
Journal of Computer Science 10 (9): 1811-1818, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1811.1818 Published Online 10 (9) 2014 (http://www.thescipub.com/jcs.toc)

1811 Science Publications

 JCS

HYBRID IMPLEMENTATION AND PERFORMANCE ANALYSIS
FOR HIGH PERFORMANCE COMPUTATION WORKLOAD

Joseph Issa

Department of Electrical and Computer Engineering, Notre Dame University, Lebanon

Received 2014-03-03; Revised 2014-03-31; Accepted 2014-04-26

ABSTRACT

Given the need to achieve maximum performance possible, offloading intensive computation workload to
GPU is a key to achieve this goal. Offloading most of the workload to GPU may not results in desired
performance, so a middle approach is more suitable such as splitting the workload between the CPU and the
GPU can be considered as an optimized approach. In this study, we used a popular high performance
computation workload which can also be implemented using a hybrid approach in which part of the
workload is offloaded to the CPU. We also present a performance estimation method which is verified to
estimate performance with in 5% error margin.

Keywords: Performance Analysis, Hybrid Computation

1. INTRODUCTION

In general, the CPU was the focus when it comes to
application with intensive computation requirements.
Recent development of GPU introduced new features to
handle intensive parallel computation which makes it
compete with the CPU. While most of the high
performance computation algorithm now focuses on
GPU for data intensive computation, there is still a small
window for the CPU to perform parallel task with the
GPU which leads to hybrid implementation. Although
there are big architecture difference between the CPU
and GPU, we can still think of both of them sharing the
same architecture space with different parameters. For
example, the CPU comes with small number of cores
compared to GPU, but the CPU core can deliver better
single thread performance. On the other hand, the GPU
can hide memory latencies by managing large number of
threads while the CPU does this through cache. The GPU
can't handle very well task parallelism, but it is more
suitable to process data parallelism. The CPU can't
handle data parallelism, but it can handle very efficiently
task parallelism due to its efficient branching feature. In
summary the CPU and GPU trade off one architectural
feature for another, so it is reasonable to assume that
some applications are more suitable for one or another.
CPUs and GPUs are built using different approaches.

The CPU is designed for different applications and
can provide fast response times to a single task.
Architectural features such as branch prediction, out-of-
order execution and super-scalar are directly related to
this performance improvement. These features come at
the expense of increased power consumption and
complexity in addition to increase in die size per core.

GPUs are built for rendering and other graphics
applications that have a large amount of data
parallelism, which means that each pixel to be
displayed on screen can be processed independently.
CPUs on the other hand are designed to pack small
number of processing cores while keeping within a
given power and thermal limitations. This results in
GPUs trading off single threads performance for
increase parallel processing. CPUs can provide a better
performance for single thread for throughput computing
workloads. GPUs provide many parallel processing
units which are ideal for throughput computing.

The paper is organized as follows; we start in section
2 with related work section, in which we compare our
work with different published papers. In section 3, we
present the Monte Carlo (MC) performance model and
Hybrid implementation with performance analysis. In
section 4 we discuss experimental results for the
estimation model as well as the hybrid performance
implementation data results. In section 5, we conclude
and discuss future work.

Joseph Issa / Journal of Computer Science 10 (9): 1811-1818, 2014

1812 Science Publications

JCS

2. RELATED WORK

In this study, we propose an analytical model to
estimate performance for MC benchmark with error<5%
between measured and estimated data. We also present a
hybrid implementation for MC in which the workload is
shared between the CPU and GPU. Several researchers
have worked on estimation processor performance for
given benchmarks using different estimation methods
including simulation trace-based methods. Our
performance estimation models identifies performance
dependencies and bottlenecks for a given processor and
workload. We also present a hybrid implementation for
MC workload to maximize performance. The model can
be used to estimate performance for different processor
settings (i.e., frequency, number of cores, Instructions-
Per-Cycle (IPC), efficiency and execution time).

Goel et al. (2010) presented a per-core linear power
model using sampled performance counter on single and
multithreaded applications. Error deviation is <5% for all
tested workloads.

Bakthavatsalam and Mehata (2014) proposed a Hybrid
instruction set implementation, as compared to our method
in which the hybrid implementation between CPU and GPU
is implemented within OpenCL code itself.

Pennycook et al. (2011) presented a hybrid model of
MPI and CUDA for NAS-LU benchmark and compares
it to different processors and GPU architectures. Our MC
hybrid design approach uses OpenCL code to use
parallel implementation in which part of the computation
task is off-loaded to CPU while GPU is running other
computation task in parallel.

Aoki et al. (2011) presented Hybrid OpenCL
implementation for multiple nodes in network
environment. The concept is similar to what we
presented in this study between GPU and CPU, but in
(Aoki et al., 2011) the performance is compared between
Hybrid Open CL and OpenCL with MPI implementation.

Yu el al. (2014) developed a new simplified
computation method based on new parallel computation
techniques in which computation time is minimized. In
this study, we propose a different approach by offloading
computation load to GPU when it is possible to offload.

3. PERFORMANCE PREDICTION
MODEL

In this section, we derive a set of equations for the
MC benchmark performance model. We collected most
data using the CUDA profiling tool provided by
Nvidia. These equations are based on generic GPU

architecture but are also specific to benchmark
behavior. The number of warps is generally the total
number of threads divided by 32. Applying this to the
benchmark, we get the following Equation 1:

M * 256
warp#=

32
 (1)

where, M is the number of options,
loop_per_warp_thread is defined as Equation 2:

N
loop_per_warp_thread=

1024
 (2)

where, N is the simulation path. Using the CUDA profiling
tool, we analyzed the logic loops through instructions issued
per warp as shown in Fig. 1 Equation 3:

Instructions_per_warp_thread =
54.4×loop_per_warp_thread (3)

And the cycles per warp thread can be calculated as
Equation 4:

cycles_ per_warp_thread_instr =
per_warp_thread/IPC/Efficiency (4)

The total number of cycles which is needed to
determine the total time is defined by Equation 5:

total_number_of_cycles = instruction_per_warp
_thread×Warp#/SM#/(efficiency IPC) (5)

where, instruction per warp thread is defined by Equation 6:

Instructions_per_warp_thread =
54.4 loop_per_warp_thread 74.64 (6)

The final prediction equation for options per second
is defined by Equation 7:

M
BW (Options/sec) =

Total_ time
 (7)

where, Total Time is defined as Equation 8:

Total_time = Total_cycle /Core_Frequency (8)

M = Defined as the number of options
SM# = Number of core shaders frequency is the

GPU core frequency
IPC~1.0 = Efficiency ~0.92
N = The simulation path

Joseph Issa / Journal of Computer Science 10 (9): 1811-1818, 2014

1813 Science Publications

JCS

Fig. 1. Logic Loop Vs Instructions issued per Warp

From these equations, we see that the MC benchmark
performance is directly proportional to number of cores,
IPC, efficiency and core frequency and is inversely
proportional to simulation path N, warp# and total time.

3.1. MC Hybrid Configuration

For high data intensive computation, the trend is to
offload intensive computation to vector processor like
GPU, compared to traditional approach of performing
computation only on the CPU. Splitting the workload in-
between the CPU and GPU might be a better alternative.
In this section, we will discuss MC option pricing
algorithm in a hybrid implementation. MC is a two
block-processing paradigm, one that generates samples
and second that so the actual processing. Traditionally
the CPU was the platform of choice for computing
application. Recent development in the GPU space
introduced what seems like a competitor for the CPU. As
a result, there is currently a tendency to overrate the
utility of the GPU in computing applications, in the same
way that workloads where processed on the CPU in the
past, the current trend if to offload computation to GPU.
There is a big architectural difference between CPU and
GPU; each exhibits strengths in areas where other is
weak. The CPU comes with small number of cores
compared to GPU but each of its cores delivers better
single threaded performance. The GPU hides memory
latencies by effectively managing a large number of
threads; the CPU does it through cache memories. The
GPU can’t handle very well task parallelism but it’s very
suitable for data parallel applications; the CPU may not
handle as well data parallelism but it handles very well

task parallelism due for example to the presence of an
efficient branching mechanism. Cache memory takes up
quite a lot of the CPU die but on the GPU it’s less
important. CPU and GPU trade off one architectural
aspect for another, each specializing in another direction
according to the demands of the market. It’s reasonable
to assume that certain applications are more suitable for
one or another. For the purpose of this study all
measurements where performed on an Intel i7-2600K
CPU and on a GTX 480 NVIDIA GPU. All
implementations where done in OpenCL 1.1 for both
platforms. For the 2 devices 1 context implementation tests
were performed only on Intel i7-2600K with an internal
GFX driver build with support for GPU OpenCL enabled.
In Fig. 2, we show offloading computation for GPU, which
leaves small window of opportunity for CPU.

MC tries many scenarios and offers an estimation of
the most probable outcome. The algorithm is composed
of a random numbers generator software Pseudo
Random Numbers Generator-(PRNG) and actual
processing specific to the domain of application. The
input is a set of options and the output is their
corresponding expected values and confidence levels.
The single device implementation is obvious. The
implementation possibilities for a hybrid (CPU+GPU)
architecture are done such that each device processes
a chunk of the input set of options proportional with
its compute capability were both PRNG and MC run
on each device. Each device runs one of the MC
components were one does PRNG and the other MC.
Following measurements of the single device
implementations we conclude that PRNG behaves

Joseph Issa / Journal of Computer Science 10 (9): 1811-1818, 2014

1814 Science Publications

JCS

better on the CPU both in single and in double
precision. In addition, MC apparently performs much
better on the GPU than on the CPU (almost 100 times
faster). In the MC case, we should note that the very
large difference is mostly because the comparison
done between the GPU with fast math enable and the
CPU without fast math (not yet supported on the
CPU). When fast math is disabled on the GPU or if
the CPU algorithm is modified to use a fast
implementation of the exponential function, the
performance gap is reduced to about 3-6 times still in
favor of the GPU. From the hybrid point of view, the
choice seems to be to perform the PRNG on the CPU
and after that MC on the GPU. Now from the point of
view of the Open CL implementation and considering
only two devices at a time, we constructed the below
diagram to show hybrid options. We can have 2
discrete devices in 1-2 contexts or 2 joined devices in
1-2 contexts. (An example of 2 discrete devices is i7-
2600K and GTX 480; an example of 2 joined devices
is i7-2600K and HD3000 GPU). The advantages of
single vs. multiple contexts is, we can share memory
objects if both devices reside in the same memory
space reducing overhead and we can use events to
synchronize between executions on all queues
included in the same context. Considering these facts,
it seems better to go for the single approach where
possible. A crucial element of the hybrid
implementation is the ability of the common Open CL
API ‘enqueue’ functions to execute asynchronously-in
other words to return control back to the host thread

immediately after being issued. This is shown in Fig.
3 where a problem was broken into 3 chunks.

In Figure 3 graph A shows the execution duration if
chunks are processed sequentially (even though PRNG
takes place on the CPU and MC on the GPU). Graph B
shows the performance gain of achieving parallel
execution on both the CPU and the GPU when
compared with the A case. The second approach is also
very useful to hide memory IO overhead when the CPU
and the GPU do not share the same memory space. In
the A case every call is blocking and so, even if we
have PRNG execute on the CPU and MC on the GPU,
the chunks are executed sequentially. Having the calls
execute asynchronously enables parallel execution on
both devices and more efficient use of the available
hardware resources. In the hybrid model addresses only
the case of two devices and it is suitable for both single
and dual context. The main difference between single
and dual context is how the memory transfers are
implemented; for the single context, approach explicit
memory transfers are not implemented. For dual
context memory, transfers are done through a
combination of memory enqueue calls. The core to our
hybrid design is running the PRNG on the CPU and
MC on the GPU as shown in Fig. 4. Explicit memory
transfers belong on the GPU Q. The problem gets
broken down into N chunks and the algorithm loops
over the problem in N+1 steps. On the first step only
the CPU Q performs. On the last step only the GPU Q
performs. Basically we issue asynchronously the
enqueue calls (kernel and memory) to the CPU and
GPU queues and then synchronize on each step.

Fig. 2. Offloading computation to the GPU

Joseph Issa / Journal of Computer Science 10 (9): 1811-1818, 2014

1815 Science Publications

JCS

 (A) (B)

Fig. 3. Sequential versus parallel execution

Fig. 4. MC Hybrid design

After synchronization, additional post-processing is
required to integrate results over the whole sample set.
The sample set is what needs to be transferred towards
the GPU as it is input for the actual MC processing.

The measurements show that hybrid performance
depends heavily on the problem size (sample set size and
option count) and on the CPU/GPU ratio of compute
capabilities. The problem size matters because it is the

Joseph Issa / Journal of Computer Science 10 (9): 1811-1818, 2014

1816 Science Publications

JCS

main factor for workload balancing. Improperly
balancing the two stages of the pipeline (CPU and GPU)
leads to wasting compute power and memory transfers
not being hidden. CPU/GPU compute ratio is also
important because if it is too small can lead to a too
small performance gain to make hybrid worth
implementing. The original PRNG implementation, the
one for the GPU, performed very poorly on the CPU (in
single precision, almost 40 times slower on the CPU) so
it was necessary to be redesigned. The best approach was
to first make a sequential implementation for the CPU
and then convert that code to be used as a kernel (so on
several threads) in OpenCL-an approach similar to
implementing for Message Passing Interface (MPI). The
number of threads is not that important on the CPU as it
is on the GPU-and this was to be expected as the CPU
single thread performance is much better than that of the
GPU single thread performance.

The MC hybrid performance model is divided into
two categories The GPU only time and the Hybrid
time for GPU and CPU. We experiment the model for
single precision and double precision for different
options and sample sizes. We start with GPU time
equation, which is given by Equation 9 and 10:

GPUTime = (RandTime+ MCTime)×NGPU (9)

Hybrid Time = T × NH (10)

We assume the I/O time is negligible ~0 and MC
Time = T for one pipeline step duration. The hybrid time
equation is given by Equation 11 to 13:

Hybrid Time = T×N (11)

Where:

NH NGPU+N1 and NGPU (12)

And:

TGPU = Rand Time×N+MC time (13)

The difference between GPU and Hybrid time is
derived as Equation 14:

GPUtime-HybridTime = RandTime×N-T (14)

In the results section, we implement the equation
derived in this section to calculate the GPU and hybrid

time for different options/sample size to derived the
benefit for using hybrid model instead of just GPU for
single and double precision floating point. Hybrid
performance depends on many factors, such as problem
size, load balancing, hiding memory operations using
parallelism, algorithm optimization and capabilities of
devices which are best when the devices are well
balanced. The bigger the processing power gap between
the devices the less performing hybrid will be.

4. EXPERIMENTAL RESULTS

4.1. MC Performance Experimental Results

First, we verify MC using the Nvidia Tesla 2050
(CUDA cores = 448, or SM# = 448/32 = 14) and NV
GTX580 (CUDA cores = 512 or SM# = 512/32 = 16)
graphics cards. The data results show an error of<5%
between the estimated and measured data at different
core frequencies and numbers of cores, shown in Fig. 5.
For both cards (Tesla 2050 and GTX580), the simulation
path N = 256*1024 and options number M = 2048.

For MC Hybrid model performance results, solving
the equations we derived in hybrid model section, if
we know the RandTime for CPU and T, we can
calculate N for which there is a performance gain. For
the single precision case, T~65%* RandTime, which
means that N is at least 2, this will give us theoretical
performance gain of 35%.

From Fig. 6, the random time for CPU reaches a max
of 2863ms for number of samples = 27, while the GPU it
reaches a max of 1844 ms for samples = 27. Therefore,
the CPU RAND time is only 1.55 slower than the GPU
RAND time. For 800 options and 128×1024×1024
samples, the GPUtime = 4883 ms and Hybridtime = 3526
ms which is ~27.8% improvement in performance.
Performance can be increased by increasing the sample
size, for example, Options = 800, Samples = 1024 MB,
Hybrid Chuck = 16 MB and GPU chunk = 128 MB, we
calculated Hybrid time to be 28.8% faster than GPU only
time. If we change the sample size to 2048 MB, we
calculate the hybrid time to be ~29% faster than GPU only
time. We repeat the same experiment for double precision.

For double precision, the CPU Random generating
numbers is 5× times faster than the GPU. From Fig. 7,
CPU RAND time is~1360 ms, while the GPU RAND
time is ~6950 ms. In case of 64 options, 120×1024×1024
sample size, the GPU time is calculated at 11419 ms
while the Hybrid time 0is 5210 ms, this is ~54%
improvement in performance.

Joseph Issa / Journal of Computer Science 10 (9): 1811-1818, 2014

1817 Science Publications

JCS

Fig. 5. Estimated Vs Measured for MC

Fig. 6. GPU and CPU RAND timing for single precision for different random sizes

Fig. 7. GPU RAND and CPU RAND timing for double precision for different random sizes

Joseph Issa / Journal of Computer Science 10 (9): 1811-1818, 2014

1818 Science Publications

JCS

5. CONCLUSION

In this study, we analyzed MC benchmark; we
developed a performance estimation model as a
function of several processor architecture parameters
related to performance. We verified the model by
testing different processors configuration running a
given benchmark and compared measured results with
estimated results. All tested experiments for
performance show deviation error between estimated
and measured data of <5%. We also presented a
hybrid implementation and performance model for
MC workload in which we analyzed performance
benefits for MC workload when running in hybrid
mode instead of GPU only mode. The Hybrid model is
implemented from the perspective of data and task
decomposition. Pipelining should be used to hide
memory traffic between devices. Parallel execution on
all devices can be achieved using asynchronous
operations, which either is synchronizing using events
or simply use an in-order queue and asynchronous
operations. Hybrid performance depends on many
factors such as problem sizes, algorithms
optimizations, capabilities of devices in which it’s
best when the devices are well balanced; the bigger
the processing power gap between the devices the less
performing hybrid will be. In conclusion, the hybrid
implementation for MC shows the CPU is about 3-6
times slower than the GPU for data parallel problems,
but the CPU can perform much better on task parallel
problem. For double precision PRNG, the i7 CPU is
about 6 times faster than the GTX 480 and about 3
times faster on CPU as compares to Tesla M2090. We
conclude that hybrid implementation is a possibility to
achieve higher performance under certain
circumstances like we have described in this study.

6. REFERENCES

Aoki, R., S. Oikawa, T. Nakamura and S. Miki, 2011.
Hybrid openCL: Enhancing openCL for distributed
processing. Proceedings of the IEEE 9th
International Symposium on Digital Objerct
Identifier, May, 26-28, IEEE Xplore Press, Busan,
pp: 149-154. DOI: 10.1109/ISPA.2011.28

Bakthavatsalam, G. and K.M. Mehata, 2014. A case for
hybrid instruction encoding for reducing code size in
embedded system-on-chips based on RISC
processor cores. J. Comput. Sci., 10: 411-422. DOI:

10.3844/jcssp.2014.411.422
Goel, B., S.A. McKee, R. Gioiosa and K. Singh, 2010.

Portable, scalable, per-core power estimation for
intelligent resource management. Proceedings of the
Internatoinal Green Computing Conference, Aug.
15-18, IEEE Xplore Press, Chicago, IL., pp: 135-
146. DOI: 10.1109/GREENCOMP.2010.5598313

Pennycook, S.J., S.D. Hammond, S.A. Jarvis and G.R.
Mudalige, 2011. Performance analysis of a hybrid
MPI/CUDA implementation of the NAS-LU
benchmark. Proceedings of the 1st International
workshop on Performance Modeling, Benchmarking
And Simulation of High Performance Computing
Systems, (PCS’ 11), ACM New York, pp: 23-29.
DOI: 10.1145/1964218.1964223

Yu, Y., A.C. Megri, K.M. Flurchick and K.C.D.
Bahadur. 2014. The improvement of the
computational performance of the zonal model
POMA using parallel techniques. Am. J. Eng.
Applied Sci., 7: 185-193. DOI:

10.3844/ajeassp.2014.185.193

