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Abstract: Problem statement: In a previous research, we investigated the quantum key distribution of 
the well known BB84 protocol with several intercept and resend attacks. In the present research, we 
studied the effect of many eavesdroppers cloning attacks of the Bennett-Brassard cryptographic 
protocol on the quantum error and mutual information between honest parties and information with 
sender for each eavesdropper. Approach: The quantum error and the mutual information were 
calculated analytically and computed for arbitrary number of cloning attacks. Our objective in this 
study was to know if the number of the eavesdroppers and their angle of cloning act on the safety of 
information. Results: It was found that the quantum error and the secured/no secured transition depend 
strongly on the number of eavesdropper and their angle of attacks. The particular cases where all 
eavesdroppers collaborate were also investigated. Conclusion: Furthermore, the cloning attack’s 
quantum error is lower than the intercept and resends attacks one, which means that the cloning attacks 
is the optimal one for arbitrary number of eavesdropper. 
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INTRODUCTION 

 
 The quantum mechanics is used by Wiesner (1983) 
to serve safety of information and he introduces the 
concept of quantum conjugate coding. Several theoretical 
and experimental works have been done in this area. 
However satisfactory proofs of the unconditional security 
have been developed (Christandl et al., 2004; Mayers, 
1996; Shor and Preskill, 2000; Lo and Chau, 1999). 
Many experiment results have been for short distance 
(Bennett et al., 1992) and long distances (Huttner et al., 
1995). Quantum cloning is one of method to measure 
information from input state. However several 
theoretical studies have been established, namely 
optimal universal quantum cloning (Brub et al., 1998). 
Pauli cloning machine of a quantum bit (Cerf, 2000) 
quantum copying beyond the no-cloning theorem 
(Buzek and Hillery, 1996) in a network (Buzek et al., 
1997). The cloning of sequences of qubits encoded in 
the same basis has been studied with the six state BB84 
protocols (Lamoureux et al., 2006). 
 The safety of BB84 (Bennett and Brassard, 1984) 
rests on the impossibility of the perfect cloning. If a 
eavesdropper has a perfect copying machine, it would 
be enough for him to copy the qubits that it intercepts, 
then to send a copy to the receiver and to keep the other 
until the transmitter and the receiver announce their 

bases of measurement. In impossibility of doing it, the 
eavesdropper can decide to copy the qubits in an 
optimal approximate way. It is thus essential for the 
transmitter and the receiver to know what eavesdropper 
can do of better like cloning and the consequences that 
has on the correlations which they measure to check the 
safety of their key, so the Cloning attack eavesdropping 
is an attack which makes it possible to obtain the 
minimum of secure information exchanged between a 
transmitter and a receiver called Alice and Bob. This 
type of attacks is very optimal compared to intercepts 
and resend attacks: The eavesdropper named Eve 
employs a unit operator U called cloning transform. 
This operator can approach the act of cloning which is 
impossible inside theory of quantum.  
 The goal of this study is to study the case of several 
eavesdroppers on a quantum channel. It is about a more 
real approach for Cloning attack which will act on the 
behavior of mutual information between Alice and Bob 
like the quantum error misses within the BB84 
protocol. This study will be focused on two behaviors 
different from the eavesdroppers, the first relates to 
random eavesdroppers and the second relates to 
eavesdroppers which communicate between them and 
in this case we will see the relation between the 
quantum error probability and the number of 
eavesdroppers. 
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MATERIALS AND METHODS 
 

 Alice encodes each random bit into the polarization 
state of a single photon, selects randomly; one of bases 
from a set of two orthogonal or conjugates bases of a 
quantum bit (qubit). She sends randomly 1 or 0, with 
equal probability 1/2, to Bob. Bob measures each 
photon by selecting at random between two polarization 
analyzers. the mutual information between Alice and 
Bob can be described by a joint probability P(xA, xB), 
where xA and xB are random variables representing the 
photon polarization state prepared by the sender (Alice) 
and the measurement results obtained by the receiver 
(Bob). However, xA = 0 (1) if the photon emitted by 
Alice is polarized vertically (horizontally) and xB = 0 
(1) if the measured photon by Bob is polarized 
vertically (horizontally). Between them, a number N of 
eavesdropper Ei(i = 1,…,N), each eavesdropper Ei clone 
with a unitary cloning transform U such as: 
 

( )i   iA E A EU  0 0 0 0=  

 
and  
 

( )i  iA E A E  U  1 0 1 1=  

 
 In all what follows Ei will use U in the base y 
which will be definite as follows:   
 

( )
( )
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U 0 0 0 0

U 1 0 cos( ) 1 0 sin( ) 0 1

0, / 2

=

= θ + θ

θ ∈ π

 

 
 This θi is a parameter controls by Ei and 
measurement the force of the attack. After the cloning, 
Ei keeps the photon which belongs originally to its state 
space and to Bob the photon returns which belonged to 
the state space of Alice. 
 
The mutual information between Alice and Bob:  
  

AB 2 AB AB

2 AB

I(A,B) 1 P (0 / 0)Log (P (0 / 0)) P (1 / 0)

Log (P (1 / 0))

= + +
 

 
 PAB(xB/xA) is the conditional   probability that Bob 
receive a photon polarized xB = 0,1 with respect that 
Alice send a photon polarized  xA = 0,1. However, the 
probability that Bob receive a photon polarized 
vertically (xB = 0) with respect that Alice sends a 
photon polarized vertically (xA = 0) is given by: 

n

iAB AB AB
i 1

n

iAB
i 1

P (0 / 0) P (1 /1) 1 cos( ) / 2 and P (1 / 0)

P (0 /1) 1 cos( ) / 2
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=

 = = + θ 
 

 = = − θ 
 

∏

∏
 

 
The mutual information between Alice and the 
eavesdropper number m: 
  

m m

m m

m AE 2 AE

AE 2 AE

I(A,E ) 1 P (0 / 0)Log (P (0 / 0))

P (1 / 0)Log (P (1 / 0))

= +

+
 

 

m mAE E AP (x / x ) , is the conditional probability that the 

eavesdropper intercept a photon polarized vertically 
(horizontally) (

mEx =0,1) with respect that Alice send a 

photon polarized vertically (horizontally) (xA = 0,1): 
 

m m

m 1

i mAE AE
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 The lost information between Alice and Bob 
corresponds to the maximum information copied by the 
entire eavesdropper: 
 

i
i 1,m

I(A,E) Max[I(A,E )]
=

=    

 
 The error rate or the error probability Perr is given 
by: 
 

 
i i

A B

err AB A B AB A B0 0
x ,x

P P (x ,x ) P (x ,x )
θ = θ ≠

= −∑  

 
 The quantum error Qerr is the value of the error 
probability Perr for which I(A,B) = I(A,E). However, for 
Perr< Qerr, I(A,E) < I(A,B), while for Perr > Qerr, I(A,E) > 
I(A,B): 
  

n

ierr
i 1

P 1 cos( ) / 2
=

 = − θ 
 

∏  

   
 In the particular case, where the eavesdroppers 
communicate between them: 
 

( )n
errP 1 cos( ) / 2= − θ  

 
 While, in the case of alternating collaboration with 
alternating angles (θ1,θ2) the error probability takes two 
different form depending on the parity of the number of 
the eavesdropper. In the case of an even number of 
eavesdropper the error probability is given by: 
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( )n /2 n /2
1 2errP 1 cos( ) cos( ) / 2= − θ θ   

 
 In the case of an odd number it is given by: 
 

( )(n 1) / 2 (n 1) /2
1 2errP 1 cos( ) cos( ) / 2+ −= − θ θ       

  
RESULTS  

 
 We will study the variations of mutual information 
according to the number of the eavesdroppers and their 
angles of attack. Figure 1a shows the variations of the 
mutual information between Alice and Bob I(A,B) 
represented in green color and the mutual information  
I(A,E) intercepted by the Eavesdropper represented in 
red color as a function of the attack angles θ1 and θ2. 
The point of intersection of the curve I(A,B) and I(A,E) 
defines the secured-no secured transition for the various 
values of the angle of attack θ2 from the second 
eavesdropper.   
 

 
(a) 

 

 
(b) 

 
Fig. 1: The mutual information between honest parties 

I(A,B) and loosed information I(A,E) (a) as a 
function of the attack angles (θ1,θ2), (b) as a 
function of the error probability. Numerical 
results are obtained for N = 2 and θ2≥π/5  

 Figure 1b shows the variations of information 
mutual between Alice and Bob I(A,B) and the quantity 
of information I(A,E) according to the error probability, 
the point of intersection of both curves defines the 
quantum error for θ2 = π/5. 
 Figure 3 shows the results corresponding to the 
case of three eavesdroppers (N = 3) where red color in 
the space θ1, θ2 and θ3 correspond to the secured region, 
otherwise the information is not secured.  
 In the particular case in which we assume that 
eavesdropper collaborate between them, in the sense to 
have,   for   example,  identical  cloning  angle  (θ1 = θ, 
i = 1,…, N), it is found, in one hand, that the quantum 
error, calculated numerically, increases as a non linear 
function of the number of eavesdropper for sufficiently 
small number N of eavesdropper (Fig. 4).  
 

DISCUSSION 
 
 We note that in the secured phase, the error 
probability is smaller than the quantum error, while in 
the no secured phase the error probability is greater 
than the quantum error. At the transition, the error 
probability Perr coincides with the quantum error Qerr. 
Phase diagram established in the space parameter 
(θ1,θ2) and presented in Fig. 2, shows the transition line 
between secured and no secured phases. In contrast to 
the case of the protocol with one eavesdropper for 
which the secured-no-secured transition occurs at a 
cloning angle θ1 = π/4, the region of secured phase 
depends on both angle θ1 and θ2. 
 The phase diagram described in Fig. 2 proves that 
for θ1<θ1c ≈ 0.64, the transition line is independent of 
the cloning angle θ1, for θ1>θ1c, the transition depends 
strongly on the values of the cloning angle of the 
second eavesdropper. It’s important to note that the 
transition angle θtr1 increases with decreasing θ2 and 
QKD may be secured in the case of collaborating 
eavesdroppers in case of θ1<θ1c ≈ 0.64. 
 

 
 
Fig. 2: The (θ1,θ2) phase diagram showing the 

transition between secured and no secured 
information in the case of two (N = 2) 
eavesdroppers 
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Fig. 3: Phase diagrams obtained in the case N = 3  
 

 
 
Fig. 4: The behavior of the quantum error as a function 

of the number of eavesdropper in the case 
where θi = θ (i = 1,…,N) for cloning attacks and 
The behavior of the quantum error as a function 
of the number of eavesdropper in the case 
where ωi = ω (i = 1,…,N) for intercepts and 
resend attacks 

 
 However, the problem of three eavesdroppers 
becomes more complicated and especially in the case 
where the three eavesdroppers attack the information 
independently, i.e., when θ1, θ2 and θ3 are completely 
independent (Fig. 3). For θ1≤π/4 and θ2≤π/4, the 
secured space shrinks as long as θ3 increases. The 
safety of information depends strongly on the behavior 
of the 3rd eavesdropper.  If θ1≥π/4 and θ2≥π/4 we 
obtain a no secured space and does not depend on θ3. 
 It is clear from Fig. 4, that knowing the quantum 
error one can easily estimate the number of eavesdropper 
in the channel and the way with which collaborate. We 
note that, for a fixed number of eavesdroppers, the 
quantum error computed in the case of intercepts and 
resend attacks (Ez-Zahraouy and Benyoussef, 2009), is 
greater than the one obtained in the cloning attacks. 
Which means clearly that cloning attacks is very optimal 
compared to the intercepts and resends one.   

 
 
Fig. 5: Phase diagram in the (N,θ) plane showing the 

secured-no secured transition in the case where 
θi = θ (i = 1,…N) 

 

 
 
Fig. 6: Phase diagram in the (N, θ1) plane for different 

values of θ2 

 
 On the other hand, Fig. 5 shows that the secured-no 
secured transition occurs under the effect of the number 
of eavesdropper for a fixed value of the cloning angle θ. 
In other word, with increasing the number of 
eavesdropper in a quantum channel we can pass from 
the secured phase to the no secured one. This result 
means that the information may be secured in the case 
of a small number of eavesdroppers, but it is not 
secured when this number becomes sufficiently large.  
 If the eavesdroppers use two angle of cloning θ1 

and θ2 periodically the zone of transition secured-no 
secured depends at the same time on N Eavesdropper 
Number and θ2 this case is presented in Fig. 6.  
 

CONCLUSION  
 
 We have studied the effect of cloning attacks of 
several eavesdroppers on the mutual information 
between honest parties and the quantum error. We have 
shown that a transition between secured and no secured 
information occurs, depending on cloning attack force 
θi of different eavesdropper and/or their number N.  
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Jointly, we have shown that the behavior of the 
quantum error depends strongly on these probabilities 
and undergoes three kinds of behavior as a function of 
these probabilities. However, in the particular case 
where eavesdroppers have identical probability of 
intercepting attacks, we have shown that the cloning 
attacks is very optimal compared to intercepts and 
resend attacks. 
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