section for solving KP using elitist 
GAs. The structure of the proposed KNAP-GA is 
presented in Fig. 1. 
 Here P represents the population {P0, P1, 
P2…..Pmax} where each population comprises of m 
entries {S1, S2,…..Sm} and each entry Si = {Jk such 
that 1≤k≤n and Jk = {0 ,1}} . Let J = {J1, J2, J3,……Jn} 
represents the set of unique items that are available . 
The selected items are represented by value 1 and the 
not selected  ones are represented by value 0. The 
fitness values of the chromosomes in a population are 
evaluated based on the profits associated with the 
items. The best fit chromosome generated from a 
given population is stored in S* . The crossover and 
mutation rate are varied to study the impact of varying 
these operators on the outputs obtained. The working, 
the characteristics and the need of 
objective_func_evaluation operator is explained in the 
preceding section. Each generation of the population 
yields a set of unique items that would result in 
maximum profit, thus modifying the solution vector in 
each step by proceeding towards the best fit solution.  

 
Objective_func_evaluation operator ∆∆∆∆: The 
objective_func_evaluation is a function which evaluates 
the fitness of chromosomes in the new population. For 
the Knapsack problem, we calculate the fitness of each 
chromosome by summing up the benefits of the items 
that are included in the knapsack, restricting the total 
weight of the selected items to the capacity of 
knapsack. If the total weight of the items in the 
chromosome generated by the crossover and mutation 
procedure is greater than the capacity of the knapsack 
then that solution is infeasible and the Repair Operator 
and the elitism come into play. The 
Objective_func_evaluation operator is basically a 
combination of Elitism and Repair operator which is 
simple to implement and provides us with similar 
results as obtained with other operators which need 
complex computations. The outline of the algorithm is 
given in Fig. 2.  

 
 
Fig. 1: Algorithm for KNAP-GA 
 

 
 

Fig. 2: Objective_func_evaluation operator ∆ 
 

MATERIALS AND METHODS 
 
 The test data represents various instances of the 0/1 
Knapsack problem as available in the literature[1]. The 
data sets consist of varying correlation types between 
profits and weights. 
 
Correlation types: 
 
Data set Uncorrelated (UC) 
wi = (uniformly) random (1…v) and 
pi  = (uniformly) random (1…v) 
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Data set Weakly Correlated (WC) 
wi  = (uniformly) random (1…v) and 
pi  = wi + (uniformly) random ( -r..r) 
 
Data set Strongly Correlated (SC) 
wi  = (uniformly) random (1…v) and 
pi  = wi + r 
 
 The experiments have been conducted without 
sorting the items on pi/wi values. Knapsack problem 
instances were studied on data sets with 100, 250 and 
500 items for each of the three correlation types and the 
three types of Knapsack capacities. However, due to 
space limitation we are presenting only the case with 
250 items.  
 KNAP-GA   was   implemented   on   Pentium-4 
(1.7 Ghz) and the results were compared with those 
obtained by the dynamic programming algorithm. We 
ran 100 instances of the random sets. Each table entry is 
the average of 30 runs. 
 

RESULTS  
 
 The effects of varying crossover and mutation rates 
have been studied and is presented in Table 1. When 
the crossover and mutation rates are both set to 0, the 
population has obviously contained copies of the 

strategies randomly generated at the beginning. In other 
words, with no with no crossover or mutation, all the 
children looked exactly like one of their parents.  
  However, on setting crossover rate equal to zero 
and varying the mutation rate it was observed that the 
mutation rate of n/100 (where n can be anything 
between 0-9) yields the best results. Due to space 
constraint we have shown only 3 instances of the 
mutation rate i.e., 03, 0.003, 0.70. Experimental results 
do not show the case when mutation is turned off, 
because it does not matter much what the crossover rate 
is when mutation is turned off as mutation is a function 
which is an integral part of crossover operator and if 
mutation is off, it yields the same results as when 
crossover and mutation are set equal to zero.  
 The second observation worth noticing from 
Table 1 is that crossover rate between 60 and 70 yields 
best solution with mutation rate having negligible 
impact on the output. On examining the three cases, 
without Elitism and Repair operator, with Repair 
operator and with elitism and Repair operator, we 
observed that the mere presence of Repair operator 
improved the final solution than the one that we were 
getting in the absence of Elitism and Repair operators 
and by clubbing the Elitism and Repair operators i.eby 
using objective_func_evaluation operator ∆, considerable 
improvement in the final solution has been found. 

 
Table 1: Comparison of varying crossover and mutation rates 
  c = 0 c = 0.30 c = 0.50 c = 0.60 c = 0.70 c = 0.90 
Uncorrelated data 
Without elitism and repair operator m = 0.003 2650 2607 2669 2669 2701 2625 
 m = 0.030 2702 2791 2676 2810 2679 2761 
 m = 0.700 2525 2540 2469 2981 2613 2490 
With repair operator m = 0.003 2661 2681 2716 2650 2771 2678 
 m = 0.030 2663 2653 2806 2690 2667 2614 
 m = 0.700 2576 2528 2590 2604 2611 2389 
With elitism and repair operator m = 0.003 3308 2254 3333 3310 3346 3365 
 m = 0.030 3333 3318 3330 3336 3337 3323 
 m = 0.700 3210 3225 3288 3265 3280 3265 
Weakly correlated data 
Without elitism and repair operator m = 0.003 2741 2717 2753 2771 2799 2783 
 m = 0.030 2674 2684 2698 2784 2743 2706 
 m = 0.700 2694 2642 2649 2733 2763 2705 
With repair operator m = 0.003 2654 2764 2807 2812 2741 2734 
 m = 0.030 2777 2802 2782 2705 2833 2834 
 m = 0.700 2684 2674 2725 2743 2756 2613 
With elitism and repair operator m = 0.003 3379 3406 3369 3378 3321 3347 
 m = 0.030 3406 3394 3413 3444 3403 3407 
 m = 0.700 3269 3250 3219 3250 3270 3202 
Strongly correlated data 
Without elitism and repair operator m = 0.003 2300 2336 2321 2326 2408 2345 
 m = 0.030 2310 2304 2326 2351 2368 2370 
 m = 0.700 2269 2254 2252 2272 2263 2258 
With repair operator m = 0.003 2311 2325 2354 2338 2334 2365 
 m = 0.030 2349 2302 2318 2366 2358 2320 
 m = 0.700 2253 2254 2281 2260 2246 2247 
With elitism and repair operator m = 0.003 2332 2372 2386 2404 2383 2379 
 m = 0.030 2377 2393 2408 2404 2416 2382 
 m = 0.700 2251 2249 2295 2284 2330 2283 
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DISCUSSION 
 
 The objective_func_evaluation operator 
incorporating the new adaptive repair operator has been 
found to be more cost effective than the existing 
techniques that have been used in the past to handle 
chromosomes yielding infeasible solutions. As per the 
philosophy Richardson et al.[5], (employing penalty 
method) infeasible bred strings (or chromosomes) were 
allowed to join the population however by reducing the 
string strength by adding penalty terms to the fitness. 
The farther the string is from feasibility, the higher is 
the penalty term. In the other approach flags were used 
to signal the feasibility of final solution. If after several 
runs on the same problem instance, the flag consistently 
indicated an infeasible string then one had to either bias 
the random number generator so as to produce strings 
in which the number of zeros is greater than the number 
of one’s[6] or use some other heuristic such as greedy 
one, to generate a solution[7]. Both the methods, the 
penalty method or using flags increase the computation 
overhead because in addition to estimating the fitness of 
chromosomes in a population the track of unfit 
chromosomes had to be kept by assigning varying 
penalties and again estimating the strength in each 
iteration. Whereas if flags were used then one had to 
keep track of the status of the flag amongst several 
problem instances and if the same value persists then 
greedy approach is used thus increasing computational 
cost multi folds. 
 The algorithm employing 
objective_func_evaluation operator ∆ provides a much 
efficient approach of reaching an optimal solution by 
using a simple to implement adaptive repair operator 
which incorporates a strategy of making all bits of the 
chromosome equal to zero from the point where the 
fitness exceeds the capacity and by employing elitism 
to get a small percentage of the best chromosomes from 
the old population to the new population. Thus the 
evolutionary algorithm with adaptive repair operator 
proposed in this study, leads the search direction of the 
population by collecting the few best individuals from 
every generation by using the elitism operator. It has 
resulted in improving the search efficiency. 
 

CONCLUSION 
 
 The results obtained with the newly designed 
genetic operators in algorithm are encouraging, on the 
practical data sets. Rather than augmenting the genetic 
algorithm with domain specific knowledge, we have 
introduced a fitness function employing adaptive repair 
operator and elitism which is simple to use. In order to 

further the results, application of the developed KNAP-
GA to real life problems, hybridization of local search 
techniques with other heuristic or meta heuristic 
techniques for solving the Knapsack problem may be 
studied. Future work may address whether the proposed 
algorithm can be applied to other constraint 
optimization problems such as the maximum clique or 
the degree constrained minimum spanning tree 
problems. 
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