
Journal of Computer Science 9 (11): 1514-1518, 2013
ISSN: 1549-3636
© 2013 Science Publications
doi:10.3844/jcssp.2013.1514.1518 Published Online 9 (11) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: A. Venkatesh Kumar, Department of Mathematics, Kongu Engineering College, Erode, Tamilnadu, India

1514 Science Publications

JCS

CLUSTER BASED DUPLICATE DETECTION

A. Venkatesh Kumar and S. Vengataasalam

Department of Mathematics, Kongu Engineering College, Erode, Tamilnadu, India

Received 2013-09-09, Revised 2013-09-16; Accepted 2013-09-28

ABSTRACT

We propose a clustering technique for entropy based text dis-similarity calculation of de-duplication
system. Improve the quality of grouping; in this study we propose a Multi-Level Group Detection (MLGD)
algorithm which produces a most accurate group with most closely related object using Alternative
Decision Tree (ADT) technique. Our propose a two new algorithm; first one is Multi-Level Group
Detection (MLGD) formation using Alternative Decision Tree (AD Tree), which will split the bunch of
record into self-sized cluster to reduce the volume of data for text comparisons. Second one is
calculating the dis-similarity percentage using entropy and Information Gain (IG). We show
experimentally our proposed technique achieves higher average accuracy than existing traditional de-
duplication system. Further, our technique not required any manual tuning for clustering formations as
well as dis-similarity calculation for any kind of business data. In this study, we have presented a new
efficient method is introduced for clustering formation using ADTree algorithm for duplicate
deduction. The new method offers more accuracy dis-similarity measure for each cluster data without
manual intervention at the time of duplicate deduction.

Keywords: Clustering Algorithm, Alternative Decision Tree Algorithm, Duplicate Detection, Efficient

Method, Manual Intervention, Cluster Data, Similarity Measure, Clustering Formation

1. INTRODUCTION

 Improve a quality of data in data warehousing
data cleansing is a very important task. Data cleansing
deals with detecting and removing errors and
inconsistent data. In data warehousing data from
multiple source, which mean more than one data store
location like different types of data base, flat file.
Here we need transformation logic for converting
source data into target database for standardize the
record format as well as record value for detect a
duplicate record. Therefore, data should be
transformed and cleansed before loading into a target
database. This process is usually called as Extract
Transformation Loading (ETL) process.
 Furthermore, data warehousing are used for decision
making for real world business problem. So that
correctness of data should be more important. Suppose, if
anything wrong in the decision making or correctness of

data then particular algorithm will produce a wrong result.
However most of the existing cluster technique is
designed for particular business problem.
 In this study we propose a two new algorithm, First
one is a clustering algorithm, which will overcome the
existing clustering dis-advantage partition and
hierarchical that may be either partition or hierarchical
(Marrakchi et al., 2005). Second one is de-duplication
algorithm, which will produce the dis-similarity,
percentage of the pair of string in each cluster.
 Here we introduced an efficient clustering
mechanism as Multi-Level Group Detection using AD
Tree for splitting a data into cluster, with most closely
related object. Then we are applying the de-duplication
mechanism in each clustered data, though this proposal
method we can reduce the total time consumption for
clustering formation and data comparison for de-
duplication than existing traditional clustering
mechanism and de-duplication mechanism.

A. Venkatesh Kumar and S. Vengataasalam / Journal of Computer Science 9 (11): 1514-1518, 2013

1515 Science Publications

JCS

2. MATERIALS AND METHODS

 This problem taken up is to improve the
performance of detecting duplicate record. The
performance of entropy based duplicate detection could
be enhanced through various means. It could be in the
form of predictive accuracy, comprehensibility, speed
and scalability. This research concentrates on the
performance enhancement of duplicate detection
through Multi-Level clustering technique and
implemented it by using decision tree framework. The
goal of this work is to identify groups of similar entities
in the presents of linked environment and searching
methods should reduce the number unwanted
comparison during de-duplication. In order to achieve
this goal, in this study we propose a new technique,
First one is a clustering algorithm, which will overcome
the existing clustering disadvantage, that may be either
partition or hierarchical. Second one is de-duplication
algorithm, which will produce the dis-similarity
percentage of the pair of string in each clustered group.

2.1. Importance of the Work

 Duplicate detection, which is an important subtask
of data cleaning, Data integration and data quality are the
two key components of a successful data warehouse as
both completeness and accuracy of information are of
paramount importance. Once this data is collected it can
be made available both for direct analysis and for
distribution to other, smaller data warehouses.
 From a conceptual perspective, data warehouses
store snapshots and aggregations of data collected from a
variety of source systems. Data warehouses encompass a
variety of subject areas. Each of these source systems
could store the same data in different formats, with
different editing rules and different value lists. For
example, gender code could be represented in three
separate systems as male/female, 0/1 and M/F
respectively; dates might be stored in a year/month/day,
month/day/year, or day/month/year format. In the United
States “03062010” could represent March 6,2010 while
in the United Kingdom it might represent June 3, 2010.
 Data warehouses involve a long-term effort and
they are usually built in an incremental fashion. In
addition to adding new subject areas, at each iteration,
the breadth of data content of existing subject areas is
usually increased as users expand their analysis and
their underlying data requirements.

2.2. Duplicate Detection

2.2.1. MLGD Formation Using ADTree

 MLGD forms a tree for the clustering process
(Perla and Belliveau, 2005). In the tree structure, the
height of each level of nodes represents the dis-similar
degree between each cluster. MLGD incorporate the
futures of ADTree features and overcome the existing
hierarchical clustering problem and reduce the time
consumption for duplicate detection (Mirzaei and
Rahmati, 2008) and number of record comparisons. Here
we did not use any split algorithm for splitting data into a
cluster; instead we are using ADTree technique for
splitting a whole data into cluster. A condition predicates
the attribute comparison value, here we are checking
clustering index value contains the short_name value or
not. ADTree divide the data based on short name; if
cluster is already available with the short name then
insert a record into a same cluster else create a new
cluster with the new name of short name then insert
into a new cluster. In each cluster sub-set short name
pointing to the whole record. If cluster is already
available then starts the de-duplication process else
create a new cluster and then exit from the process.

2.3. AD Tree Implementation Algorithm

Initialize: Parent_List[n] ←0,
 Child_List[n] ← 0,
 Grant_child_list[n] ←0;
Loop L1: while !endOfRecord[Record]
 C1 ← Level_1_cluster_attr_value;
 Position ← Size[Parent_List]+1;
If(is_valid[C1]) then
C2 ← Level_2_cluster_attr_value;
C3 ← Level_3_cluster_attr_value;
Child_Position ← Size[Child_List]+1;
Loop L2:while !endOfRecord[Record]
If(!contains[parent_list, C2]) then
Parent_List[Position]← Create new Cluster
 C1, Parent_Position;
 Child_List[n] ← Create new Cluster C2,
 Child_Position;
Grant_child_list[n]←Create new Cluster C3,
Child_Position;
Parent_List[Position]← Insert into new Cluster
{Parent_Position, C1,vector[Record_Inform ation])};
Child_List[n] ← Insert into new Cluster
{Child_Position, (C2,vector[Record_Information])};
Grant_child_list[n]← Insert into new Cluster
{Child_Position, (C2, vector[Record_Information])};
 Return new_cluster;

A. Venkatesh Kumar and S. Vengataasalam / Journal of Computer Science 9 (11): 1514-1518, 2013

1516 Science Publications

JCS

else
Parent_List[Position] ← Insert into existing Cluster
{Parent_Position, (C1,vector[Record_Information])};
Child_List[n] ← Insertinto existing Cluster
{Child_Position, (C2,vector[Record_Information])};
Grant_child_list[n] ←Insert into existing Cluster
 Child_Position,(C2, ector[Record_Information])};
existing_Cluster ← call Dis-Similarity Calculation
Algorithm {C1, vector [Record_Information]}

 Return existing_Cluster;
 endif
Goto L2
else
 Return 0;
 endif
Goto L1

2.4. Dis Similarity Calculation

 The cluster formation method (Srinivas and Mohan,
2010) mainly focus on form a similarity value in single
group, for this purpose we are using different method
and result of each method is different cluster based on
data and spread condition. Here, we outline our main
algorithm and give optimizations that we use in the
experiments. For ease of presentation, we shall first
explain a MLGD using ADTree clustering algorithm
(Zeng et al., 2009), called MLGD, that forms the
technical core of our approach.
 And shown how to use the clustering algorithm to
calculate dis-similarity value for de-duplication. First
we are constructing a truthtable for each pair of string
in the each cluster. Every Boolean function can be
specified as a truthtable with the value of 0,1 and
function has a “n” argument, then the total possible
argument combinations are 2n. To construct the logical
representation of two different string tokens truthtable.
In pair of strings which one have more length Where
Ci, i = 1…..n represents the i’th character of column.
Rj, j = 1…..m represents the j’th character of row.
 Then apply the truthtable value into entropy and
gain formula. The output of gain will be a dis-similarity
percentage. The gain values are compared with existing
cluster gain value if it is greater than existing and length
of current string is greater than existing cluster string
then set current as “PRIMARY” else set the current as
“SECONDARY” and its dis-similarity score.

2.5. Truthtable Construction Algorithm

Initialize: Row ← 0; Column ← 0
Loop L1: While !empty(String_1)
C1 ← String_1 [Row]; Row = Row + 1;

Loop L2: While !empty(String_2)
C2 ← String_2 [Column]; Column = Column + 1
If C1 = C2 Then
Truth [Row, Column] = 1
Else Truth [Row, Column]=0
Endif Goto L2
Goto L1

2.6. Dis-Similarity Calculation Algorithm

Input:
C1 ← {Short_Name}; C2 ← {Actual_name}
VEC ← {Vector [Subject_Information]}
Process: Loop L1: While !endOfVector[Record]
Begin

C3 ← VEC [C1].getActualName ();
 p,n ← Call TruthTable Construction Algorithm
(C1,C2);
Entropy (pi,ni) ← -p log2(p)-n log2(n)
Gaini ← ∑ (Entropy value of child dataset)-∑
(Entropy value of total dataset) * 100
Loop L2: While !endOfVector[C1]
Begin
C4 ← VEC [C1].getDis_Sim_Score();
If(Gaini>C4 and Length(C3)> Length(C4))
Then
 VEC ← Insert into Existing Cluster C2
 And set it as “Primary”

 VEC ← Update Existing Cluster C3
 And set it as “Secondary”
Else

VEC ← Insert into Existing Cluster C2
And set it as “Secondary”

Endif
 Goto L2
Goto L1
Return VEC

2.7. Result Comparison

 Table 1 and Fig. 1 show duplicate detection
without grouping exponentially increase the number of
iteration. Due to this large size of data, volume
approach is not fit and also there is a chance to face an
out of memory issue and its control is out of our hand.
But duplicate detection with grouping gradually
increases the number of iteration even, if we increase
the data size. Throught grouping method may be able to
control the out of memory issue. At the same time we
can handle only one group for duplicate detection, as
this control is in our hand.

A. Venkatesh Kumar and S. Vengataasalam / Journal of Computer Science 9 (11): 1514-1518, 2013

1517 Science Publications

JCS

Fig. 1. Number of Iteration between with grouping and without grouping

Table 1. Total number of Iteration between with grouping and

without grouping
Record No of iteration Without With
volume (Croce) grouping grouping
5 K 100 2.5 0.16
10 K 300 10.0 0.37
35 K 500 122.5 4.56
50 K 700 250.0 9.30
70 K 900 490.0 18.23
80 K 1100 640.0 23.80
100 K 1300 1000.0 37.19

 None of the existing algorithm has this kind of
fuctionality to find a duplicate value wihin that
specified time line.

3. RESULTS AND DISCUSSION

 We show experimentally our proposed technique
achieves higher average accuracy than existing traditional
de-duplication system. Further, our technique not required
any manual tuning for clustering formations as well as dis-
similarity calculation for any kind of business data.
 ADTree_groupInductionAlgorithm () forms a tree for
the clustering process. In the tree structure, the height of
each level of nodes represents the dis-similar degree
between each cluster. MLC incorporates the futures of
ADTree features and it overcomes the existing
hierarchical clustering problem and it reduces the time
consumption for duplicate detection and number of record
comparisons. Here we do not use any split algorithm for
splitting data into a cluster; instead we are using ADTree
technique for splitting a whole data into cluster.
ADTree divides the data based on short name; if cluster
is already available with the short name then insert a
record into a same cluster else create a new cluster with
the new name of short name and then insert into a new

cluster. In each clusters sub-set short name pointing to
the whole records If cluster is already available then
starts the de-duplication process else create a new
cluster and then exit from the process.

3.1. Limitation

 At present algorithm will not support for detect the
duplicate of two diffent image and two different video file.
Even though normal word is saved as a image file or video
file, current algorithm wont support.

3.2. Future Work

 The present study can be extended in the following
direction: The record hiding concept may be adopted to
hide sensitive data to maintain the privacy of data. Future
work will involve looking into ways to improve the
scalability and to combine different de-duplication
approaches into a cloud computing system. The algorithm
may be extended to handle missing values, image value,
video value in a natural way during grouping. To solve
uncertainty grouping problem, the association rule mining
may be integrated into grouping algorithm. This algorithm
may be extended to grouping and to identify duplicate in
web document, video text and image text.

4. CONCLUSION

 In this study, we have presented a new efficient
method is introduced for clustering formation using
ADTree algorithm for duplicate deduction. The new
method offers more accuracy dis-similarity measure for
each cluster data without manual intervention at the time
of duplicate deduction. Compare to existing clustering
algorithm either partition or hierarchical, our new method
is more robust and easy to reach the solution of real world

A. Venkatesh Kumar and S. Vengataasalam / Journal of Computer Science 9 (11): 1514-1518, 2013

1518 Science Publications

JCS

complex business problem. If we apply the propose de-
duplication algorithm with this new method, surely it will
reduce the total time consumption as well as avoid the
unwanted record comparison.

5. REFERENCES

Marrakchi, Z., H. Mrabet and H. Mehrez, 2005.
Hierarchical FPGA clustering based on multilevel
partitioning approach to improve routability and
reduce power dissipation. Proceedings of the
International Conference on Reconfigurable
Computing and FPGAs, Sept. 28-30, IEEE Xplore
Press, Puebla City, pp: 25-28. DOI:

10.1109/RECONFIG.2005.23
Mirzaei, A. and M. Rahmati, 2008. Combining

Hierarchical clusterings using Min-transitive
closure. Proceedings of the 19th International
Conference on Pattern Recognition, Dec. 8-11, EEE
Xplore Press, Tampa, FL., pp: 1-4. DOI:

10.1109/ICPR.2008.4761275

Perla, R.J. and P.P. Belliveau, 2005. Antibiogram-
derived radial decision trees: An innovative
approach to susceptibility data display. Am. J.
Infect. Dis., 1: 124-127. DOI:

10.3844/ajidsp.2005.124.127
Srinivas, M. and C.K. Mohan, 2010. Efficient clustering

approach using incremental and hierarchical
clustering methods. Proceedings of the International
Joint Conference on Neural Networks (IJCNN), Jul.
18-23, EEE Xplore Press, Barcelona, pp: 1-7. DOI:

10.1109/IJCNN.2010.5596666
Zeng, J., L. Gong, Q. Wang and C. Wu, 2009.

Hierarchical clustering for topic analysis based on
variable feature selection. Proceedings of the 6th
International Conference on Fuzzy Systems and
Knowledge Discovery, Aug. 14-16, EEE Xplore
Press, Tianjin, pp: 477-481. DOI:

10.1109/FSKD.2009.205

