
Journal of Computer Science 5 (8): 608-613, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Eva Cogan, Department of Computer and Information Science, Brooklyn College, Brooklyn,
New York, 11218 USA

608

Memory Tracing

Eva Cogan and Chaya Gurwitz

Department of Computer and Information Science,
Brooklyn College, Brooklyn, New York, 11218 USA

Abstract: Problem statement: Students completing introductory computing courses did not know
how to program at the expected level. Seeking the underlying problem, we came to believe that
students were focusing only on results and not connecting with the inner workings of their code. This
left them poorly prepared to master increasingly complex problems. Approach: We hoped that by
promoting memory tracing as a core competence as early as possible in introductory programming
courses we would hone the understanding and skills of our students and improve their chances for
succeeding in computer science. We emphasized a basic and manual approach to memory tracing--in the
classroom, in conjunction with homework assignments and on exams--to help our students gain the
ability to write good programs, test them and, should it become necessary, debug them. Results: Having
received gratifying results from our approach in our own classes, we had moved to get the word out as
quickly as possible to motivate other educators to implement it. We described how we derived benefit
from memory tracing in the various contexts and we presented the details of our method for teaching
students how to best use this technique. Conclusion/Recommendations: Training students early on to
actively carry out a manual memory trace of programs (as opposed to relying on debuggers or print
statements) will help them develop their coding skill and comfort, quite apart from any facility for
finding and fixing errors. Although experienced programmers trace intuitively, beginning students do
not; they need to be trained. Therefore we felt that tracing should be an explicit, emphasized
component of the introductory courses.

Key words: Memory tracing, tracing, introductory programming, novice programming, computer

science education

INTRODUCTION

 Memory tracing is the process of recording the
value changes of program variables. It has also been
called desk checking or playing computer. This is
distinct from hand-checking, doing the calculations to
solve the problem independently of the program and
comparing these results to the program’s final output.
 Although memory tracing is universally recognized
as an essential skill in program debugging, it seems to
us that it is not sufficiently emphasized as an effective
pedagogic technique in introductory programming
courses. Experienced programmers often trace
intuitively. However, beginning students do not and so
they need to be trained. Therefore we feel that tracing
should be an explicit, emphasized component of the
course. As noted in[1]: “We discovered that many
students with a good understanding of programming do
not acquire the skills to debug programs effectively and
this is a major impediment to their producing working

code of any complexity. Skill at debugging seems to
increase a programmer’s confidence and we suggest
that more emphasis be placed on debugging skills in the
teaching of programming”.
 The results of a multi-national study[4] support our
view that teaching methods which emphasize memory
tracing lead to greater student success:

Soloway[9] claims that… skilled programmers
carry out frequent “mental simulations”, of
both abstract designs-in-progress and code
being enhanced, as a check against unwanted
dynamic interactions between components of
the system. He argues that such simulation
strategies should be taught explicitly to
students. Many of our teaching traditions date
back to the era of punch cards. In the days of
overnight batch runs, there was little need to
explicitly encourage students to carefully
check their code before submitting it for a
batch run, as a careless error could waste a

J. Computer Sci., 5 (8): 608-613, 2009

609

whole day. In an era where the next test-run is
only a mouse-click away, we need to place
greater explicit emphasis on mental simulation
as part of the process of writing code. When
faced with a piece of code to read and
understand, experienced programmers
frequently “doodle”. That is, they draw
diagrams and make other annotations as part
of determining the function of the
code…Students were given “scratch” paper
upon which they were allowed to draw
pictures or perform calculations as part of
answering the MCQs) Multiple Choice
Questions. … Not surprisingly … if a student
carefully traces through the code … thus
documenting changes in variables, the
likelihood of getting the correct answer is high

 Similarly, in[5] it is reported that novice
programming students who use annotations such as
tracing perform better on multiple choice tests. In[10] we
are advised, “educators should also stress that they do
not use this technique for demonstration purposes only
but because mental tracking of values of several
variables is doomed to fail due to the limitations of
human cognition”.
 When teaching students how to debug their
programs, there are three techniques that are commonly
used: employing an interactive debugger, inserting
temporary print statements into the program and
performing memory tracing by hand.
 Most IDE’s include debuggers, which are of
tremendous benefit in the development of large,
complex programs. Nevertheless, these interactive
debuggers are not necessary for the short routines we
use with novice programmers and the need to master
them early on is an additional obstacle for some
students. Indeed, we teach children to add and subtract
before we provide them with a calculator and we teach
spelling despite the advent of electronic spellcheckers.
Likewise, we should train students to become proficient
at doing manual memory tracing before we move them
on to automated debuggers.
 “An interactive debugger is an outstanding
example of what is not needed-it encourages trial-and-
error hacking rather than systematic design”[7]. The
“habitual use of symbolic debuggers also tends to
discourage serious reflection on the problem. It
becomes a knee-jerk response to fire up the debugger
the instant a bug is encountered and start stepping
through code, waiting for the debugger to reveal where
the fault is”[3].
 Similarly, the technique of adding debug print
statements, while it has the benefit of being simpler to

learn, still does not train the student to actually work
through a program.
 Therefore, we want our students to manually trace
the execution of a program, actively recording the
changes in the variables, rather than passively
observing the computer doing it. Essentially, we want
the student to be the computer.
 A multi-national study[6] found that students
completing introductory computing courses do not
know how to program at the expected skill level. A
more recent study[2] also found that the student success
rates in introductory programming classes are very low.
 We maintain that student dissatisfaction, stemming
from unrealistic expectations, contributes to this
problem. The tools available to students prior to their
first college experience with computer science make
programming look like magic. Students expect to be
able to “drag and drop” solutions to any problem and
therefore have a hard time getting “into” programming.
They tend to skip over implementation details in their
expectation of rapidly producing fantastic results. We
must keep warning our students to trace what the
program actually does and not what they wish it would
do. Students must realize that correct syntax and
successful compilation are not sufficient. They must
figure out how execution affects the variables. We feel
that by emphasizing tracing early on, we shift the focus
from results (where we cannot hope to compete with
games and simulated universes that provide instant
gratification) to process. Once students realize that in
our class the process itself is a primary goal, they are
less frustrated by the technicalities of programming,
especially when applied to apparently trivial problems.
Thus, we use this debugging technique to help students
get over this initial hurdle, until they become proficient
enough to take on more challenging and satisfying
programming assignments.
 Finally, stressing memory tracing as a means of
understanding the problem to be addressed by a
program, as opposed to being a drudgery of last resort
invoked only after things have gone horribly and
inexplicably wrong, should develop in our students a
receptive attitude towards “test-driven development”. A
proclivity to test first leads to better understanding of
functionality and improved code quality. Careful
consideration of how test cases would be validated
before writing the actual code leads to an understanding
of what the program should do and how to approach
coding it.

Approach: For all of the above reasons, emphasizing
memory tracing-in the classroom, in conjunction with
homework assignments and on exams-helps our
students learn how to write, test and debug computer
programs.

J. Computer Sci., 5 (8): 608-613, 2009

610

Class: We introduce students to this critical skill by
tracing new programs in class, modeling the technique
and helping them understand the programs. As noted
in[4]:

Even when our principal aim is to teach
students to write code, we require students to
learn by reading code. … We typically place
example code before students, to illustrate
general principles. In so doing, we assume our
students can read and understand those
examples…. Perkins[8] claim that the ability to
perform a walkthrough is an important skill for
diagnosing bugs and therefore the ability to
review code is an important skill in writing code

 Manually performing a memory trace makes the
process concrete. Requiring students to tell the
instructor the values in the memory trace
encourages them to actively participate in the class.
 Before writing the code for a program we develop
during a lecture, we supply sample test data and
determine the desired output. Directing attention to the
output helps students understand what the code is
supposed to do in a more concrete manner than a simple
verbal description of the task. When we develop code in
class, we try different approaches, tracing each in turn
to see if it works. For example, when developing a
“structured read loop”, we first try a few (wrong)
placements of the input statement. Once the class
completes writing code it deems to be correct, we trace
it to see exactly how the code succeeds in
accomplishing the goal.
 After tracing together with the instructor, students
are asked to produce on their own a memory trace and
output for short program segments. This allows the
students to test their understanding and practice the
technique. Sometimes students collaborate to correct
each other's results; the whole class gains from such
teamwork.

Homework: We emphasize tracing during homework
as well. In addition to working through memory traces
for given programs, the students are generally asked to
submit a memory trace along with the programs they
are assigned to develop. They are required to run their
program on a small data sample that exercises various
paths in the program and provide a full trace.
 When students have questions about their
assignments, they are required to work out a memory
trace on paper before bringing their questions to the
instructor. It is better for them to try the trace on their
own first in order to develop confidence in their own

ability. Of course, sometimes they still need help in
finding an error. Tracing a fellow student’s program
seems to motivate students to gather around the
instructor’s desk to help. Again, individually and as a
group, they are actively involved in the debugging, not
just passively observing. Finally, the code a student
brings to the instructor sometimes contains patches
inserted by a tutor or friend. The student may not know
why the code was inserted or what it is supposed to do.
Tracing forces the program owner to figure out the role
of every statement in the program.

Exams: On exams, there are three kinds of questions
that involve tracing:

• We supply correct code and require the students to

produce a memory trace and output.
• We supply incorrect code and require the students

to locate and correct the bugs by tracing through
the program.

• We supply a specification along with sample input
and output and require the students to write the
program. We recommend that they trace the
program to see what it actually does. Thus they
debug and correct their program before submitting
it. Again, students learn to differentiate between
what they hoped a program would do and what it
actually does.

MATERIALS AND METHODS

 We use the following technique to train students to
trace various elementary programming constructs.

Simple variables: At the beginning of the course, we
introduce the method of memory tracing by
representing each variable as a rectangular memory cell
with the sequence of its values recorded inside. The
variable name is written above the rectangle:

 As the semester progresses and we deal with
programs in which the values of variable values change
more frequently, it becomes difficult to track the
change of values within a small rectangular cell.
Therefore, we switch our display technique and
represent the values of each variable as a vertical list
under an underlined heading of the variable name:

J. Computer Sci., 5 (8): 608-613, 2009

611

 We suggest recording a value only when it
changes:

The code:
x = 0;
y = 6;
x = 7;
y = 9;
may be traced as:
x y
0 6
7 9

 Some students prefer to rewrite a snapshot of all
the variables whenever any variable changes:

x y
0 6
7 6
7 9

 In small programs this does no harm, but in larger
programs, it can become a nuisance.
 Sometimes it is helpful to skip lines to reflect when
values change. Nasty bugs caused by one variable being
changed too early or too late in relation to another
variable become evident when using this technique:

The code:
x = 0;
y = 6;
y = 9;
x = y - 2;
would be traced as:
x y
0
 6
 9
7

 Failure to declare or initialize a variable is a
common error. A memory trace highlights any attempt
to either assign a value to a nonexistent “memory cell”
or use a nonexistent value.

Loops: We try to record each iteration of a loop on one
line. We include the last unused value of the loop
control variable since the variable does take on that
value, even though the loop is not executed with that
value:

The code:
sum = 0;
for (int i = 1; i <= 3; i++)
 sum += 5;
is traced as:
i sum
 0
1 5
2 10
3 15
4

Nested loops: Skipping lines in the column for the outer
loop’s control variable is crucial when tracing nested
loops. The goal is to illustrate that for each iteration of
the outer loop, we do all iterations of the inner loop:

The code:
for (int i …)
 for (int k…)
is traced as:
i k
1 1
 2
 3
2 1
 2
 3

Functions: For many students, the hardest part of
learning how to program with functions is following
how parameters are passed. Tracing helps the students
understand the process by producing a visual record of
which values are assigned to which parameters.
 We completely rewrite from scratch the trace of a
function each time it is called, reflecting the actual
duration of its variables. Each parameter and local
variable is listed horizontally under the name of the
function. In the following example, we use the same
names n and sum for the identifiers in the calling
function and the called function to point out that they
are distinct and independent.

The code:
int computeSum(int);
int main()
{
 int n=3, sum;
 cout << "n is " << n << endl;
 sum = computeSum(n);
 cout << "sum is " << sum << endl;
 cout << "n is still " << n << endl;
 return 0;
}

J. Computer Sci., 5 (8): 608-613, 2009

612

int computeSum(int n)
{
 int sum = 0;
 for (; n > 0; n--)
 sum += n;
 cout << "In computeSum n is" << n << endl;
 return sum;
}

would be traced as:
main computeSum
n sum n sum
3 6 3 0
 3
 2 5
 1 6
 0

 Reference parameters are more confusing than
value parameters. To distinguish between them,
students are cautioned not to record a value for a
reference parameter, but rather to record the address of
the corresponding actual parameter. We do not use an
actual numeric address, but rather utilize the address
symbol ‘&’. When students find the ‘&’ in their trace
lists, they are reminded to record the change in the
namespace of the calling function, rather than in the
called function. This eliminates a major tracing error:

The code:
void swap(int &a, int &b);
int main()
{
 int x = 5, y = 3;
 cout << "before " << endl << "x is ";
 cout << x << " , y is " << y << endl;
 swap(x, y);
 cout << "after " << endl << "x is ”;
 cout << x << " , y is " << y << endl;
 return 0;
}

void swap(int &a, int &b)
{
 int temp;
 temp = a;
 a = b;
 b = temp;
 return;
}
is traced as:
main swap
x y a b temp
5 3 &x &y 5
3 5

Table 1: Vertical array representation
 Array name
[0] 1 2 3
[1] 6 9 0
[2] 1 2

Table 2: Horizontal array representation
Array name
[0] [1] [2]
1 6 1
2 9 2
3 0

Arrays: The elements of the array are listed vertically
under its name, with the index on the left. The list of
values for each element is horizontal (Table 1).
 Alternatively, the array elements could be listed
horizontally with the changes appearing in vertical
columns (Table 2).
 While the latter approach is more consistent with
strings and allows for temporal synchronization with
simple variables, students seem to find the former
arrangement more intuitive.

Strings: We write the value stored in a string
horizontally. The changes are listed vertically.
Although this is different from the way we trace arrays,
it is more natural, since in English we write from left to
right.

Bubble sort: In class we develop the following code
for Bubble Sort:

void bubbleSort(int numb[], int n)
{
 int temp, pass=0;
 bool swapped;
 do {
 pass++;
 swapped = false;
 for(int i = 0; i < n-pass; i++)
 if (numb[i] > numb[i+1]){
 swap(numb[i], numb[i+1]);
 swapped = true;
 }
 } while (swapped);
 return;
}

J. Computer Sci., 5 (8): 608-613, 2009

613

 The bubbleSort function separates the array into a
sorted part and an unsorted part. After each pass, one
more element is guaranteed to be in its correct position
in the sorted part. In the trace, “steps” are used to
separate the top part of the array still in play from the
bottom part that no longer needs to be considered. We
do not show here the trace of temp, pass, swapped, i
and n. We start with five potential columns for passes,
but we use only three of them because we quit once a
pass ends without a swap. At the end of this last pass,
all the elements are under the “steps”:

DISCUSSION

 We propose that manual tracing be an explicit,
emphasized component of introductory computer
science courses. This approach has been of value to us
and our students and should prove to be so as well for
other instructors and their students. Students trained at
the outset to actively carry out manual memory traces
of programs, rather than relying on debuggers or print
statements, form a better connection with the inner
workings of their code. This helps them overcome
initial technical and emotional barriers to the
challenging demands of generating correct code and it
leaves them better prepared to master increasingly
complex algorithms. They develop a rigorous attention
to detail that helps them avoid errors in the first place
and they more quickly find errors that do exist in their
programs. At the end of the semester, students
themselves comment that although they initially found
the tracing requirement a nuisance, they came to see
how the technique proved useful.

CONCLUSION

 Aside from the pedagogic benefits of memory
tracing, facility with this technique will benefit students
when they eventually enter the workforce. Entry-level
programming positions often involve modifying and
maintaining code written by others. Tracing helps the
programmers understand code, even if they were not
involved in its original development.

REFERENCES

1. Ahmadzadeh, M., D. Elliman and C. Higgins, 2005.

An analysis of patterns of debugging among novice
computer science students. Proceedings of the 10th
Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, June 27-
29, ACM Press, Caparica, Portugal, pp: 84-88.
http://portal.acm.org/citation.cfm?id=1067472

2. Bennedsen, J. and M.E. Caspersen, 2007. Failure
rates in introductory programming. ACM.
SIGCSE. Bull., 39: 32-36.
http://portal.acm.org/citation.cfm?id=1272879

3. Johnson, E., 2006. Debugging 101. Hacknot:
Essays on software development.
http://appsapps.com/ebooks/?p=38

4. Lister, R., E.S. Adams, S. Fitzgerald, W. Fone,
J. Hamer and M. Lindholm et al., 2004. A multi-
national study of reading and tracing skills in
novice programmers. Proceedings of the Working
Group Reports from ITiCSE on Innovation and
Technology in Computer Science Education, June 28-
30, ACM Press, New York, pp: 119-150.
http://portal.acm.org/citation.cfm?id=1041673

5. McCartney, R., J.E. Moström, K. Sanders and
O. Seppala, 2004. Questions, annotations and
institutions: Observations from a study of novice
programmers. Proceeding of the 4th Finnish/Baltic
Sea Conference on Computer Science Education,
Oct. 1-3, Koli, Finland, pp: 11-19.
http://www.cs.hut.fi/u/archie/KOLI/KOLI-2004-
pre.pdf#page=9

6. McCracken, M., V. Almstrum, D. Diaz, M. Guzdial,
D. Hagen and Y. Kolikant et al., 2001. A multi-
national, multi-institutional study of assessment of
programming skills of first-year CS students.
ACM. SIGCSE. Bull., 33: 125-140.
http://portal.acm.org/citation.cfm?id=572133.572137

7. Mills, H.D., 1986. Structured programming:
Retrospect and prospect. IEEE. Software, 3: 58-66.
DOI: 10.1109/MS.1986.229478

8. Perkins, D., C. Hancock, R. Hobbs, F. Martin and
R. Simmons, 1989. Conditions of Learning in
Novice Programmers. In: Studying the Novice
Programmer, Soloway, E. and J. Spohrer (Eds.).
Lawrence Erlbaum Associates, Hillsdale, New
Jersey, ISBN: 0805800026, pp: 261-279.

9. Soloway, E., 1986. Learning to program =
Learning to construct mechanisms and
explanations. Commun. ACM., 29: 850-858.
http://portal.acm.org/citation.cfm?id=6594

10. Vainio, V. and J. Sajaniemi, 2007. Factors in
novice programmers’ poor tracing skills. ACM.
SIGCSE. Bull., 39: 236-240.
http://portal.acm.org/citation.cfm?id=1268853

