
Journal of Computer Science 6 (7): 728-734, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Idawaty Ahmad, Department of Communication Technology and Network,
 Faculty of Computer Science and Information Technology, University Putra Malaysia, 43400 UPM,

Serdang, Selangor DE, Malaysia
728

A Backward Recovery Mechanism in Preemptive Utility Accrual Real

Time Scheduling Algorithm

1Idawaty Ahmad and 2Muhammad Fauzan Othman
1Department of Communication Technology and Network,
Faculty of Computer Science and Information Technology,

University Putra Malaysia, 43400 UPM, Serdang, Selangor DE, Malaysia
2Engineering Application and System Support Division,

Motorola Multimedia Sdn Bhd 3507 Prima Avenue, Jalan Teknokrat 5,
63000 Cyberjaya, Malaysia

Abstract: Problem statement: This study proposed a robust algorithm named as Backward Recovery
Preemptive Utility Accrual Scheduling (BRPUAS) algorithm that implements the Backward Recovery
(BR) mechanism as a fault recovery solution under the existing utility accrual scheduling environment.
The problem identified in the TUF/UA scheduling domain is that the existing algorithms only considers
the Abortion Recovery (AR) as their fault recovery solution in which all faulty tasks are simply aborted to
nullify the erroneous effect. The decision to immediately abort the affected tasks is inefficient because
aborted tasks produce zero utility causes the system to accrue lower utility. Approach: The proposed
BRPUAS algorithm enabled the re-execution of the affected tasks rather than abortion to reduce the
number of aborted task in the existing algorithm known as Abortion Recovery Preemptive Utility Accrual
Scheduling (ARPUAS) algorithm that employed the AR mechanism. The BRPUAS ensure the correctness
of the executed tasks in the best effort basis in such a way that the infeasible tasks are aborted and
produced zero utility, while the feasible tasks are re-executed to produce positive utility and consequently
maximized the total accrued utility to the system. The performances of these algorithms are measured by
using discrete event simulation. Results: The proposed BRPUAS algorithm achieved higher accrued
utility compared to ARPUAS for the entire load range. Conclusion: Simulation results revealed that the
BR mechanism is more efficient than the existing AR mechanism, producing higher accrued utility ratio
and less abortion ratio making it more reliable and efficient for adaptive real time application domain.

Key words: Adaptive real time, utility accrual scheduling, fault recovery, discrete event simulation

INTRODUCTION

 A real time system is a system where the time at
which event occurs is important. Real-time scheduling
is fundamentally concerned with satisfying an
application time constraints. In adaptive real time
system an acceptable deadline misses and delays are
tolerable and do not have great consequences to the
system. For this type of system, a failure, though never
desirable, degrades the reliability performance of the
system. Thus, one has to build a system as resilient to
fault as possible. Increasing the fault resilience in
adaptive real-time systems is the focus of this study.
 The latest scheduling paradigm in adaptive real time
system environment is known as Time Utility
Function/Utility Accrual (TUF/UA) scheduling (Wu et al.,

2004). A TUF specifies the utility of completing a task
as an application function of when the task completes
as shown in Fig. 1. The urgency of a task is captured as
a deadline on X-axis and the importance of a task is
measured by utility in Y-axis. The completion of a task
within the deadline (i.e., within the start time and
terminate time) will accrue some positive utility (i.e.,
MaxAU) or zero utility otherwise.
 The scheduling optimality criteria of TUF/UA are
based on maximizing the total accrued utility from
execution of all tasks in the system. These criteria are
named as Utility Accrual (UA) criteria (Jensen et al.,
1985). A TUF/UA scheduling algorithm that maximizes
the sum of tasks’ attained utilities will seek to meet all
task deadlines and naturally tend to favor task that are
more important from whom higher utility can be accrued.

J. Computer Sci., 6 (7): 728-734, 2010

729

Fig. 1: The step TUF (Wu et al., 2004; Jensen et al.,

1985)

Objective: The scheduling objectives of this research
are to:

• Maximize the total accrued utility from all

executed tasks in the system
• Ensure correctness of the executed tasks on best

effort basis and achieve the fault free tasks as much
as possible to increase the reliability of the system

Problem statement: Although the BR mechanism is
widely integrated in real time scheduling algorithms
such as EDF and RM (Brzezinski et al., 1995; Sahoo
and Ekka, 2007), none of the existing TUF/UA
scheduling algorithms consider the BR mechanism as
their recovery solution. It is observed that the existing
TUF/UA scheduling algorithms utilize the AR
mechanism for their fault recovery mechanism
(Edward, 2007; Fahmy et al., 2008) where the faulty
task is aborted to perform recovery when a task
encounters an error during its execution. The intuition
to abort the faulty task (without repeating the same
computation) was to accelerate the recovery time to
release resources so that the resources can be used by
another task as soon as possible.
 However, it is observed that the decision to abort
the faulty task in AR mechanism is inefficient because
the aborted tasks produced zero utility thus resulting
less total utility accrued to the system. Figure 2
illustrates the inefficiency scenario of the AR
mechanism. The task characteristics of this scenario are
depicted in Table 1. A task is generated at time 1.00
and its termination time (i.e., deadline) is at 1.50. A
request for a resource occurs at time 1.10 and the
duration to hold the resource is 0.15 sec indicated by
the HoldTime parameter. After using the resource for
0.05 sec, an error occurs at time 1.15. The duration of
the transient error denoted by TransientPeriod is 0.10
sec. In the AR mechanism, after the transient error
period is over at time 1.25, the affected task is aborted.

Fig. 2: Inefficiency scenario in the AR mechanism

compared to the BR mechanism

Table 1: Task characteristics
Task parameters Value
HoldTime 0.15 sec
AbortTime 0.08 sec
TransientPeriod 0.10 sec
Maximum utility (MaxAU) 9.00 sec

The aborted task executes the resource for 0.08 sec i.e.,
the time taken to release the resource indicated by the
AbortTime parameter. Since the aborted task will not
contribute any positive utility, the AR mechanism in
this scenario accrued zero utility to the system.
 Thus, it is important to observe that by reducing
the number of aborted tasks, it is very likely that we
would accrue higher utility to the system. Figure 2
illustrates the scenario of BR mechanism where the
affected task is re-executed instead of being aborted
after the transient error period is over at time 1.25.
Since the time to hold the resource i.e., HoldTime is
0.15 sec, the re-execution of this task completed at time
1.40 before the deadline and produced 9 accrued utility
to the system.

Approach: This research considers the BR mechanism
to reduce the number of aborted tasks in the AR
mechanism. The AR and BR recovery mechanisms are
compared and executed under the existing TUF/UA
scheduling environment as stated below.

Backward Recovery Preemptive Utility Accrual
Scheduling (BRPUAS) algorithm: This algorithm
implements the BR mechanism where the task is rolled
back to its initial state and then proceeds to re-execute
the affected request within the task. This algorithm
ensure the correctness of the executed tasks in the best
effort basis in such a way that the infeasible tasks are
aborted and produced zero utility, while the feasible tasks
are re-executed to produce positive utility and
consequently maximized the total accrued utility to the
system.

J. Computer Sci., 6 (7): 728-734, 2010

730

 Figure 3 elaborates the BR mechanism in BRPUAS
algorithm. After an erroneous request is detected in a
task i.e., Trec, the time taken to re-execute the request
known also as HoldTime is placed into a feasibility test
to check whether the request is eligible for re-
execution. A task is feasible if the re-execution of the
affected request does not exceed the termination time of
the task. The remaining execution time of task Trec
before its termination time denoted as ExecTime is
measured. The calculation of the ExecTime can be done
by capturing the termination time of task Trec (i.e.,
TerminateTime) and subtracts it with the current
simulation clock time denoted as sclock. If the value of
HoldTime is more than the ExecTime, this indicates
that the task is infeasible and the re-execution of the
request will exceed termination time which ending up
the task to be eventually abort later on. In this case, the
re-execution is omitted and task Tec is aborted. The
status of resources that are currently held by task Trec
is changed to ABORT mode and the resources are
executed according to their AbortTime.
 If task Trec is feasible indicated by the value of the
HoldTime that is less than the ExecTime, then the
affected request is re-executed in NORMAL mode to
perform the computation once again. The status of the
resource is changed to BUSY state and task Trec is set
as the owner of the resource.

Abortion Recovery Preemptive Utility Accrual
Scheduling (ARPUAS) algorithm: This algorithm
implements the AR mechanism where all faulty
task is aborted after the transient error period is over.

Fig. 3: Flow charts of the fault recovery mechanisms

Figure 3 gives the details the scheduling decision made
by the AR mechanism in ARPUAS after the erroneous
period for a request in a task, Trec is over. After an
erroneous request is detected in a task i.e., Trec, the
resources that are currently held by task Trec are
aborted and the resources are executed according to
their AbortTime. This mechanism is simple because all
the faulty tasks are simply aborted to enable recovery.

MATERIALS AND METHODS

 We developed a Discrete Event Simulator (DES) to
verify the performance of our proposed algorithms. The
rationale of using DES lies in the fact that most of the
research in TUF/UA scheduling paradigm are based on
the discrete event simulation tools (Jensen et al., 1985;
Ravindran et al., 2005; Li et al., 2006). Therefore, in
order to precisely model the fault recovery algorithms,
DES written in C language is the best method to
achieve this objective. Figure 4 shows the entities
involve in our simulation study. It consists of a stream
of 1000 tasks, a queue of an unordered task list, the
scheduler and a set of resources.

Task model: The task model is shown in Fig. 5. The
average execution time i.e., ExecTime for a task is
0.50 sec. Each task has an initial time and a termination
time. Initial time is the earliest time for which the utility
of a task is defined and termination time is the latest
time for which the utility is defined. That is, utility is
defined in the time interval of (StartTime,
TerminateTime) for each task. Beyond that, the utility
is undefined.

Fig. 4: Simulation model

Fig. 5: Task model

J. Computer Sci., 6 (7): 728-734, 2010

731

 During the lifetime of a task, it may request one or
more resources. In general, the requested time intervals
of holding resource maybe overlapped. A task specifies
the duration to hold the requested resource in HoldTime
parameter. The duration to hold a resource is randomly
generated following the normal distribution as depicted
in Table 2. The scheduler uses the HoldTime
information at run time to make scheduling decisions.
 Table 2 summarized the details task settings
configured for the simulation model. The arrival times
of tasks into the system (i.e., iat) are random which
follows exponential distribution. Each task has its
maximum utility that could possibly accrued by the
system from the task if it is completed within its
deadline. We refer this value as MaxAU.
 If task has not completed its execution, it will then
be aborted. Abortion of a task usually involves necessary
cleanup operating by both the system software and the
exception handlers in the application. We refer to the
time consumed by this cleanup as AbortTime.

Fault model: The fault model is a set of assumptions
on the kind of faults that are possible to occur in the
system. During the execution of a task it may request
one or more resources. These requests may encounter
error such as request execution failure, request queuing
failure, resources error and external triggers that occurs
during the runtime of a task. It is assumed that these
transient software faults that occur in a request can be
effectively recovered by re-execution or abortion of the
affected request. The fault model defined in this
research is shown in Fig. 6. Three steps are taken in
order to induce an error into a request of a task as stated
below.

Step 1: For the erroneous task i.e., Terror, the

erroneous request is randomly chosen among
the entire possibly available request within that
task

Step 2: For this case, the request and the resource that

is currently being used by the task denoted as
rid is freezed for TransienPeriod to model the
transient default

Step 3: The next task to be in error state i.e., Terror is

determined randomly following the
exponential distribution with mean error rate
denoted by mean_tasks

Resource model: The resource model represents the
physical and logical resources. Examples of physical

resource include disks or network interfaces for
performing disk I/O or network I/O, respectively. An
example of logical resource is critical sections of source
codes in real time applications. To model the resources
the following assumptions are made:

• Resources are reusable and can be shared but have

mutual exclusion constraints. Thus, only one task
can be using a resource at any given time

• Only single instance of a resource is presented in
the system

• A resource request from a task can only request a
single instant of the resource. If multiple resources
are needed for a task to make progress, the task
must acquire all resources through a set of
consecutive resource requests

Fig. 6: Fault model

Table 2: Simulation parameters
Parameter Range Description
iat Exponential (C_AVG/load) Task inter-arrival time
HoldTime Normal (0.25, 0.25) Duration for holding a
 resource.
MaxAU Normal (10, 10) Task maximum utility
AbortTime Any random number that Duration for cleanup
 is less than HoldTime time of a task before it
 can releases the resources.
Transient 0.10 sec Duration of transient
period error of a request
ExecTime 0.50 sec Average task execution
 time
Mean_task 0.1, 0.5 or1.0 Task error rate

J. Computer Sci., 6 (7): 728-734, 2010

732

RESULTS

 The performances of TUF/UA scheduling algorithms
are measured by the metrics that relies on the application
specifications. For TUF/UA scheduling domain, the
Accrued Utility Ratio (AUR) metric defined in
(Ravindran et al., 2005) has been used in many algorithms
(Wu et al., 2004; Ravindran et al., 2005; Li et al., 2006)
and considered as a standard metric in this domain. AUR
is defined as the ratio of accrued aggregate utility to the
maximum possibly attained utility. Figure 7 shows the
comparison of the fault recovery algorithms i.e.,
BRPUAS and ARPUAS in three different error rates i.e.,
0.1 (lowest), 0.5 (medium) and 1.0 (highest). The value
of 0.1, 0.5 and 1.0 indicates that almost 10, 50 and 100%
of the total executed tasks, respectively experienced
transient fault during their execution. The nature of the
curves in Fig. 6 clearly indicates that the proposed
BRPUAS algorithm achieved better performance by
producing higher accrued utility compared to ARPUAS
for every error rates.
 In the highest error rate, BRPUAS accrued almost
24.6% of the utility compared to ARPUAS that accrued
almost 1% utility to the system. As the error rate
decreases i.e., in the medium error rate, BRPUAS
accrued higher utility i.e., 50.6% and ARPUAS accrued
38.5% to the system. In the lowest error rate, BRPUAS
accrued almost 71.6% utility compared to 66.5%
accrued by ARPUAS. The higher utility accrued in
BRPUAS is because the BR mechanism eliminates the
abortion that occurs to erroneous tasks and it re-
executes the affected tasks in best effort manner that
possibly produces positive utility to the system. Thus,
lead to greater accrued utility rather than AR
mechanism in ARPUAS that abort erroneous tasks
which definitely produces zero utility to the system.
Since aborted tasks produce zero utility, consequently
ARPUAS produces more zero utility tasks that
ultimately contributed to lower accrued utility
compared to BRPUAS.
 In addition, we consider two other metrics to
precisely examine the effectiveness of our proposed
algorithms. The Success Ratio (SR) is the ratio of task
successfully attained positive utility to the total task
executed in the system. The SR supports the result of
AUR because it measures the exact number of tasks
that contributed to AUR.
 Figure 8 plots the success ratio performances of
the BRPUAS and ARPUAS algorithms. It highlights
the improvement of BRPUAS compared to ARPUAS
in the highest load. In the highest error rate, the
BRPUAS achieved almost 32% compared to
ARPUAS that acquired only 7% of the successful tasks.

Fig. 7: AUR results

Fig. 8: SR results

J. Computer Sci., 6 (7): 728-734, 2010

733

Fig. 9: ABR results

As the error rate decreases, higher successful tasks are
recorded in which BRPUAS achieved almost 53% and
ARPUAS gained 41% of successful tasks ratio. In the
lowest error rate, the BRPUAS achieved almost 71%
and ARPUAS acquired 67% of the successful tasks.
 Figure 8 supports the AUR results shown in Fig. 7
because it measures the exact number of tasks that has
successfully contributed to AUR. The curves clearly
indicates that the proposed BR mechanism in BRPUAS
achieved better performance by producing higher
number of tasks that has accrued positive utility to the
system compared to AR mechanism in ARPUAS. Thus,
it proves that the reason of BR mechanism acquired
higher utility compared to the AR mechanism is
specifically because of the increases on the number of
tasks that has successfully contributes utility to the
system that lead to greater accrued utility.
 Figure 9 plots the Abortion Ratio (ABR)
performances of the BRPUAS and ARPUAS
algorithms. The Abortion Ratio (ABR) is defined as the
ratio of aborted tasks to the total of executed tasks. It is
observed that the BR mechanism in BRPUAS is able to
reduce the number of abortion as compared to the AR
mechanism in ARPUAS for every error rates.
The attempt to re-execute the affected tasks in
BRPUAS has prevented the tasks from being aborted

compared to the ARPUAS that simply abort erroneous
tasks and thus failed to contribute any utility to the
system. Therefore, lower abortion ratio is recorded for
the BR mechanism in BRPUAS.

DISCUSSION

 The proposed BRPUAS algorithm achieved the
best performances with higher accrued utility, success
ratio and lowest abortion ratio compared to the
ARPUAS algorithm. In general, our proposed
algorithms BRPUAS have successfully reduced the
number of aborted tasks in ARPUAS that ultimately
contributed to reliable and higher accrued utility to the
system.

CONCLUSION

 In this study we proposed an efficient TUF/UA
fault recovery scheduling algorithm called BRPUAS
that considers task subjected to deadline expressed
using step TUFs. The proposed BRPUAS algorithm
implemented the BR recovery mechanism to overcome
the abortion problem that occurs in the ARPUAS
algorithm that implemented the AR mechanism.
Simulation results reveal that BRPUAS outperform the
ARPUAS with highest accrued utility and lowest
abortion ratio making it more reliable and efficient in
real time application domain.
 A number of extensions to this research can be
carried out and are given as follows:

• The algorithms can be deployed in network and

distributed environment. Flow control and routing
algorithms should be integrated into the research.
Thus, increasing the feasibility in actual
implementation of the algorithms

• The real implementation of BRPUAS on real-time
POSIX-compliant operating system using the meta-
scheduling framework can also demonstrates the
effectiveness of this algorithm

REFERENCES

Brzezinski, J., J.M. Helary and M. Raynal, 1995.

Semantics of recovery lines for backward
recovery in distributed system. J. Annall.
Telecommun., 50: 874-887. DOI:
10.1007/BF03005244

Edward, A.C., 2007. Recovering from distributable
thread failures with assured timeliness in real time
distributed system. Proceeding of the 25th IEEE
Symposium on Reliable Distributed System, Oct.
2-4, IEEE Xplore Press, Leeds, United Kingdom,
USA., pp: 267-276. DOI: 10.1109/SRDS.2006.38

J. Computer Sci., 6 (7): 728-734, 2010

734

Fahmy, S., B. Ravindran and E.D. Jensen, 2008. On
Collaborative scheduling of distributable real time
threads in dynamic, networked embedded
systems. Proceeding of 11th IEEE Symposium on
Object Oriented Real Time Distributed
Computing, May 5-7, IEEE Computer Society,
Washington DC., USA., pp: 485-491.
http://www.computer.org/portal/web/csdl/doi/10.11
09/ISORC.2008.11

Jensen, E.D., C.D. Locke and H. Tokuda, 1985. A time
driven scheduling model for real time operating
systems. Proceeding of the IEEE Symposium on
Real-Time System, Dec. 1985, IEEE Xplore Press,
USA., pp: 112-122. http://www.real-
time.org/docs/rtss85.pdf

Li, P., H. Wu, B. Ravindran and E.D. Jensen, 2006. A
utility accrual scheduling algorithm for real-time
activities with mutual exclusion resource
constraints. IEEE Trans. Comput., 55: 454-469.
DOI: 10.1109/TC.2006.47

Ravindran, B., E.D. Jensen and P. Li, 2005. On recent
advances in time/utility function real-time
scheduling and resource management. Proceeding
of the 8th IEEE International Symposium on
Object-Oriented Real-Time Distributed
Computing, May 18-20, IEEE Xplore Press, USA.,
pp: 55-60. DOI: 10.1109/ISORC.2005.39

Sahoo, B. and A.A. Ekka, 2007. Backward fault
recovery in real time distributed systems of
periodic tasks with timing and precedence
constraint. Proceedings of the International
Conference on Emerging Trends in High
Performance Architecture, Algorithms and
Computing, July 11-13, Chennai India, pp: 124-130.
http://dspace.nitrkl.ac.in/dspace/bitstream/2080/44
7/1/hipaac.pdf

Wu, H., B. Ravindran, E.D. Jensen and P. Li, 2004.
CPU scheduling for statistically-assured real-time
performance and improved energy efficiency.
Proceeding of the 2nd IEEE/ACM/IFIP
International Conference on Hardware/Software
Codesign and System Synthesis, Sept. 8-10, IEEE
Xplore Press, USA., pp: 110-115.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arn
umber=1360490

