
Journal of Computer Science 6 (10): 1208-1211, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: J. Frank Vijay, Department of Information Technology, Pannimalar Engineering College, Chennai, India
1208

A Comparative Analysis of Software Engineering with Knowledge Engineering

1J. Frank Vijay and 2C. Manoharan

1Department of Information Technology, Pannimalar Engineering College, Chennai, India
2VSA Group of Institutions, Salem, Tamil Nadu, India

Abstract: Problem statement: Software engineering is not only a technical discipline of its own. It is
also a problem domain where technologies coming from other disciplines are relevant and can play an
important role. One important example is knowledge engineering, a term that we use in the broad sense
to encompass artificial intelligence, computational intelligence, knowledge bases, data mining and
machine learning. We see a number of typical software development issues that can benefit from these
disciplines and, for the sake of clarifying the discussion, we have divided them into four categories: (1)
planning, monitoring and quality control of projects, (2) The quality and process improvement of
software organizations, (3) decision making support, (4) automation. Approach: First, the planning,
monitoring and quality control of software development was typically based unless it is entirely ad-hoc
on past project data and/or expert opinion. Results: Several techniques coming from machine learning,
computational intelligence and knowledge-based systems had shown to be useful in this context.
Second, software organizations are inherently learning organizations, that need to improve, based on
experience and project feedback, the way they develop software in changing and volatile
environments. Large amounts of data, numerous documents and other forms of information are
typically gathered on projects. The question then became how to enable the intelligent storage and use
of such information in future projects. Third, during the course of a project, software engineers and
managers have to face important, complex decisions. They need decision models to support them,
especially when project pressure is intense. Techniques originally developed for building risk models
based on expert elicitation or optimization heuristics can play a key role in such a context. The last
category of applications concerns automation. Many automation problems, such as test data
generation, can be formulated as constraint solving problems. A number of metaheuristic algorithms
can be adapted for that purpose and have shown to be practically usable and flexible to adjust to
numerous situations. Conclusion: This study discussed all the points above, identify open issues and
future research directions and provide some carefully selected, key pointers for further reading.

Key words: Knowledge engineering, software engineering, hybrid method

INTRODUCTION

Planning, monitoring and quality control: Like any
human-intensive production/engineering activity,
software development needs reliable techniques to plan
resource expenditures and monitor, assess and control
product quality. More precisely, project expenditures
need to be predicted and significant deviations need to
be monitored. This requires the construction of accurate
prediction models and heuristics to detect significant
deviations and take remedial actions. With respect to
prediction, a number of techniques coming from
machine learning have shown to be useful. Examples
are decision trees (Briand and Wuest, 2002) and rough
sets (Harman and Jones, 2001).
 The main advantages of these techniques can be
described as follows:

• They can easily handle qualitative, categorical
data, which are common in software engineering

• They produce models that are easier to interpret,
which is important in our case as we would like to
understand what factors affect software
development productivity and quality

• They enable the discovery of certain structures in
data sets, e.g., variable interactions in
decision/regression trees

 Computational intelligence, with techniques such
as neural networks (Keung et al., 2004), can also play a
role. Neural networks are good at building complex,
non-linear prediction models. They do not require any
assumption regarding the functional form of the
relationships between predictors and the variable to be

J. Computer Sci., 6 (10): 1208-1211, 2010

1209

predicted. However, their usage may be tedious (i.e.,
the training phase) and the interpretation of the
resulting models difficult. This stems from the fact that
it is difficult to deduce the type and form of
relationships between variables from a neural network.
 Fuzzy set theory has also been used to help with
software engineering prediction models. The main
motivation is that, as mentioned above, the data that
prediction models rely on can be of qualitative and
subjective nature (e.g., Team Cohesion cost driver in
COCOMO II (Chulani et al., 1999). Fuzzy sets have
been designed to deal with linguistic uncertainty and
can help model the uncertainty associated with some of
the subjective model parameters and input data which
are elicited from expert opinion. In other words, when
the user of prediction models have to provide
qualitative values (e.g., categories) in input, fuzzy set
theory can allow them to grant different levels of
memberships to various categories, thus reflecting their
uncertainty about the model inputs. Such uncertainty
has, however, to be accounted for in the prediction
model outputs.
 Another interesting strategy that has been used in
the context of quality and cost prediction models is
Case Based Reasoning (CBR) (Vijay and Manoharan,
2009; Khoshgoftaar et al., 1995). The basic principle of
CBR is to define a similarity function or measure and
use it to retrieve similar projects to reuse their cost or
quality data as a basis for prediction. However, it
requires that a similarity function be defined
beforehand. But in software engineering we are very
often in a situation where we attempt to uncover trends
from data and we are not a position to define such a
similarity function. With respect to cost estimation,
results have so far been rather disappointing (Briand
and Wieczorek, 2001) and this result very likely stems
from the difficulty to define an appropriate similarity
function.
 We have seen that many models (e.g., cost models)
cannot, due to practical constraints, be built solely
based on data (Briand et al., 1998). Therefore, eliciting
expert opinion and modeling expert knowledge is
sometimes key to developing prediction systems.
Ideally, software engineering prediction models should
combine expert opinion and project data. For example,
the COCOMO II (Chulani et al., 1999) model is based
in part of expert opinion. One important question is
then how to integrate expert opinion and project data
into common models. Techniques such as Bayesian
analysis (Chulani et al., 1999) and expert opinion
elicitation techniques combined with Monte Carlo
simulation (Briand et al., 1998) have been used in the
area of cost estimation. The latter technique has also

been used for technology evaluation in the context of
inspections (Briand et al., 2000a). We are in the process
of developing a hybrid techniques which uses the
concept of both software engineering and knowledge
engineering (Vijay and Manoharan, 2009; Keung et al.,
2004).

Software learning organizations: Within an
organization, experience and knowledge acquired on
past software projects can be used to improve practices
on future projects. For example, it may be important to
know whether a requirements engineering technique
has worked well on past projects, what were the
benefits and challenges, what the project participants
felt should be done to improve the way it was used or
automated. The main reason is that, in software
engineering, it is difficult to know a priori whether a
given technique or method will fit well with the
problems at hand and existing practices. Corporate
learning, based on experience, then becomes key to the
effective adoption of new practices and
productivity/quality improvement.
 However, to achieve such an objective, best
practices, lessons learned, models and data need to be
made accessible and reusable across an organization.
Different issues have to be addressed to make this
possible:

• Technical issues: Data and documents need to be

stored and retrieved in an efficient manner.
Knowledge bases need to be designed and
maintained and connected to the company intranet
for corporate-wide accessibility. Security issues
then arise as a result as some of the information
may be confidential

• Organizational issues: Such knowledge bases need
to be fed by projects. Data, information and
documents need to be provided in a consistent
form, based on agreed-upon structure and content.
The information provided must be precise, accurate
and complete. This requires a certain
organizational discipline with procedures that are
defined and enforced

• Cognitive issues: Users accessing such knowledge
bases may be faced with tremendous amounts of
information, most of it being irrelevant to the
problem at hand. It is therefore important to reduce
the cognitive load of the user by allowing him to
retrieve, in an efficient and precise manner,
relevant information

 In this context, the design and maintenance of
corporate wide knowledge bases then become a key
issue to address.

J. Computer Sci., 6 (10): 1208-1211, 2010

1210

 Well-known and mature technologies exist to
address the technical issues related to the design and
maintenance of knowledge bases. The organizational
issue has been addressed by the Quality Improvement
Paradigm (Basili and Caldiera, 1995) and the
Experience Factory Model. The Quality Improvement
Paradigm (QIP) provides steps and guidelines about
how an organization can go about improving itself
based on project experience. The Experience Factory
Model provides a model of corporate infrastructure that
needs to be put in place to support the QIP.
 Cognitive issues can be addressed by using
techniques such as Case-Based Reasoning (CBR)
(Vijay and Manoharan, 2009; Gresse et al., 2001) to
retrieve relevant pieces of information in a knowledge
base. For example, similar past projects can be retrieved
based on a description of a new project and relevant
lessons learned on various technologies and process
issues can be retrieved, e.g., the usage of inspections. In
this case a similarity measure between projects would
need to be defined and, in practice, it would probably
require the use of expert opinion. Furthermore,
Incomplete data (e.g., project descriptions), the use of
categorical variables and taxonomies (e.g., project
types) and the use of various measurement scales are
additional issues to address in defining similarity.
 Numerous, complex decisions have to be made
during software development and maintenance. For
example, one may want to decide what should be the
order of development and integration of components in
a system (Briand et al., 2002), whether a given
document needs further inspection before being
approved (Briand et al., 2000b) and used for the next
phases of development, or whether an inspection
technique at a given stage of development is beneficial
(Briand et al., 2000a). Such types of decisions are
usually not trivial. They typically involve a certain level
of risk and substantial resources are at stake.
 Some of these decision problems can be
reformulated as optimization problems. For example, the
integration order problem above can be reformulated as a
combinatorial optimization problem and techniques such
as genetic algorithms or simulated annealing can help
find near optimal solutions (Briand et al., 2002). The
advantage of such metaheuristic techniques (Vijay and
Manoharan, 2009), as they are referred to, is their
flexibility. The objective function to be minimized is
often to be tailored to specific situations. Such
heuristics, as opposed to mathematical optimization
techniques, enable such tailoring without changes to the
optimization algorithms and automation. Furthermore,
meta-heuristics allows us to solve complex, non-linear
optimization problems that are not always addressable

by conventional mathematical optimization techniques
(Vijay and Manoharan, 2009). Their drawback tough is
that there is no absolute guarantee such heuristics will
provide near optimal solutions. Only case studies and
experimentation can help us determine whether they are
adequate for a problem and under which conditions.
 Not all decisions can be formulated as an optimization
problem. In some cases, the parameters that have a strong
influence on a decision outcome are not known or can
only be estimated with a certain level of uncertainty. This
is the case of the inspection cost-benefit evaluation
example mentioned above (Briand et al., 2000a). In
general, to decide about using a technology, one usually
needs to formulate a cost benefit model and possibly
perform some simulation to account for the multiple
sources of uncertainty in the model inputs and
parameters (Briand et al., 2000a). However, in practice,
even when carefully considering simplifying
assumptions, such models depend on parameters that
are not only unknown but specific to a particular
development environment and for which we cannot
collect data. Fortunately, there exists a large body of
literature on expert estimation, which has been used, for
example, in the nuclear industry to build risk models.
Reported techniques have shown, under certain
conditions, to be very useful to help estimate unknown
model parameters.

Automation: Many activities in software engineering
need to be automated so as to make methods and
techniques economically viable. One good example is
the generation of test data. In most cases, whether we
refer to unit, integration, or functional testing, test
strategies are defined based on coverage criteria, e.g.,
cover all control flow edges in a procedure. As a result,
in many situations, generating appropriate test cases
consists in finding test data that are compliant with a set
of logical constraints, e.g., conditions determining the
control of execution in a procedure. This exercise is
very tedious and error-prone.
 Fortunately, a number of research articles (Vijay
and Manoharan, 2009; Pedrycz and Peters, 1998) have
shown that metaheuristic techniques can also be used in
this context. For example, based on constraints, an
objective function can be defined in the context of
genetic algorithms in order to ensure convergence of
the algorithm towards acceptable input data. Initial
results suggest this is feasible but more empirical
investigations are however needed to determine the best
ways to use those techniques and assess their
limitations to address software engineering issues.
Though many techniques are available and have been
experimented with, software engineering problems
provide new contexts in which to use them.

J. Computer Sci., 6 (10): 1208-1211, 2010

1211

CONCLUSION

 From the discussions above, we have seen that a
wealth of knowledge engineering, artificial and
computational intelligence techniques can be used to
address a number of important software engineering
issues. Though we have focused on techniques and
problems on which we already have experience, it is
clear that this study only scratches the surface. The
potential for cost-effective applications in software
engineering is enormous.
 Expectedly, most of the techniques discussed here
are based on heuristics. What this implies is that they
can only be validated through experimentation and case
studies. And they need to be investigated for each
problem to be addressed and under realistic conditions.
Only then we can determine whether they are
applicable, economically viable and under which
conditions this is the case.
 It is therefore important not to fall into the trap of
blindly using knowledge engineering techniques to
arbitrary software engineering techniques. The well-
known “hammer nail” dilemma should be avoided as it
could lead to substantial waste of effort and negatively
affect the perception that there is an important role to
play for knowledge engineering in software
development. The knowledge engineering community
needs to make a conscious effort to understand the
reality of software engineering challenges and
technologies. In a similar way, software engineers need
to get educated on the latest developments in
computational intelligence, knowledge engineering,
machine learning and hybrid techniques of estimation.

REFERENCES

Basili, V.R. and G. Caldiera, 1995. The Experience

Factory: Strategy and Practice. 1st Edn., University
of Maryland, United States, pp: 41.

Briand, L.C. and J. Wuest, 2002. Empirical studies of
quality models in object-oriented systems. Adv. in
Comput., 56: 97-166. DOI: 10.1016/S0065-
2458(02)80005-5

Briand, L.C., K. El Emam and F. Bomarius, 1998.
COBRA: A hybrid method for software cost
estimation, benchmarking and risk assessment.
Proceeding of the IEEE International Conference
on Software Engineering, Apr. 19-25, IEEE Xplore
Press, Tyoko, Japan, pp: 390-399. DOI:
10.1109/ICSE.1998.671392

Briand, L.C., B. Freimut and F. Vollei, 2000a.
Assessing the cost-effectiveness of inspections by
combining project data and expert opinion.
Proceeding of the IEEE International Symposium
on Softwear Reliability Engineering, Oct. 8-11,
IEEE Xplore Press, San Jose, CA., USA., pp: 124-
135. DOI: 10.1109/ISSRE.2000.885866

Briand, L.C., K. El Emam, B.G. Freimut and O. Laitenberger,
2000b. A comprehensive evaluation of capture-
recapture models for estimating software defect
content. IEEE Trans. Software Eng., 26: 518-540.
DOI: 10.1109/32.852741

Briand, L.C., J. Feng and Y. Labiche, 2002.
Experimenting with genetic algorithms and
coupling measures to devise optimal integration
test orders. Proceeding of the 14th international
Conference on Software Engineering and
Knowledge Engineering, July 15-19, ACM Pres,
Ischia, Italy, pp: 43-50. DOI:
10.1145/568760.568769

Briand, L.C. and I. Wieczorek, 2001. Resource
Modeling in Software Engineering. In:
Encyclopedia of Software Engineering, Marciniak,
J.J. (Ed.). Wiley-Interscience, USA., pp: 70-157.

Chulani, S., B. Boehm and B. Steece, 1999. Bayesian
analysis of empirical software engineering cost
models. IEEE Trans. Software Eng., 25: 573-583.
DOI: 10.1109/32.799958

Gresse, C. von Wangenheim, K. Althoff and R. Garcia,
2001. Goal-Oriented and Similarity-Based
Retrieval of Software Engineering Experienceware.
In: Learning Software Organizations-Methodology
and Applications, Ruhe, G. and F. Bomarius (Eds.).
Springer, USA., pp: 80-120.

Harman, M. and B.F. Jones, 2001. Software
engineering using metaheuristic innovative
algorithms: workshop report. Inform. Software
Technol., 43: 905-907. DOI: 10.1016/S0950-
5849(01)00196-3

Keung, J., R. Jeffery and B. Kitchenham, 2004. The
challenge of introducing new software cost
estimation technology into a small software
organization. Proceedings of the Australian
Software Engineering Conference, (ASEC’04),
IEEE Xplore Press, USA., pp: 52-59. DOI:
10.1109/ASWEC.2004.1290457

Khoshgoftaar, T.M., A.S. Pandya and D.L. Lanning,
1995. Application of neural networks for predicting
program faults. Ann. Software Eng., 1: 141-145.
DOI: 10.1007/BF02249049

Pedrycz, W. and J.F. Peters, 1998. Computational
Intelligence in Software Engineering. 1st Edn.,
World Scientific Publishing Company, USA.,
pp: 485.

Vijay, J.F. and C. Manoharan, 2009. Initial hybrid
method for analyzing software estimation,
benchmarking and risk assessment using design of
software. J. Comput. Sci., 5: 717-724.
http://www.scipub.org/fulltext/jcs/jcs510717-724.pdf

