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Abstract:  Problem statement:  Modern cryptographic algorithms are based on complexity of two 
problems: Integer factorization of real integers and a Discrete Logarithm Problem (DLP). 
Approach: The latter problem is even more complicated in the domain of complex integers, where 
Public Key Cryptosystems (PKC) had an advantage over analogous encryption-decryption protocols in 
arithmetic of real integers modulo p: The former PKC have quadratic cycles of order O (p2) while the 
latter PKC had linear cycles of order O(p). Results: An accelerated non-deterministic search algorithm 
for a primitive root (generator) in a domain of complex integers modulo triple prime p was provided in 
this study. It showed the properties of triple primes, the frequencies of their occurrence on a specified 
interval and analyzed the efficiency of the proposed algorithm. Conclusion: Numerous computer 
experiments and their analysis indicated that three trials were sufficient on average to find a Gaussian 
generator.  
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INTRODUCTION 
 

 A Discrete Logarithm problem, {DLP, for short}, 
is defined as follows: For real integers g>1, p and h>0 
to find an integer x such that satisfies the equation: 
 
gx mod p = h  (1) 
 
 This is a computationally formidable problem[7,8,10] 
especially if the integer g is a primitive root 
(generator)[1,2]. The complexity of the DLP is the basis 
for secret-key establishment in modern 
cryptography[3,6,11,12]. An RSA cryptographic algorithm 
in the domain of complex integers is described in[4]. 
 The DLP in the domain of complex integers (called 
Gaussian integers) is an extension of the problem (1): 
To find a real integer x such that holds 
 
Gx mod p = h (2) 
 
Where: 
G and H = Gaussian integers 
p = A prime 
 
 As in (1), a solution of Eq. 2 is computationally 
intense especially if the Gaussian integer G is a 
primitive root or generator as described in Definition 2 
below. 

Definition 1: If X is a Gaussian integer and m is the 
smallest positive integer, for which the following 
relation holds: 
 
Xm mod p = (1,0) = 1 (3) 
 
then m is defined as the order of X: 
 
ord(X) = m (4) 
 
Definition 2: If the order of Gaussian integer G equals: 
 
m = p2-1  (5) 
 
then G is called a Gaussian primitive root or generator, 
(GG, for short). 
 There are currently no known deterministic 
algorithms that compute a GG. However, if p is 
appropriately selected, then the search for a GG can be 
substantially simplified. 
 
Definition 3: A prime p is called a Triple Prime (TP) if 
both integers: 
 
q := (p+1)/4 and r := (p-1)/6 (6) 
 
are also primes. 
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Table 1: TPs and corresponding primes q and r 
p 19 43 67 283 787 907 1,867 9,643 99,907 991,987 1,998,643 
q 5 11 17 71 197 227 467 2,411 24,977 247,997 499,661 
r 3 7 11 47 131 151 311 1,697 16,651 165,331 333,107 

 
Table 2: Frequencies of TPs on intervals [104m, 104 (m+1)]  
m 1 2  3 4 5 6  7 8 9  10 12 14 16  18 20  25  30  40 50 
No. of 8 6 8 3 5 7 4 7 6 7 3 7 5 3 1 3 3 5 2 
TP 

 
Remark: If both p and q are primes, then neither (p-
1)/2 nor (p-1)/3 are primes; {for details Lemma 2}. 
 The Table 1 provides examples of several triple 
primes. 
 

MATERIALS AND METHODS 
 
Triple primes and their properties: The algorithm 
searching for Gaussian generator (9-12) is based on the 
following properties of triple primes. 
 
Lemma 1: If a prime p≥43, then for every TP the 
following condition holds: 
 
pmod60 = 7 or 43  (7) 
 
 If (7) does not hold, then either q or r are not 
integers or not primes. For applications, it is necessary 
to know the occurrence of the TP (their density) for 
large p. The Table 2 provides such information. 
  

Remark: CPU times T required to find a D digit-long 
TP are provided in milliseconds (ms). 
 
Lemma 2: If n is an odd integer and: 
 
• n≥5 is not divisible by 3, then 24 divides n2-1 
• n≥23 and (n+1)/4 is a prime, then (n-1)/6 is an 

integer  
 
Proof: n-1 and n+1 are two consecutive even integers, 
hence one of them is divisible by 4 and their product is 
divisible by 8. In addition, either n-1 or n+1 is divisible 
by 3. Therefore, if n is a Blum prime, then: 
 
(n2-1)/24 = [(n+1)/4][(n-1)/6] (8) 
 
where both factors in (8) are integers.  
 Suppose there is n1≥23, for which q1 = (n1+1)/4 is 
a prime, but r1 = (n1-1)/6 is not an integer. Since n1-1 
is even, hence 3 does not divide n1-1. Therefore three 
divides the prime q1. This contradiction proves 
Lemma 2. More details are provided in Fig. 1. 

Table 3: Length in decimal digits (D), TPs and average time (T) to 
compute it 

D TP p T (ms) 
5 11,443 48.36 
6 100,483 217.75 
7 1,006,267 469.44 
8 10,009,267 1087.07 
9 100,019,923 7829.67 
10 1,000,013,107 9205.34 

 

 
 
Fig. 1: Number of TPs on intervals [104m, 104 (m+1)] 
 

RESULTS AND DISCUSSION 
 
Algorithm searching for generator: 
Step1: Select a triple prime p≥19: 
 

compute q := (p+1)/4 
 
and 
 
r: = (p-1)/6 (9) 
 
Step 2: Select integers such that hold: 
 

a ≠ b; 1≤a,b≤p-1; a+b ≠ p 
 
and 
 

(a2 + b2)mod p ≠ 1 
 
Step 3: For k = {2, 3, q} compute: 
 
(c,d) := (a,b)k mod p (10) 
 
Step 4: If k ≠ q and {c = 0 or d = 0 or |c| = |d|}, then 
goto Step 2; {(a, b) is not a generator}. 
 
Step 5: If k = q and {c = 0 or d = 0}, then goto Step 2; 
{(a, b) is not a generator}. 
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Step 6: Compute: 
 
e := -4c4 mod p (11) 
 
Step 7: If efmod p = ±1 (12) 
 
then go to Step 2; {(a, b) is not a generator}; 
else output G = (a, b); {(a, b) is a generator}. 
 
Analysis of basic results: Numerous computer 
experiments demonstrated that the algorithm (9-12) 
finds a Gaussian generator after three trials of (a, b) on 
average. 
 
Algorithm validation: 
Lemma 3: Suppose (a, b) is a Gaussian integer 
(Gaussian, for short), p is a TP and: 
 
(c,d):= (a,b)q mod p (13) 
 
 If a component in (c, d) equals zero, then (a, b) is 
not a GG. 
 
Proof: If (a,b)q mod p =(c,0), then: 
 
(a,b)(p^2-1)/4 mod p = cp-1 mod p = 1 (14) 
 
 Hence, the order of (a, b) is smaller than p2 -1: 
 
therefore, ord(a,b) ≤ (p2 - 1)/4 (15) 
 
If (a,b)q mod p=(0,d), then: 
 
(a,b)2q = (0,d)2 = (-d2) (mod p) (16) 
 
Therefore: 
 
(a,b)(p^2-1)/2 mod p == (-d2)p-1 mod p = 1 (17) 
 
 Thus, the order of (a, b) is smaller than p2 -1; as a 
result: 
 
ord(a,b) ≤ (p2 -1) /2 (18) 
 
 Hence in both cases, (14) and (16), (a, b) is not a 
GG. Q.E.D. 
 
Theorem 4: Suppose (a, b) is a Gaussian integer, p is a 
TP: 
 
(a,b)q ≡ (c,p±c) (mod p) (19) 
 
Let: 

e :=(-4c4)mod p = -(±2c2 )2 mod p (20) 
 
If: 
 
e(p-1)/6 mod p = ±1 (21) 
 
then (a, b) is not a GG. 
 
Proof: First of all: 
 
(a,b)4q = (c,±c)4 = - (±2c2)2(mod p) = e (22) 
 
 Let us define: 
 
vk := e

(p-1)/k mod p (23) 
 
then v1 = 1 and v1 = ±1. Therefore (21) implies that: 
 
(–4cd)r = (c,±c)dr = (a,b)4qr  
= (a,b)(p^2-1)/6 = ±1(mod p) (24) 
 
Hence: 
 
ord(a,b) ≤ (p2 – 1)/3 (25) 
 
i.e., (a, b) is not a generator. 
 Suppose that condition (21) does not hold, i.e., let: 
 
v6 ≠ ±1 (26) 
 
 Let us analyze two sub-cases:  
 
v3 = ±1 or v2 = ±1 (27) 
 
Case A:  v6

2modp = v3 = -1  is  impossible, otherwise 
v1 = -1 and that contradicts Fermat’s theorem. On the 
other hand v6

2 mod p = v3 = 1 implies that v6 = ±1, 
which contradicts the assumption (26). 
 
Case B: Let us demonstrate that: 
 
v2 = 1 (28) 
 
is also impossible. Indeed, consider: 
 
v2 = e(p-1)/2 = (-1)(p-1)/2 [(2c2)2](p-1)/2 
= (-1)(p-1)/2 mod p = 1 (29) 

 
 Therefore, this implies that (a, b) is a GG. Q.E.D. 
 Suppose that N(p) is the number of Gaussian 
generators. 
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Table 4: Required number of Real Integer Multiplications (RIM) 
Operations  (c,d):= (a,b)q mod p er mod p 
Squarings log q complex squarings  Requires logr RIM 
 require 2logq RIM   
Multiplications On average (log q)/2 complex Requires on average  
  multiplications require 3 (logr)/2 RIM 
 (logq)/2 RIM  
Overall 3.5 log q RIM 1.5 log r RIM 

 
Theorem 5: For large p: 
 
N(p) →(p2 – 1)/3 (30) 
 
Proof: If G is a GG, then Gz mod p is also a GG if z is 
co-prime with p2-1.  
 Euler’s totient function shows how many integers z 
satisfy this requirement:  
 
ϕ(p2 -1) = ϕ(24qr) = ϕ(24)ϕ(q-1)ϕ(r-1) 
=(p-3)(p-7)/3=[ (p-5)2 -4] /3 (31) 
 
 Therefore, N(p) = [(p-5)2 -4]/3 = (p2 -1)/3 – o(p). 
 
Corollary: For a large p, if a Gaussian (a, b) is selected 
randomly, then the probability of it being a primitive 
root (generator) is close to 1/3. After t trials, (a, b) is 
likely to be a GG with probability 1-(2/3)t. 
 If t = 3, then the probability is 1-(2/3)t = 0.703703…. 
that it is a GG. 
 Numerous computer experiments demonstrate that, 
on average, the algorithm (9-12) finds a GG after a 
mere three trials, with a standard deviation of 2.44. 
 
Complexity analysis of algorithm: The following 
Table 4 facilitates the analysis.  
 
 
Indeed, from[5] (x,y)2 = ((x+y)(x-y),2xy)(modp) (32) 
 
and (u,w)(x,y)=(ux-wy,(u+w)(x+y)-ux-wy)mod p (33) 
 
therefore, the squaring requires two RIM and the 
product of two complex integers requires three RIM 
(32). Thus, the total number of required RIM is equal to 
3.5×log(p+1)/4+1.5×log(p-1)/6<5log(p+1)/4 = Θ(logp). 
Further reduction of complexity can be achieved via 
application of Toom’s algorithm for computation of 
multi-digit long integers[9]. 

 
Illustrative example: The following numeric example 
demonstrates the most important features of the search 
algorithm and quadratic order of the GG. 
 Suppose a triple prime p = 11443. 
 
Step 1: p = 11443, q = 2861 and r = 1907; {all three 
integers are primes}. 

Table 5: TPs, Gaussian generators and their orders 
TP p GG ord (GG) T (µs) 
11,443 (3801, 7240) 130,942,248 35.21 
11,587 (9925, 3113) 134,258,568 17.07 
12,163 (4761, 10711) 147,938,568 8.78 
14,107 (3598, 1763) 199,007,448 13.31 
15,187 (10173, 12371) 230,644,968 6.32 
99,907 (12209, 93518) 9,981,408,648 7.34 
100,987 (58921, 38436) 10,198,374,168 61.50 
103,387 (21044, 47275) 10,688,871,768 6.17 
104,947 (10289, 17250) 11,013,872,808 5.70 
991,987 (473412, 476250) 984,038,208,168 61.26 
1,030,867 (665172, 814725) 1,062,686,771,688 5.89 
1,038,523 (322164, 825494) 1,078,530,021,528 6.02 
1,998,643 (372339, 931799) 3,994,573,841,448 3.26 
2,004,763 (574467, 342161) 4,019,074,686,168 12.83 

 
Step 2: {First trial}: 
 
 Select randomly (a, b) = (2446, 1893); 
 Step 3: Repeat for k = {2, 3, q} 

 Step 4 {iteration for k = 2}: 
 Compute (c, d) = (7880, 3169); 
 if c = 0 or d = 0 or |c| = |d|,  
 then goto the next trial;  
 Step 4 {iteration for k = 3}: 

 Compute (c, d) = (1683, 11074); 
  if c = 0 or d = 0 or |c| = |d|,  
  then goto the next trial; 
  Step4 {iteration for k = q}:  
  Compute (c, d) = (0, 11074); 
  if c = 0 or d = 0, then goto the next trial; 
Step 2: {Second trial}:  
 Select randomly (a, b) = (3801, 7240); 
 Step 3: Repeat for k = {2, 3, q} 
 Step4 {iteration for k = 2}: 
 Compute (c, d) = (9318, 9093); 
 if c = 0 or d = 0 or |c| = |d|, 
 then goto the next trial; 
 Step4: {iteration for k = 3}: 
 Compute (c, d) = (11335, 10468); 
 if c = 0 or d = 0 or |c| = |d|,  
 then goto the next trial; 
 Step4: {iteration for k = q}: 
 Compute (c, d) = (9571, 9571); 
 if c = 0 or d = 0, then goto the next trial; 
 Step 5: Compute e = 938; 
 Step 6: f = 2932; {see (11) and (12)}; 
 Step 7: If f ≠ ±1, then output (a, b) = (3801, 7240) 
is a Gaussian generator. 
 It is easy to verify that the order of the GG equals: 
ord (3801, 7240) = p2-1 = 114432-1= 130,942,248; 
(Table 5). 
 
Remark: CPU times T required to compute a Gaussian 
generator are provided in micro-seconds (µs).  



J. Computer Sci., 5 (9): 614-618, 2009 
 

618 

All computations were performed on a PC with the 
following specifications: Intel Pentium dual-core 
processor; 2.16 GHz, 1 MB l2 cache and 2GB 
DDR2Main Memory. 
 Table 5 shows that if a GG=(574467, 342161) 

modulo triple prime p=2,004,763, then ord(GG) = 
4,019,074,686,168. 
 

CONCLUSION 
 
 In various public-key cryptographic protocols users 
select a large prime and a corresponding generator g 
that are computationally-intense problems. Selection of 
a triple prime p is a computationally challenging task. 
Fortunately, the triple prime p must be selected only on 
a system-design level. After the triple prime p of a 
specified size is computed, the system designer can 
periodically change Gaussian generators. This policy 
provides additional cyber-immunity to cryptographic 
protocols. 
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