
Journal of Computer Science 8 (2): 243-250, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Nashwan A. Al-Romema, Faculty of Computing and Information Technology in Rabigh,
 King Abdulaziz University, Rabigh 21911, Saudi Arabia

243

Retrieval Optimization Technique for Tuple

Timestamp Historical Relation Temporal Data Model

Sami M. Halawani, Ibrahim AlBidewi,
Ab Rahman Ahmad and Nashwan A. Al-Romema

Department of Information Systems,
Faculty of Computing and Information Technology in Rabigh,

King Abdulaziz University, Rabigh 21911, Saudi Arabia

Abstract: Problem statement: In the field of database technology, Recoding time related data are
referred to as temporal databases. Conventional relational databases are queried using the underlying
constructs of SQL which are translated into Relational Algebra (RA). Relational Algebra (RA) is the
writing of logical expressions that uses a set of relational operators to perform operations on specific
relation(s) and returns results as relation. RA operations are not applied on querying temporal
database, because temporal database holds a sequence of snapshot relations. Approach: This study
focuses on the retrieval of temporal database, by extending RA to TRA. TRA is involved to help
querying temporal database that is modeled using Tuple Timestamp Historical Relation (TTHR)
Model. Results: A technique for querying temporal database modeled by TTHR is the topic of this
study. We examine the current issues and problems in temporal database and propose data retrieval
optimization technique for temporal database. Conclusion: We proposed a data retrieval optimization
technique for querying temporal database; this technique applies for the temporal database applications
that are modeled by TTHR.

Key words: Relational Algebra (RA), Tuple Timestamp Historical Relation (TTHR), Temporal

Relational Algebra (TRA), Temporal Normal Form (TNF)

INTRODUCTION

 Temporal database is defined as “a database which
supports some aspect of time, not counting user-defined
time” or the database system that stores time-varying
data (Kostenko, 2007). Several terminologies can be
used to define temporal database like time-varying,
time-oriented and historical database systems.
Traditional database systems are designed to store and
process the state of the reality at a sigle point of time,
whearas temporal database have the capability to record
and process time-varying aspects of the real in past
present and feature world Haraty and Bekaii, (2006).
Temporal database With growing sophistication of
DBMS applications, the lack of temporal support in
conventional DBMS raises serious problems when
used to develop temporal database applications.
Some of the approaches of developing temporal data
model suggested extending the standard relational data
model so that it supports time varying data and the
other approaches are based on extending the snapshot
model with time appearing as additional attributes

Haraty and Bekaii, (2006). The following approaches
which are discussed in Patel (2003) and Torp et al.
(1999) underline how a temporal database can be
created:

• Build a complete TDBMS from scratch that

provides a primitive data type and handles the
different states/time instances of data being stored
(integrated approach)

• Developing a technique that extends non-temporal
data model to temporal data model on top of
conventional DBMS that acts as stratum (stratum
approach)

 The first approach involves building a complete
TDBMS from bottom up which is a very large and time
consuming task, it is also difficult as the underlying
principles used by commercial DBMS to optimize
operations must be reformed and a lot of theoretical
work needs to be carried out to show that the new
system is fully complete, the amount of time and
manpower required for this approach is similar to that
needed by commercial vendors to develop DBMS that

J. Computer Sci., 8 (2): 243-250, 2012

244

we all are familiar with today. While the second
approach does not involve any changes to the existing
database technology and simply might be developed as
we just build new technique for temporal support on top
of the existing conventional DBMS that will be used. A
Tuple Timestamp Historical Relation (TTHR) is a
temporal database model that is proposed by Halawani
and Romema (2010), where the relation that needs to
capture temporal time aspects decomposed in to two
relations, one represents the current state relation and
the other recodes the changes in all the time varying
attributes. Literature Review

MATERIALS AND METHODS

Temporal Relational Algebra (TRA): TRA is a set of
temporal specific operators which helps writing logical
expressions for querying temporal database; in addition
to that TRA includes all the RA operators. The new
temporal operators which are described can be used
only for historical database, these operators are known
as Until Since (US) logic, US logic operators are
sample extension of classical logic that have been
shown to be mathematically sound by the research on
temporal logic and temporal properties. US logic
have proven semantically to be popular operators for
querying temporal database which are used in the
language of first order temporal logic discussed in
(Mariusz, 2007).

Until and since logical operators (US): The
conventional relation algebra operators: select (σσσσ),
project (Π), product (X), union (∪) and difference (-)
together with the new temporal specific operators
which are extended from conventional relational
algebra are used for querying temporal database. These
operators are Until and Since logical operators (Patel,
2003). The semantic of until and since is considered as
that, for any two facts A and B in temporal database we
can say the following:

A Until B means: A must hold at all times until the
time B holds. A holds for all future snapshots up to
and including the snapshot when B holds. At time n,
the result is false.

A Since B means: A must have held at all times
since B held. A holds for all past snapshots back to
and including the snapshot when B held. At time 0,
the result is false.
 N is the latest time/data that the temporal database
can be timestamped by and 0 represent the starting time

point of the temporal database. Whereas Finger (2000)
defined the semantic of Until and Since logic S (Since)
and U (Until) as the following:

• S(A,B) reads ‘since A was true in the past, B holds

and U(A,B) reads 'until A is true in the future, B
holds’

• The operators S and U are assumed to be strict
because they inform nothing about the

• Current time events, example B is not forced to
hold at the time when A holds

 Other unary connective operators which could be
derived from Since and Until logical operator are shown in
Table 1, where these operators are called modal operators.
 These operator are derived from US logic as
described in Patel (2003), we reused these operators for
querying temporal database which are modeled by
TTHR-temporal database model in Halawani and
Romema (2010). Interval based model versus point
based model in the temporal database involves period
and there are a set of predicate and constructors for
period temporal data type, where about 13 possible
relationship between two periods can be constructed
explained in Elmasri and Navathe (2000). We use these
constructors as auxiliary relational operators for
implementing TRA in conventional RA in Table 2, there
is a summary of these functions, where we assumed that
[a, b] is a period and [c , d] is another period.

Implementing TRA in RA: Querying temporal
database can be accomplished by using the new TRA
operators or by using the conventional RA after begin
revised in order to manipulate temporal data (keeping in
account the time interval) and extract correct
information from temporal database. Implementing
TRA in terms of RA is discussed in Patel (2003) where
the concept of Temporal Normal Form (TNF) is
reviewed, which means that TRA works properly on
temporal database that is in TNF, These publications
are referenced when describing the temporal operators
in this study. an example is the relation schema in Fig.
2 that will be used and referred for all examples
illustrated in this study, where.
 Employee table represents the current state table of
the employee and the lifespan time of the employee is
considered as part of the modeled reality where we add
LSST and LSET.
 VT-Employee table represents the valid-time
aspect of time varying attributes of employee table
which are considered and indexed as 3, 4, 5 and 6 for
(address, rank, salary and department) respectively as
shown below, where we have data for 3 employees and
historical valid-time data for their time varying attributes.

J. Computer Sci., 8 (2): 243-250, 2012

245

Table 1: Derived modal operator for temporal relational algebra
Operator Meaning Semantic
♦R Past The tuples of R that held at sometime in past or that are in snapshot before
 the current snapshot (Derived from since operator)
• R Previous The tuples of R that held at one tick in the past or that are in snapshot at the previous
 moment of the current snapshot (derived from Since operator)
■ R Always in the past The tuples of R that held at all times in the or that are present all snapshots before
 the current snapshot (Derived from since operator)
◊◊◊◊ R Future The tuples of R that hold at sometime in future or that are in snapshot after the
 current snapshot (Derived from until operator)
ο R Next The tuples of R that hold at the next moment or that are in snapshot after the current snapshot.
 (Derived from until operator)
���� R Always AlwaThe tuples of R that hold at all times in thein future or that are present in all snapshots
 after the current snapshot (Derived from Until operator)

Table 2: Auxiliary functions for temporal database query
Function Meaning Semantic
[a, b] Period [a, b] and [c, d] If a<d and b>c then
Overlap both has a common shared Overlap
[c, d] instance time. Else
 No overlap
 End if;
Min (a, d) The minimum value of pair If a< = d then
 of time instance values Return d;
 Else
 Return d;
 End if;
Max (a, d) The maximum value of pair If a> = d then
 of time instance values Return a;
 Else
 Return d;
 End if;

Fig. 1: Example of Coalesce Function on Employee

Relation

Time-relation each tuple in this table contains the time
point and the corresponding date that is used in the
other relations, we use this table as mapping (look up)
table, that represents each time point, e.g., time point 1
represent the time granule 01/01/2000 and time point 2
represents 01/02/2000. We assumed that the time model
in this example is considered with time granularity
equal to one month. Temporal variable (Now) can be
represented as unreachable date like 01/01/3000.

Temporal relational algebra:
Project ΠΠΠΠt:

Πt A,B,C R = C(Πt A,B,C R)

 Project A, B and C attributes from temporal
relation R at time point ‘t’ need to be nested in a
function known as a coalesce function (we use “C” for
denoting coalesce function) which is shown in Fig. 1
and referenced from Patel (2003), this function used for
the purpose of storing the result of query in a relation
and merge all tuples that have the same non-temporal
attributes and overlapping intervals Zimanyi (2006),
the goal of this function is to have the result of the
query in TNF. To make the idea of coalesce function
clear, let us query ssn, index, VST and VET from
VT-employee relation for employee with ssn = 100
by:

Πt SSN,index,VST,VET VT-employee

 The result of this query is in Q1 which violates
TNF, we might need this output to be input to another
query, so applying the coalesce function is desired to
have the result as shown in Q2.

 Select σσσσt:

σt R

 Select operator is used for retrieve the historical
data that are valid at specific time point. As an example
is to retrieve the employees’ salary at time point 3, the
result is shown bellow:

Q
SSN Index α VST VET
100 5 200 2 6
102 5 250 1 4

Product Χt:

S Xt R = Π S, R, max (R.VST, S.VST), min (R.VET, S.VET) (σoverlap(S, R) (SX R)

 Temporal product operator can be implemented by
using the project and select operators with addition to
the auxiliary functions as shown in the above formula.
 Temporal product is different from non-temporal
product that binds each tuple from relation S with each

J. Computer Sci., 8 (2): 243-250, 2012

246

tuple from relation R, the result will be a relation of
Size(S) * Size(R), the temporal product bind each tuple
from S with each tuple from R if and only if their
respective time periods overlap. For example we
consider that S represents the historical valid-time data
of the salary of employee with ssn = 100 and R
represents the historical valid-time data of the address
of the same employee, by applying the temporal
product to these two relations we get the result as the
following.

Since-product Sxt: Since product Temporal operator
can be implemented in conventional RA by using the
project and select operators, in addition to the auxiliary
functions as shown in the above formula, the output
goes through C (Coalesce) function which translates the
result of the query into temporal normal form as
discussed in (Patel, 2003).

Until-product Uxt:

S Uxt R = C (Π S, R, S.VST - 1, min (R.VET, S.VET) -1

σoverlap (S, R) (SX R)

 Until product Temporal operator can be
implemented in conventional RA by using the project
and select operators in addition to the auxiliary
functions as shown in the above formula, where the
output goes through C (Coalesce) function that translate
the result of the query into temporal normal form as
discussed in (Patel, 2003):

Join t :

S t R = S, R, max (R.VST, S.VST), min (R.VET, S.VET) and

 S.common-att = R.common-att σoverlap(S, R) (SX R)

 Temporal join is the same as temporal product
operator. In addition to that, the common attribute
between the two relations should be identical. Temporal
natural join is different from non-temporal natural join
that would bind only the tuples from relation S with
tuples from relation R, where the join is done on the
common attributes which is shared by the two relations,
this is used to check if two tuples can be joined, for a
temporal join, a tuple from the S table is joined to a
tuple form R table if their respective time periods
overlap as well as obeying the existing conditions to
perform a non-temporal join, the since and until join
operators are extended from temporal join and defined
as the following:
Since Join S t:

S St R = C (ΠS, R, max (R.VST, S.VST), S.VET + 1 and
 S.common-att = R.common-att σoverlap(S, R) (SX R)

Until Joi n U t:

S Ut R = C (Π S, R, S.VST -1 , min(S.VET ,R.VET) −1 and
 S.common-att = R.common-att σoverlap(S, R) (SX R)

 The Since join and Until join operators produce a
temporal since and until join of the two relations
respectively, these two new operators are temporal
related operators and can only be applied to temporal
databases, where both since and until join are similar to
the temporal join except that when integrating time
periods of each tuple being used by the since and
until join, different time intervals are produced to
those found when performing a temporal join, for
further reading on these operators and other temporal
relational algebra that are not discussed here see this
publication (Patel, 2003).

RESULTS AND DISCUSSION

Temporal-SQL: Querying temporal databases which
are modeled based on the proposed data model
discussed in Halawani and Romema (2010) and
implemented using standard SQL can be evaluated
according to the supplying time tick to the query.
discussed this issue by classifying temporal query into
current query, sequenced query and non-sequenced
query, we followed the same approach for modeling a
technique to query temporal database.

Current queries: In current queries we are asking for
the state of the database at the current time. This data
might be the current state or the current valid of the
database at the current time, these two queries might be
the same or different according to the interested data we
want to retrieve, if we ask for the data that represent the
current state regardless of its validity, we can use these
queries, where we project our query to the current state
relation as in Q1 bellow. In this case, we do not need
any temporal operator and no need to add pure-
time(time-slice) condition in the query, since this
relation holding the current state of the database, but if
we ask for the current state of the database that is valid
at the current time (because in valid time model we can
store some fact that will be valid in the future and in our
proposed temporal data model this fact is stored in the
current state relation and the history of data validity
stored in the auxiliary relation as introduced before) so
if we are asking for the current valid data at the current
time the query will be different from the previous one,
where data can be gathered from a view that
constructed by joining current state relation and the
auxiliary historical relation.

J. Computer Sci., 8 (2): 243-250, 2012

247

Fig. 2: Example relations for applying temporal on relational schema

Fig. 3: Pseudo Algorithm for the coalesce function

Example: Using the temporal relations in Fig. 2 and 3
and querying the data of the employee using the concept
of current query, we assume that we are in time tick 10
and we want to query the data of employee with ssn = 102.

Current state:

Q1

Select * from employee where ssn = 102;

The result of Q1:

Q1
SSN Name DOB Addess Rank Salary Dept_no LSST LSET
102 Zayed 12/3/84 Amman A+ 700 21
 1 Now

 We can see that this data is valid for all attributes
of the employee at current time 10 as we assumed,

except the data for salary, where the value of this field
will be valid in the future at time tike 12 as shown in
VT- Employee relation, but sometimes current state is
the right answer when we do not have proactive valid-
time data in the temporal data model. In all ways, we
still need a mechanism to deal with this issue and to be
in high level abstract of the end user, this can be
accomplished be constructing a view that joins the
current state relation with its auxiliary relation in order
to retrieve the valid data where its validity overlap the
current time, the view can be built as the following:

Current valid:

Q2:
Select: E.ssn, E.name, E.DOB, Address_VT.α ,
Rank_VT.α , salary_VT.α , dept_no_VT.α

From: employee E, VT_employee Address_VT ,
VT_employee Rank_VT :
VT_employee salary_VT, VT_employee dept_no_VT

Where E.ssn = 102 and E.ssn = Address_VT.ssn and
Address_VT.index = 3 and
Current_date/time> = Address_VT.VST and
Current_date/time < Address_VT.VET and
E.ssn = Rank_VT.ssn and Rank_VT.index = 4 and
Current_date/time>= Rank_VT.VST and
Current_date/time < Rank_VT.VET and
E.ssn = Salary_VT.ssn and salary_VT.index = 5 and

J. Computer Sci., 8 (2): 243-250, 2012

248

Current_date/time >= Salary_VT.VST and
Current_date/time < Salary_VT.VET and E.ssn =
dept_no_VT.ssn and dept_no_VT.index = 6 and
Current_date/time >= dept_no_VT.VST and
Current_date/time < dept_no_VT.VET

The result of Q2:

Q2

SSN Name DOB Addess Rank Salary Dept_no LSST LSET

102 Zayed 12/3/1984 Amman A+ 500 21 1 Now

Sequenced queries: The current queries take time-
varying tables and extract a state at the current point
time or at particular point in time.
 Once that state is available, it can be manipulated
conventionally, but in sequenced queries we consider
the result of the query as valid-time table, the query will
be over one or more temporal table and produce
temporal result in contrast to current query which return
snapshot state. Selection, Projection, Sorting and union
all queries on temporal table are sequenced queries but
applying join operation on two valid-time tables in
temporal fashion is more challenging, what is desired
here is to combine the history from two tables termed as
sequenced join. As an example we consider S to
represent the historical data of salary and R to represent
the historical data of address as in Fig. 4. To combine
the history of salary and address of the employee at
each point of time we use sequenced join concept
that is discussed in, by using SQL, the query must do
case analysis of how the period of validity of each
row of S relation overlap the period of validity of
each row of R relation. There are four possible cases;
case 1 the period associated with S relation is
contained in the period of R relation or vice versa for
case 4, while case 2 and case 3 identify the overlap
between the two periods as shown in Fig. 5.
Implementing sequence join for the above example
in standard SQL can be accomplished using code
fragment 6. Where we use ‘union all’ operator of the
four SQL statements that represent the four cases
depicted in Fig. 5. By using SQL case expression, we
can rewrite the sequence join using single statement
as illustrated in fragment code 7. By using stored
function we can rewrite the SQL in simplified version
as shown in fragment code Fig. 8 and explained in
(Zimanyi, 2006).
 First case expression can be implemented as stored
function start_instance and the second case expression
can be implemented as end_instance function.

Fig. 4: Temporal Product operator between S and R

relations

Fig. 5: Sequenced join cases

Fig. 6: SQL Fragment Code for Extracting the History

of Employee’s Salary and Address (sequenced
join using union all operator)

J. Computer Sci., 8 (2): 243-250, 2012

249

Fig. 7: Fragment Code for Extracting the History of

Employee, Salary and Address (Sequenced Join
using Case Expression)

Fig. 8: SQL Fragment Code for Extracting the History

of Employee, Salary and Address (Sequenced
Join using Stored Functions)

Fig. 9: Temporal Database Management System

(TDBMS) (Patel, 2003)

Non-sequenced queries: We have seen current and
sequenced queries, the non-sequenced query on
temporal tables is straightforward, such queries ignore
the time-varying nature of the tables, the phrases of the
past, the present and at sometime indicate that the query
is a non-sequenced one, some non-sequenced queries
do examine the timestamps Fig. 6 and 7. Patel (2003)
proposed a technique for developing temporal database
on top of conventional relational database management
system; the system architecture is in Fig. 9. The

middleware is software that gets the query from the end
user via the interface and translates the entire temporal
query into conventional query to be passed to the
conventional DBMS. The results from DBMS are
translated into temporal results and send back to the end
user. US logic have proven semantically to be popular
operators for querying temporal database which are
used in the language of first order temporal logic
discussed in (Mariusz, 2007). However, they are
evaluated all at once, rather than at a specific time (a
time-slice query) or at each point of time (a sequenced
query). A common example is determined when a
change occurred by observing consecutive periods that
signify that change.
 Create or replace function start_instance(one IN
number, two IN number):
 RETURN NUMBER IS
 begin
 RETURN CASE WHEN one > two THEN one ELSE
two END;
 END start_instance
Create or replace function end_instance (one IN
number, two IN number)
 RETURN NUMBER IS
 begin
 RETURN CASE WHEN one > two THEN two ELSE
one END;
 END end_instance;

CONCLUSION

 We have proposed a technique for temporal
database retrieval. This technique applies to temporal
database applications that are modeled by TTHR,
proposed in Halawani and Alromema (2010). This
model is proposed based on the data models which are
discussed in (Gregersen and Jensen, 1998; Ahn and
Snodgrass, 1986). Our proposed data model is based on
tuple time stamping with two relations, one relation is
for the current snapshot data and the other one is the
auxiliary relation that holds the temporal aspects of
whole time-varying attributes, the proposed temporal
data model achieves saving in memory usage range
from 70-90% over the temporal data model discussed in
(Novikov and Gorshkova, 2008), where a framework
for temporal database implementation is discussed.

REFERENCES

Ahn, I. and R. Snodgrass, 1986. Performance

evaluation of a temporal database management
system. Proceedings of the ACM SIGMOD
International Conference on Management of Data,
(MD’86), ACM, New York, NY, USA., pp: 96-
107. DOI: 10.1145/16894.16864

J. Computer Sci., 8 (2): 243-250, 2012

250

Elmasri, R. and S. Navathe, 2000. Fundamentals of
Database Systems. 3rd Edn., Addison-Wesley,
Reading, Mass ISBN: 0805317554, pp: 955.

Finger, M., 2000. A logical reconstruction of temporal
databases. J. Logic Computat., 10: 847-876. DOI:
10.1093/logcom/10.6.847

Gregersen, H. and C. Jensen, 1998. Conceptual
modeling of time-varying information. Heidi
Gregersen, Christian S. Jensen.

Halawani, S.M. and N.A.A. Romema, 2010. Memory
storage issues of temporal database applications on
relational database management systems. J. Comp.
Sci., 6: 296-304. DOI: 10.3844/jcssp.2010.296.304

Haraty, R.A. and N. Bekaii, 2006. Towards a Temporal
Multilevel Secure Database (TMSDB). J. Comput.
Sci., 2: 19-28. DOI: 10.3844/jcssp.2006.19.28

Kostenko, B., 2007. Temporal preprocessor: Towards
temporal applications development. Proceedings of
the Spring Young Researcher’s Colloquium On
Database and Information Systems, (SYRCDIS’
07), Moscow State University, Moscow, Russia,
pp: 1-3.

Mariusz, G., 2007. Querying temporal database with
the language of first-order temporal logic. Studies
Logic Grammar Rhetoric, 11: 85-93.

Novikov, B.A. and E.A. Gorshkova, 2008. Temporal
databases: From theory to applications. Programm.
Comput. Software, 34: 1-6. DOI:
10.1134/S0361768808010015

Patel, J., 2003. Temporal Database System Individual
Project. Department of Computing, Imperial
College, University of London.

Torp, K., C.S. Jensena and R.T. Snodgrass, 1999.
Effective timestamping in databases. VLDB J., 8:
267-288. DOI: 10.1007/s007780050008

Zimanyi, E., 2006. Temporal aggregates and temporal
universal quantification in standard SQL. ACM
SIGMOD Record. 35: 16-21. DOI:
10.1145/1147376.1147379

