
Journal of Computer Science 9 (11): 1461-1471, 2013
ISSN: 1549-3636
© 2013 Science Publications
doi:10.3844/jcssp.2013.1461.1471 Published Online 9 (11) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Young-Bin Shin, Department of Computational Science, Graduate School of System Informatics,
 Kobe University, Kobe Japan

1461 Science Publications

JCS

EFFECTIVENESS OF SECOND BEST PARTICLE
INFORMATION FOR PARTICLE SWARM OPTIMIZATION

2Eisuke Kita and 1Young-Bin Shin

1Department of Complex System Science, Graduate School of Information Science, Nagoya University, Nagoya Japan
2Department of Computational Science, Graduate School of System Informatics, Kobe University, Kobe Japan

Received 2013-08-25, Revised 2013-09-02; Accepted 2013-09-23

ABSTRACT

Particle Swarm Optimization (PSO) represents the potential solutions of the optimization problem as the
particles and then, the particles move in order to find the better solution. The particle positions are updated
from the personal best and the global best particle positions which have been ever found. This research
focuses on the use of the second personal best and the second global best particle positions in order to
improve the search performance of the original PSO algorithm. In the present algorithm, the second global
best or the second personal best particle position is randomly used for updating all particle positions. The
algorithms are compared with the original PSO algorithm in five test functions. The results reveal that the
use of the second global best and the second personal best particle positions can improve the search
performance of the original PSO although the basic idea is simple.

Keywords: Particle Swarm Optimization, Global Best Particle, Personal Best Particle, Second Best Particle

1. INTRODUCTION

 The gradient-type algorithms such as the Newton and
Steepest gradient methods are very popular algorithms for
obtaining the solution of the optimization problem. They
sometimes reach not global optimum but local optimum.
Therefore, some researchers have been studying other
algorithms without the gradient data of the function such
as Genetic Algorithm (GA) by Holland (1975) and
Goldberg (1989), Simulated Annealing (SA) by
Kirkpatrick et al. (1983), Particle Swarm Optimization
(PSO) by Kennedy and Eberhart (1995); Kennedy
(1997) and Shi and Eberhart (1998) and so on. PSO,
which has been presented in 1995 by Kennedy and
Eberhart (1995), is based on a metaphor of social
interaction such as bird flocking and fish schooling.
PSO, which is also a population-based optimization
algorithm, is available for solving various function
optimizations problem and industrial applications
(He et al., 2009; Lapizco-Encinas et al., 2009; Liu et al.,
2006; Poli, 2008; Qarouni-Fard et al., 2007; Zhao et al.,
2008). Qarouni-Fard et al. (2007) presented the timetable

design by usign Particle Swarm Optimization. Poli (2008)
applied the Particle Swarm Optimization for analysis of
publications. He et al. (2009); Lapizco-Encinas et al.
(2009); Liu et al. (2006); Qarouni-Fard et al. (2007) and
Zhao et al. (2008) presented the application of the
Particel Swarm Optimization for packing problems.
 In the original PSO algorithm, the potential solutions of
the optimization problem are defined as the particles whose
position vector denotes the design vector of the candidate
solution. The particle positions are updated from the
personal and the global best particle positions. The personal
and global best particles denote the best position which each
particle has ever found and the best position which all
particles have ever found, respectively. One of the basic
drawbacks of PSO is the premature convergence problem.
The premature convergence means too early convergence
of a population of potential solutions, resulting in being not
global optimal solution but local (sub-) optimal solution.
 This study focuses on the use of second global and
second personal best particle positions for improving the
search performance of the original PSO algorithm. The

Eisuke Kita and Young-Bin Shin / Journal of Computer Science 9 (11): 1461-1471, 2013

1462 Science Publications

JCS

PSO algorithms employing second global and personal
best particle positions are named as present algorithm 1
and 2, respectively. The present algorithms are compared
with the original PSO algorithm in five test functions.
 The remaining part of this study is organized as
follows. The PSO algorithms and the numerical results
are explained in section 2 and 3, respectively. Finally,
the conclusions are summarized again in section 4.

2. PSO ALGORITHM

2.1. Optimization Problem

 The optimization problem is defined by the
objective function and the design variables if the
constraint conditions are negligible.
 The design variable vector is defined as follows
Equation (1):

{ }T

1 2 Nd
x x ,x ,...,x= (1)

 The parameter xi and Dd denote the design variable
and the total number of design variables, respectively.
 The objective function to be minimized is defined as
the function of the design variables Equation (2):

()F x min→ (2)

 In the evolutionary computation, the satisfaction of
the particle for the design objective is estimated by the
fitness function f(x), which is maximized as follows
Equation (3):

()f x max→ (3)

2.2. Original PSO

2.2.1. Search Process

 In the PSO algorithm, the particles represent
potential solutions of the optimization problem and
then, the swarm of the particles moves on the solution
space in order to find the better solution. A particle in
the swarm has a position vector xi(t) and a velocity
vector vi(t) in the search space at time. Each particle
has memory and hence, can remember the best
position which it ever visited in search space. When
each particle takes the best fitness function, the
position vector is known as the personal best particle

position vector and xi
p(t) the overall best out of all

particles in the swarm is as global best particle
position vector xg(t). The particle position vector xi(t)
and the velocity vector vi(t) are updated by the
personal and global best particle position vectors.
 The original PSO algorithm is summarized as
follows (Fig. 1):

• Initialize iteration number: The iteration t number is

initialized as t←0
• Initialize particle position and velocity vectors: For i

= 1, …, N, the particle position vector xi(t) and
velocity vector vi(t) are initialized with uniformly
distributed random vectors

• Initialize best particle position vectors: The global
best particle position vector xg(t) and the personal
best particle position vector xi

p(t) of the particle are
initialized with zero vectors; xg(t) = 0 and xi

p(t) = 0
• Evaluate fitness function: For i = 1,…,N, fitness

function f(xi(t)) is evaluated
• Check the convergence criterion: If the criterion is

satisfied, the process goes to next step. Otherwise,
the process goes to the step 7

• Output results: The results are output and the
process is terminated

• Update particle position vectors: The particle
velocity vector vi(t) is updated and then, the particle
position vector xi(t) is updated. (Update algorithm is
described in the next section)

• Update iteration number: The iteration number is
updated so that and then, the process goes to step 3

2.2.2. Update Algorithm

 In the original PSO algorithm, the position and the
velocity vectors of the particle i(i = 1,…,N) are updated
according to the following rules Equation (4 and 5):

() () () ()()
() ()()

p
i i 1 i i i

2 2 i
g

v t 1 v t c r x t x t

c r x t x t

+ = ω + × −

+ × −
 (4)

() () ()i i ix t 1 x t v t 1+ = + + (5)

 The parameter w is the inertia weight. The
parameter c1 and c2 are acceleration coefficient and is the
iteration time-step. The variable r1 and r2 are random
numbers in the range of [0,1]. The parameter N is the
swarm size or the total number of particles in the swarm.

Eisuke Kita and Young-Bin Shin / Journal of Computer Science 9 (11): 1461-1471, 2013

1463 Science Publications

JCS

Fig. 1. PSO algorithm

 The inertia weight governs how much percentage of
the velocity should be retained from the previous time
step to the next time step. The inertia weight is updated
by the following self-adapting formula Equation (6):

()max max min
max

t
w w w w

t
= − − × (6)

 The parameter wmax and wmin denote the maximum
and minimum inertia weights, respectively. The
parameter t and tmax are the iteration step and the
maximum iteration steps in the simulation, respectively.
 The parameters c1 and c2 determine the relative pull
of xi

p(t) and xg(t). According to the recent work done by
Clerc (1999), the parameters are given as follows:

1 2c c 1.5= = (7)

 The update algorithm of the particle position is
summarized as follows:

• Update the particle velocity vector: The particle

velocity vector vi(t+1) is calculated by Equation (4)
• Update the particle position vector: The particle

position vector xi(t+1) is calculated by Equation (5)
• Update global best particle position vector: The set

is defined as follows:

{ } () () (){ }g p p
i 1 NS S x t ,x t ,..., x t= =

The global best particle position vector is updated
as follows:

() ()g
S ix t 1 arg max f S+ ←

• Update personal best particle position vector: For i =

1,…,N, the set is defined as follows:

 { } () (){ }p p p

i i iS S x t ,x t= =

The personal best particle position vector is updated
as follows:

 () ()p

p p
i iS

x t 1 arg max f S+ ←

2.3. Present Algorithm 1

2.3.1. Search Process

 The search process of the present algorithm 1 is
similar except for the uses of the second global best
particle position vector xg(t). This algorithm uses the
personal best particle position vector xi

p(t), the first
global best particle position vector xg2(t) and the second

Eisuke Kita and Young-Bin Shin / Journal of Computer Science 9 (11): 1461-1471, 2013

1464 Science Publications

JCS

global best particle position vector xg2(t) for updating the
particle position and velocity vectors.
 The present algorithm 1 is summarized as follows:

• Initialize iteration number: The iteration number t is

initialized as t←0
• Initialize particle position and velocity vectors: For i

= 1,…,N, the particle position vector xi(t) and
velocity vector vi(t) are initialized with uniformly
distributed random vectors

• Initialize best particle position vectors: The global
best particle position vector xg(t) and the personal
best particle position vector xi

p(t) of the particle are
initialized with zero vectors; xg(t) = 0 and xi

p(t) = 0
• Initialize second global best particle position

vectors: The global best particle position vector
xg2(t) is initialized with zero vectors; xg2(t) = 0

• Evaluate fitness function: For i = 1,…,N, fitness
function f(xi(t)) is evaluated

• Check the convergence criterion: If the criterion is
satisfied, the process goes to next step. Otherwise,
the process goes to the step 8

• Output results: The results are output and the
process is terminated

• Update particle position vectors: The particle
velocity vector vi(t) is updated and then, the particle
position vector xi(t) is updated. (Update algorithm is
described in the next section.)

• Update iteration number: The iteration number is
updated so that t←t+1 and then, the process goes
to step 3

2.3.2. Update Algorithm with Second Global

Best Particle

 The original PSO have no handling mechanism for
avoiding the local optimization except for the use of
xi

p(t). In the present algorithm 1, each particle can
remember the second global best particle position
vector xg2(t) in addition to the global best particle
position vector xg(t) and the personal best particle
position vector xi

p(t). The use of xg2(t) can reduce the
chance of local optimum convergence of PSO. In this
algorithm, the particle velocity vector is updated by the
following equation:

() () () ()()
() ()()
() ()()

p
i i 1 1 i i

g
2 2 i

g2
3 3 i

v t 1 v t c r x t x t

c r x t x t

c r x t x t

+ = ω + × −

+ × −

+ × −

 (8)

 The parameter is the inertia weight. The parameter
c1, c2 and c3 are the acceleration coefficient and the
parameter is the iteration time. Besides, r1,r2 and r3 are
random numbers uniformly distributed in the range of
The parameter c1 and c2 are taken as the same values in
the original PSO; c1 = c2 = 1.5. Effect of the parameter
c3 to the search performance is discussed in the
numerical examples.
 The update rule (8) has been already presented in
the paper. The numerical discussions and the
applications were not described in the reference.
Therefore, in this study, it is discussed in numerical
examples.

The update algorithm of the particle position vector is
summarized as follows:

• Generate uniformly distributed random number: The

uniformly distributed random number r is generated
in the range of [0,1]

• Update particle velocity vector: If r≥0.5, the particle
velocity vector vi(t+1) is calculated by Equation (4).
Otherwise, the vector vi(t+1) is calculated by
Equation (8)

• Update the particle position vector: The particle
position vector xi(t+1) is calculated by Equation (5)

• Update global best particle position vector: The set
is defined as follows:

{ } () () () (){ }g g g g2 p p
i 1 NS S x t ,x t ,x t ,...,x t= =

The global best particle position vector is updated as
follows.

() ()g

g g
iS

x t 1 arg max f S+ ←

• Update second global best particle position vector:

The set Sg2 is defined the set Sg from which xg(t+1)
is excluded as follows:

()g2 g gS S x t 1= − +

The second global best particle position vector
xg2(t+1) is updated as follows:

() ()g 2

g2 g2
iS

x t 1 argmax S+ ←

• Update personal best particle position vector: For i =

1,…N, the set is defined as follows:

{ } () (){ }p p p
i i iS S x t ,x t= =

Eisuke Kita and Young-Bin Shin / Journal of Computer Science 9 (11): 1461-1471, 2013

1465 Science Publications

JCS

The personal best particle position vector is updated
as follows:

() ()p

p p
i iS

x t 1 arg max f S+ ←

2.4. Present Algorithm 2

2.4.1. Search Process

 The search process of the present algorithm 2 is
almost same as that of the original PSO algorithm except
for the use of the second personal best particle position
vector xi

p2(t). This algorithm uses the personal best
particle position vector xi

p(t), the global best particle
position vector xg(t) and the second personal best particle
position vector xi

p2(t) for updating the particle position
and velocity vectors.
 The present algorithm 2 is summarized as follows:

• Initialize iteration number: The iteration number t is

initialized as t←0
• Initialize particle position and velocity vectors: For i

= 1,…N, the particle position vector xi(t) and
velocity vector vi(t) are initialized with uniformly
distributed random vectors

• Initialize best particle position vectors: The global
best particle position vector xg(t) and the personal
best particle position vector xi

p(t) of the particle are
initialized with zero vectors; xg(t) = 0 and xi

p(t) = 0
• Initialize second personal best particle position

vectors: For i = 1,…,N, the second personal best
particle position vector xi

p(t) is initialized with zero
vectors; xi

p2(t) = 0
• Evaluate fitness function: For i = 1,…,N, fitness

function f(xi(t)) is evaluated
• Check the convergence criterion: If the criterion is

satisfied, the process goes to next step. Otherwise,
the process goes to the step 8

• Output results: The results are output and the
process is terminated

• Update particle position vectors: The particle
velocity vector vi(t) is updated and then, the particle
position vector xi(t) is updated. (Update algorithm is
described in the next section)

• Update iteration number: The iteration number is
updated so that t←t+1 and then, the process goes to
step 3

2.4.2. Update Algorithm with Second Personal
Best Particle

 The present algorithm 1 uses the second global
best particle position vector xg2(t) for avoiding the
local optimization. On the other hand, the present
algorithm 2 uses the second personal best particle
position vector xi

p2(t) instead of the second global best
particle position vector xg2(t).
 In the present algorithm 1, the second global best
particle position vector xg2(t) makes an identical effect
on all particles. The second personal best particle
position vector xi

p2(t) makes the different effect on
each particle. Therefore, particles in the present
algorithm 2 tend to search wider region than them in
the present algorithm 1.
 In the present algorithm 2, each particle can
remember the positions of the global best particle
position vector xg(g), the personal best particle position
vector xi

p(t) and the second personal best particle
position vector xi

p2(t). In this algorithm, the particle
velocity vector is updated by the following equation:

() () () ()()
() ()()
() ()()

p
i i 1 1 i i

g
2 2 i

p2
4 4 i

v t 1 v t c r x t x t

c r x t x t

c r x t x t

+ = ω + × −

+ × −

+ × −

 (9)

 The parameter is the inertia weight. The parameter
c1,c2 and c4 are the acceleration coefficient and the
parameter t is the iteration time. Besides, r1, r2 and r4 are
random numbers uniformly distributed in the range of
[0,1]. The parameter c1 and c2 are taken as the same
values in the original PSO; c1 = c2 = 1.5. Effect of the
parameter c4 to the search performance is also discussed
in the numerical examples.
 The present algorithm 2 shares the information of
xi

p(t), xg(t) and xi
p2(t). Obviously, xi

p2(t) is worse than
xi

p(t). If only Equation (7) is used for updating particle
velocity vector, the result must be worse than that of
original PSO. Therefore, the update rules (4) and (8) are
employed alternately. The update algorithm of the
present algorithm 2 is summarized as follows:

• Generate uniformly distributed random number: The

uniformly distributed random number r is generated
in the range of [0,1]

• Update particle velocity vector: If r≥0.5, the
particle velocity vector vi(t+1) is calculated by
Equation (4). Otherwise, the vector vi(t+1) is
calculated by Equation (9)

Eisuke Kita and Young-Bin Shin / Journal of Computer Science 9 (11): 1461-1471, 2013

1466 Science Publications

JCS

• Update particle position vector: The particle position
vector xi(t+1) is calculated by Equation (5)

• Update global best particle position vector: The set
is defined as follows:

{ } () () (){ }g p p
i 1 NS S x t ,x t ,..., x t= =

The global best particle position vector is updated as
follows:

() ()g

S ix t 1 arg max f S+ ←

• Update personal best particle position vector: For i

=1,…,N, the set is defined as follows:

{ } () () (){ }p p p p2
i i i iS S x t ,x t , x t= =≪

The personal best particle position vector is updated
as follows:

() ()p

p p
i iS

x t 1 arg max f S+ ←

• Update second personal best particle position vector:

For i = 1,…,N, the set Sp2 is defined from the set Sp
from which xi

p(t+1) is excluded as follows:

{ } ()p2 p2 p p
i iS S S x t 1= = − +

The second personal best particle position vector is
updated as follows:

() ()p 2

p2 p2
i iS

x t 1 arg max f S+ ←

3. NUMERICAL EXAMPLES

3.1. Test Functions

 Sphere, Rosenbrock, Rastrigin, Griewank and
Schaffer’s f6 functions are considered as test functions.

3.1.1. Sphere function

 Sphere function is defined as follows Equation (10):

() ()n 2
1 i ii 1

f x x 100 x 100
=

= − ≤ ≤∑ (10)

 The vector x is defined as follows Equation (11):

{ }T

1 2 nx x ,x ,..., x= (11)

 The sphere function of n = 2is shown in Fig. 2a.

3.1.2. Rosenbrock function

 Rosenbrock function is defined as follows
Equation (12):

() () (){ }
()

2 2n 1 2
2 i 1 i ii 1

i

f x 100 x x x 1

30 x 30

−
+=

= − −

− ≤ ≤

∑
 (12)

 The Rosenbrock function of n = 2 is shown in Fig. 2b.

3.1.3. Rastrigin Function

 Rastrigin function is a multi-modal function defined
as follows Equation (13):

() ()
()

n 2
3 i ii 1

i

f x x 10cos2 x 10

5.12 x 5.12

=
= − π +

− ≤ ≤

∑
 (13)

 The Rastrigin function of n = 2is shown in Fig. 2c.
A lot of local optimal solutions exist around a global
optimal solution.

3.1.4. Griewank Function

 Griewank function is defined as follows Equation (14):

()

()

nb 2 i
4 ii 1 i 1

i

1 x
f x x cos 1

4000 i

600 x 6000

= =
= − +

− ≤ ≤

∑ ∏
 (14)

 The Griewank function of n = 2 is shown in Fig. 2d.

3.1.5. Schaffer’s F6 Function

 Schaffer’s f6 function is defined as follows
Equation (15):

()
()

()

2

5 22

i

sin | x | 0.5
f x 0.5

1 0.001| x |

100 x 100

−= +
+

− ≤ ≤

 (15)

 The function |x| denotes the absolute value of the
vector x. The Schaffer's f6 function of is n = 2 shown
in Fig. 2e.
 The dimension of functions is n = 2 for Schaffer’s f6
function or n = 30 for the other functions. The threshold
for function optimization is also shown in the same table.
In minimization of the function, it is concluded that the
global minimum of the function can be found when the
function value is smaller than the threshold value.

Eisuke Kita and Young-Bin Shin / Journal of Computer Science 9 (11): 1461-1471, 2013

1467 Science Publications

JCS

(a)

(b)

(c)

Eisuke Kita and Young-Bin Shin / Journal of Computer Science 9 (11): 1461-1471, 2013

1468 Science Publications

JCS

(d)

(e)

Fig. 2. Test Functions (a) Sphere function (b) Rosenbrock function (c) Rastrigin function (d) Griewank function (e) Schaffer's

f6 function

 Swarm size and maximum iteration number are
shown in Table 1. According to the work done by
Clerc (1999), the parameters c1 and c2 are specified as
c1 = c2 = 1.5.
 The results are compared in the estimation value,
which is defined as the quotient of the average search
time and the success rate as follows Equation (16):

Averagesearch time
Estimation

Successrate
= (16)

 The average search time denotes the average
iteration number at which the global optimum could
be found. The success rate denotes, in total number of
simulations, the percentage of the number of
simulations at which the minimum solution can be
found. The threshold for finding the optimal solution
is shown in Table 2. When a smaller solution than the
threshold can be found, it is concluded that the
simulation is terminated successfully.

Eisuke Kita and Young-Bin Shin / Journal of Computer Science 9 (11): 1461-1471, 2013

1469 Science Publications

JCS

Table 1. Simulation parameters

Swarm size 033
Maximum iteration 10000

Table 2. Threshold for test functions

Function Threshold

Sphere 0.01
Rosenbrock 100.00
Rastrigin 100.00
Griewank 0.10
Schaffer f6 10−5

3.2. Effect of c3 on Present Algorithm 1

 Simulations are performed 20 times from different
initial populations by the present algorithm 1. The
results are shown in Table 3. The results show that the
best value of the parameter c3 depends on the function
to be solved. Comparison of the estimation values
shows that the best values of the parameter c3 are c3 = 5
for Sphere, Rosenbrock, Griewank and Schaffer's f6
functions and c3 = 2.5 or 5 for Rastrigin function. It is
concluded that c3 = 5 is good for all functions.

3.3. Effect of c4 on Present Algorithm 2

 Simulations are performed 20 times from different
initial populations by the present algorithm 2. The
results are shown in Table 4. The results show that
the best parameter c3 depends on the function. The
best values of the parameter are for Sphere,
Rosenbrock, Rastrigin and Griewank functions c4 and
c4 = 5 for Schaffer’s f6 functions. It is concluded that
is c4 = 5.5 good for all functions.

3.4. Comparison with Other Studies

 Swarm size and maximum iteration number are 30
and 10000, respectively. According to the work done
by Clerc (1999), the parameters c1 and c2 are specified
as c1 = c2 = 1.5. The best results by present algorithms
are compared with the results in the study by Eberhart
and Shi (2000) and Trelea (2003). The results are
shown in Table 5. The results by the present
algorithms are better than them in the references.
Comparison of the present algorithm 1 and 2 shows
that the present algorithm 1 is better for Rosenbrock
and Griewank functions and the present algorithm 2 is
for other functions.

Table 3. Results by present algorithm 1
c3 1 1.5 2 2.5 3
Sphere function
Estimation 345.00 614.0 538.0 659.0 429.0
c3 3.50 4.0 4.5 5.0 5.5
Estimation 299.00 351.0 308.0 292.0 416.0
Rosenbrock function
c3 1.00 1.5 2.0 2.5 3.0
Estimation 1431.00 936.0 543.0 477.0 444.0
c3 3.50 4.0 4.5 5.0 5.5
Estimation 287.00 282.0 352.0 240.0 244.0
Rastrigin function
c3 1.00 1.5 2.0 2.5 3.0
Estimation 1.65 266.0 419.0 1.9 238.0
c3 3.50 4.0 4.5 5.0 5.5
Estimation 155.00 119.0 202.0 112.0 780.0
Griewank function
c3 1.00 1.5 2.0 2.5 3.0
Estimation 728.00 313.0 561.0 486.0 373.0
c3 3.50 4.0 4.5 5.0 5.5
Estimation 355.00 270.0 328.0 223.0 209.0
Schaffer function
c3 1.00 1.5 2.0 2.5 3.0
Estimation 11.80 8.9 12.1 11.4 8.6
c3 3.50 4.0 4.5 5.0 5.5
Estimation 9.00 10.6 11.0 6.8 12.0

Table 4. Results by present algorithm 2

c4 1 1.5 2 2.5 3

Sphere function
Estimation 1024.0 1205.0 1178.0 922.0 489.0
c4 3.5 4.0 4.5 5.0 5.5
Estimation 421.0 685.0 851.0 387.0 291.0
Rosenbrock function
c4 1.0 1.5 2.0 2.5 3.0
Estimation 618.0 894.0 1415.0 1035.0 645.0
c4 3.5 4.0 4.5 5.0 5.5
Estimation 729.0 370.0 586.0 398.0 273.0
Rastrigin function
c4 1.0 1.5 2.0 2.5 3.0
Estimation 131.0 148.0 98.0 115.0 81.0
c4 3.5 4.0 4.5 5.0 5.5
Estimation 62.0 84.0 86.0 68.0 58.0
Griewank function
c4 1.0 1.5 2.0 2.5 3.0
Estimation 1235.0 563.0 1136.0 590.0 675.0
c4 3.5 4.0 4.5 5.0 5.5
Estimation 512.0 315.0 352.0 402.0 309.0
Schaffer f6 function
c4 1.0 1.5 2.0 2.5 3.0
Estimation 14.9 9.5 5.6 10.2 5.4
c4 3.5 4.0 4.5 5.0 5.5
Estimation 3.8 6.0 10.3 2.8 3.1

Eisuke Kita and Young-Bin Shin / Journal of Computer Science 9 (11): 1461-1471, 2013

1470 Science Publications

JCS

Table 5. Comparsion with other studies
Algorithm Eberhart and Shi (2000) Trelea (2003) Present 1 Present 2
Sphere function
Estimation 530 344 292 291
Rosenbrock function
Algorithm Eberhart and Shi (2000) Trelea (2003) Present 1 Present 2
Estimation 669 614 240 273
Rastrigin function
Algorithm Eberhart and Shi (2000) Trelea (2003) Present 1 Present 2
Estimation 213 156 112 58
Griewank function
Algorithm Eberhart and Shi (2000) Trelea (2003) Present 1 Present 2
Estimation 323 348 223 309
Schaffer f6 function
Algorithm Eberhart and Shi (2000) Trelea (2003) Present 1 Present 2
Estimation 532 215 6.8 2.8

4. CONCLUSION

 This study describes the use of the second best
particle position for improving the original PSO. In the
original PSO, the particle position vectors are updated
from the personal best and the global best position
vectors which particles have ever found. This research
focuses on the use of the second global best and the
second personal best particle positions in order to
improve the search performance of the original PSO. In
the present algorithms, the second global best and the
second personal best particle positions are randomly
used for updating the particle position vectors.
 Present algorithms are compared with the original
PSO algorithm in five test functions. The results revealed
that the use of the second best positions can improve the
search performance of the original PSO. In all cases, the
success rate is bigger than or equal to 0.9 and the
estimation, which is defined as the quotient of the average
search time and the success rate, is also better than the
previous studies. The present results were compared with
the previous study. The results by the present algorithms
were better than them in the references.
 In the near future, we would like to discuss the
applicability of the present algorithms to actual
engineering applications.

5. REFERENCES

Clerc, M., 1999. The swarm and the queen: towards a
deterministic and adaptive particle swarm
optimization. Proceedings of the Congress on
Evolutionary Computation, Jul. 6-9, IEEE Xplore
Press, Washington, DC., pp: 1951-1957. DOI:
10.1109/CEC.1999.785513

Eberhart, R.C. and Y. Shi, 2000. Comparing inertia weights
and constriction factors in particle swarm optimization.
Proceedings of the Congress on Evolutionary
Computation, Jul. 16-19, IEEE Xploe Press, La Jolla,
CA., pp: 84-88. DOI: 10.1109/CEC.2000.870279

Goldberg, D.E., 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. 1st Edn.,
Addison-Wesley, Reading, ISBN-10: 0201157675,
pp: 412.

He, C., Y.B. Zhang, J.W. Wu and C. Chang, 2009.
Research of three-dimensional container-packing
problems based on Discrete Particle Swarm
Optimization algorithm. Proceedings of the
International Conference on Test and Measurement,
Dec. 5-6, IEEE Xplore Press, Hong Kong, pp: 425-
428. DOI: 10.1109/ICTM.2009.5413015

Holland, J.H., 1975. Adaptation in Natural and Artificial
Systems. 1st Edn., University of Michigan Press,
Ann Arbor, ISBN-10: 0472084607, pp: 183.

Kennedy, J. and R. Eberhart, 1995. Particle swarm
optimization. Proceedings of the IEEE the
International Conference on Neural Networks, Nov.
27-Dec. 01, IEEE Xplore Press, Perth, WA., pp:
1942-1948. DOI: 10.1109/ICNN.1995.488968

Kennedy, J., 1997. The particle swarm: Social adaptation
of knowledge. Proceedings of the IEEE International
Conference on Evolutionary Computation, Apr. 13-
16, IEEE Xplore Press, Indianapolis, IN., pp: 303-
308. DOI: 10.1109/ICEC.1997.592326

Kirkpatrick, S., C.D. Gelatt Jr. and M.P. Vecchi, 1983.
Optimization by simulated annealing. Science, 220:
671-680. DOI: 10.1126/science.220.4598.671

Eisuke Kita and Young-Bin Shin / Journal of Computer Science 9 (11): 1461-1471, 2013

1471 Science Publications

JCS

Lapizco-Encinas, G., C. Kingsford and J. Reggia, 2009. A
cooperative combinatorial particle swarm
OPTIMIZATION algorithm for side-chain packing.
Proceedings of the IEEE Swarm Intelligence
Symposium, Mar. 30-Apr. 2, IEEE Xplore Press,
Nashville, TN., pp: 22-29. DOI:
10.1109/SIS.2009.4937840

Liu, D.S., K.C. Tan, C.K. Goh and W.K. Ho, 2006. On
Solving multiobjective bin packing problems using
particle swarm optimization. Proceedings of the
IEEE Congress on Evolutionary Computation, Jul.
16-21, IEEE Xplore Press, Vancouver, BC., pp:
2095-2102, DOI: 10.1109/CEC.2006.1688565.

Poli, R., 2008. Analysis of the publications on the
applications of particle swarm optimization. J. Artif.
Evolut. Applic., 3: 1-3. DOI: 10.1155/2008/685175

Qarouni-Fard, D., A. Najafi-Ardabili and M.H.
Moeinzadeh, 2007. Finding Feasible Timetables
with Particle Swarm Optimization. Proceedings of
the 4th International Conference on Innovations in
Information Technology, Nov. 18-20, IEEE Xplore
Press, Dubai, pp: 387-391. DOI:
10.1109/IIT.2007.4430422

Shi, Y. and R. Eberhart, 1998. A modified particle
swarm optimizer. Proceedings of the IEEE
International Conference on Evolutionary
Computation Proceedings, May 4-9, IEEE Xplore
Press, Anchorage, AK., pp: 69-73. DOI:
10.1109/ICEC.1998.699146

Trelea, I.C., 2003. The particle swarm optimization
algorithm: Convergence analysis and parameter
selection. Inform. Process. Lett., 85: 317-325. DOI:
10.1016/S0020-0190(02)00447-7

Zhao C., L. Lin, C. Hao and X. Liu, 2008. Solving the
rectangular packing problem of the discrete
particle swarm algorithm. Proceedings of the
International Seminar on Business and
Information Management, Dec. 19-19, IEEE
Xplore Press, Wuhan, pp: 26-29. DOI:

10.1109/ISBIM.2008.114

