
Journal of Computer Science 10 (9): 1881-1889, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1881.1889 Published Online 10 (9) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Yamuna Devi, N., Department of MCA, Coimbatore Institute of Technology, Coimbatore, India

1881 Science Publications

 JCS

A COMBINTORIAL TREE BASED FREQUENT
PATTERN MINING

1Yamuna Devi, N. and 2J. Devi Shree

1Department of MCA, Coimbatore Institute of Technology, Coimbatore, India
2Department of EEE, Coimbatore Institute of Technology, Coimbatore, India

Received 2014-02-06; Revised 2014-02-07; Accepted 2014-05-06

ABSTRACT

Frequent pattern mining is a process of extracting frequently occurring itemset patterns from very large data
storages. These frequent patterns are used to generate association rules which define the relationship among
items. The strength of the relationship can be measured using two different units namely support value and
confidence level. Any relationship that satisfies minimum threshold of support value is known as frequent
pattern. There are several methods and algorithms suggested to mine frequent patterns from large databases.
Most of the methods can be assessed for its complexity based on the number of processing levels and
number of candidate sets with subsets that are generated in each level. In this study, the combinatorial
approach which generates minimal number of combinations using a tree structure and automatically filters
infrequent itemsets and mine frequent patterns is suggested. It scans input database once and carries out
minimized intersections to count the support value. The complexity is based on the number of transactions
and the maximum length of transactions. The new approach purely depends on the size of input transaction
database. The combinatorial approach does not depend on the unknown number of processing levels and
there is nocandidate sets and subsets generation. The proposed method makes minimal number of
combinations when compared to number of candidate sets and subsets in other methods. The method is
compared with number of existing legendary methods for its performance.

Keywords: Association Rule Mining, Frequent Item Set Mining, Combinatorial Approach, Tree Structure

Based Combinations

1. INTRODUCTION

In recent years, extracting interesting patterns from a
huge volume of data is necessary since the new
technologies such as cloud computing, mobile
applications, social networks cause a huge amount of
data generation in many ways. These data are to be
stored, maintained and integrated to get useful
information from them by analyzing in various ways.
This extraction process is an essential part of knowledge
discovery which is also known as data mining. Among
many techniques in data mining, Association rule mining
is a key technique which defines the dependency
between any two itemsets. Association rules are
generated using algorithms by finding frequent patterns

as an initial step. The frequent patterns are mined using
minimum support threshold and further minimum
confidence threshold is used to generate association
rules. Mining frequent patterns from large scale
databases is a hot research area in which many
techniques have been implemented. Apriori algorithm is
the most widely used oldest algorithm to find frequent
patterns and association rules. Many researchers
improved the efficiency of Apriori algorithm using
various techniques and implementations were done.
After careful analysis, it is found that the main
deficiencies in almost all Apriori-based algorithms
suffered are, too many scans of the transaction database,
large amount of unnecessary candidate itemsets and
subsets generation and pruning process.

Yamuna Devi, N. and J. Devi Shree / Journal of Computer Science 10 (9): 1881-1889, 2014

1882 Science Publications

JCS

Many methods have been suggested which scan the
database only once, still they generates more number of
candidate sets and subsets in pruning process. It is absolute
necessary for new ideas that can reduce the number of
scans, number of candidate sets and subsets generation in
pruning process. In this study, a new method is suggested
that scans the database only once. It also avoids pruning
process and hence candidate sets and subsets generation.
Instead, it uses combinatorial method to generate
combinations of itemsets in each transaction which is less in
number when comparing to pruning process.

2. RELATED WORKS

The Apriori algorithm is the first and foremost
method to mine frequent patterns. The limitations of
Apriori algorithm are suggested as the number of scans
and generation of huge quantity of candidate sets. The
algorithm takes a stretched duration to generate
candidate sets and pruning process. The pruning process
generates in turn a large quantity of subsets for each
candidate set in every kth level and compared with the
candidate sets in k-1th level. This also extends the
execution time of the algorithm. As an improvement, the
Vertical data format method is suggested in ECLAT
algorithm with only one database scan and transforms
the input database into {Itemset, Tid} form. This method
is profitable than Apriori because it does not scan the
database more than once. Further instead, it does
intersection with the {Itemset, Tid} sets. It is a
monotonous task in vast databases to prune the candidate
sets using apriori property at each level. Zhang (2012)
proposed a method that reduces the number of scans and
hence the candidate set generation.

Following that many methods and techniques have
been suggested with improvements. Among them,
frequent pattern tree growth algorithm eliminates
candidate large itemset generation. But the process of
generating tree data structure and the pruning process
using the tree structure is considered as lacking part.
Agrawal and Ramakrishnan (1994) developed AprioriTid

algorithm which uses the set 1kC − (frequent sets in k-1th

level) to prune candidate sets in Ck (candidate sets in kth

level) and produces kC (frequent sets in kth level). In

this algorithm scans the database once but the huge
candidate sets are generated as in Apriori method. The
AprioriHybrid method is suggested by same authors that
combines the Apriori algorithm and AprioriTid
algorithm. In AprioriHybrid, during the initial passes, the
method follows Apriori algorithm and AprioriTid

method is followed in latter passes. This further reduces
execution time since Apriori takes more time in latter passes
and AprioriTid takes the same through initial passes.

As further improvements, Goswami et al. (2010)
proposed a new algorithm using record filter approach.
In this approach the transactions that are not having
number of items that is equal to or greater than k (k-
itemset) are rejected for scanning. The probability
concept is used in Apriori algorithm by Sunil et al.
(2012). Jaishree et al. (2013) explained transaction
reduction method to improve efficiency. Jnanamurthy et al.
(2013) discussed mining maximal frequent item sets
using subset creation. In all the above said and new
improvements, the thing which cannot be avoided is the
generation of huge volume of candidate sets. Any
algorithm that avoids or reduces the generation of
candidate sets will further improves the performance of
frequent pattern mining. Vijayarani and Sathya (2013)
proposed the implementation of ECLAT algorithm over
data streams. The implementation of prefix tree to mine
frequent sets was given by Grahne and Zhu (2003).
Tohidi and Ibrahim (2011) introduced an algorithm to
generate frequent patterns without generating a tree
based on Prime Factor Miner (PFM). Venkatesan and
Ramraj (2011) proposed a Bit search method instead of
depth first and breadth first search techniques
(Venkatesan and Ramraj, 2011). To improve the
performance of Apriori algorithm, sorting and clustering
technique was used by Jha and Borah (2012). Another
improvement was done by Nagesh et al. (2013) using
fully organized candidate generation and viper
algorithm. The candidate set size is considered for
improvement in the work proposed by Sheila (2012).
The probability theory is used by Smythe and Goodman
(1992). Sunil et al. (2010) suggested a method with
dynamic function applied on transposition of the
database. This study suggests a new way of using
combinatorial method to mine frequent patterns which
avoids generation of candidate sets and pruning process.

3. FREQUENT PATTERNS

Association Rules are generated in two steps. As first
step, generate frequent patterns. The frequent patterns
are those itemsets whose occurrences exceed a
predefined threshold support value in the database. The
second step is to generate association rules from those
large frequent itemsets with the constraints of minimal
confidence. The first step can be done in turn two sub-
steps. They are, candidate itemsets generation and
frequent itemsets generation by pruning process. Here,

Yamuna Devi, N. and J. Devi Shree / Journal of Computer Science 10 (9): 1881-1889, 2014

1883 Science Publications

JCS

the generation of candidate large itemsets and pruning
process are focused for improvement. Formally,
Jiawei et al. (2012) defined Association rule mining
problem as follows. D = {T1, T2, ….,TN} is a database
of N transactions. Each transaction consists of subset of
I, where I = {i1, i2,….,im} is a set of all items. An
association rule is an implication of the form A ⇒ B,
where A and B are itemsets, A ⊆ I, B ⊆ I, A ∩ B = φ. In
support-confidence framework, each association rule has
support and confidence to confirm the validity of the
rule. The support denotes the occurrence rate of an
itemset in D and the confidence denotes proportion of
data items containing B in all items containing A in D.
Defined in terms of equations:

Sup(I) = Count(I)/Count(D)
Sup(A ⇒ B) = Sup (A∪B)
Conf(A ⇒ B) = Sup (A∪B)/Sup(A)

An itemset with k elements is called a k-itemset. An
itemset is frequent if its support is greater than a support
threshold, originally denoted by min_support. The
frequent itemset mining problem is to find all frequent k-
itemset, 1< = k< = m, in a given transaction database D.
Assume that the items are from an ordered set and the
transactions in D contain sorted itemsets.

4. PROPOSED ALGORITHM

The proposed Direct-vertical algorithm mines the
frequent patterns in a different way using combinatorial
method. It generates all possible k-itemset frequent
patterns corresponding to each transaction on the fly
while the transaction is read from the input database. The
algorithm works in stages as, it reads the current
transaction and generates all possible ordered
combinations of items in that transaction. Then these
combinations are verified for minimum support using
intersection method. All combinations that satisfy
minimum support count are considered as frequent
itemsets and are stored in frequent itemset table. This
process is repeated for each transaction. Finally, the
algorithm constructs a 1-itemset table for 1-itemset
frequent sets and frequent itemset table for k-itemsets
where k> = 2 in vertical form as {itemset, Tid}.

The proposed algorithm reads one transaction at a
time. While reading a transaction, based on the minimum
support, the frequent 1-itemsets alone are considered
from the current transaction to fabricate ordered
combinations of k-itemsets, where k> = 2. The support
value for each combination itemset is calculated using
intersection method. The intersection is performed using

1-itemset table. The intersection process results TID-set
for each combination. The absolute support count for each
itemset is the length of the TID-set of the corresponding
combination. The combination which satisfies minimum
support threshold is considered as frequent set.

This algorithm requires only one scan of the
transaction database to generate the set of all frequent
itemsets without generating any candidate sets and
subsets and hence there is no pruning process. All
infrequent itemsets will be filtered on the fly. This
qualifies the efficiency of the proposed algorithm. The
algorithm works by calculating ordered combination
of items in each transaction Ti. The proposed
algorithm is given in Figure 1.

Example

The Direct-vertical algorithm generates all k-
itemset frequent sets on the fly while reading the
transaction database. Figure 2 depicts some steps in
execution of the proposed algorithm by considering
the Fig. 2a as simple transaction database with
minimum support 43%. Read the first three
transactions T100, T200 and T300, enter into the 1-
itemset table as given in Fig. 2b which is 1-itemset
table. Here, there are two items B, E that satisfy
minimum support. So, the combination BE goes to 2-
itemset frequent set with the transactions T100, T200
and T300. While reading T400, there are four
combinations for frequent items which include three
2-itemsets and one 3-itemset. After performing
intersection for each combination, include
combinations that satisfy the minimum support as given
in Fig. 2c. If any k-itemset already exists in the table,
then its support count alone is increased. When all
transactions are read, Fig. 2d, frequent itemset table, is
generated which shows all frequent k-itemsets.

4.1. Data Structures

The algorithm reads one transaction at time and
generates all frequent itemsets from that transaction. An
extra field is attached with each item in both 1-itemset
table and frequent itemset table to maintain and update
the support count. While reading each transaction, all
combinations are generated using frequent 1-itemsets
alone in that specific transaction. The algorithm
generates combinations using tree data structure which is
advantageous when compared to other ways. The
approach given by Shant and Choueiry (2010) is
implemented in this proposed Direct-Vertical algorithm
to improve the efficiency. It uses the divide-and-conquer
technique to further reduce the complexity.

Yamuna Devi, N. and J. Devi Shree / Journal of Computer Science 10 (9): 1881-1889, 2014

1884 Science Publications

JCS

Fig. 1. Direct vertical algorithm

Fig. 2. Example for execution of proposed algorithm

Yamuna Devi, N. and J. Devi Shree / Journal of Computer Science 10 (9): 1881-1889, 2014

1885 Science Publications

JCS

4.1.1. Generating k-Combinations

The algorithm Produce_Combinations generates all
possible combinations for the elements of given non-
negative set S. This algorithm in turn calls
Produce_Combi_Tree on c and s = |S| to generate the
combination tree where 2 < = c < = s. The algorithms are
given in Fig. 3. The elements of S are stored in an array
and the index values of the array are passed to generate
tree. The algorithm Poduce_Combi_Tree is a divide-and-
conquer algorithm that solves the problem by generating
a tree. Given a root node and a non-negative integer s, it
divides the problem into (s-c-bal + 1) sub-problems. The
sub-problems are solved by making a recursive call. The
recursion ends when c = 0. The final solution is
constructed by traversing the tree in depth wise manner
start from root through each and every path. This
solution set gives the combinations of positions of
elements. These positions are mapped to the
corresponding element in the set S and the combinations
of all the elements are generated.

As an example, the execution of the above said
algorithms is explained using Fig. 4 with the initial call
of Produce_Combinations(2, S) where S = {I1, I2, I3,
I4}. The tree is generated by lexicographical order of the
labels specified for nodes in the Fig. 4. The tree is
traversed in depth wise and set of combinations
generated are {I1, I2}, {I1, I3}, {I1, I4}, {I2, I3}, {I2,
I4}, {I3, I4}. The time and space complexity of the

algorithm Produce_Combinations are
s

c

, where s = |S|,

2 < = c < = s.

4.2. Evaluation of Proposed Algorithm

For most of the existing algorithms, the complexity
can be defined based on the number of levels (l), number
of candidate sets generated in each level (m) and the
number of subsets of each candidate set in all k-1 levels.
The total number of candidate sets and subsets generated
can be calculated as:

2 1 1

l m

k j

p
lm

k= =

+ −

∑ ∑

where, p = Ckj (Each candidate itemset).

So, the complexity is about defined O(lm). The
AprioriHybrid in addition involves the cost of
intermediate method switching. But in the proposed
Direct-vertical algorithm, the complexity can be defined
based on number of transaction and number of ordered
combinations generated. The total number of
combinations calculated as:

Fig. 3. Algorithms to generate ordered combinations using

tree structure

Fig. 4. Tree structure for 2-itemset combinations

1

!

()!

nT
i

i i j j

n

n c c=

−
∑

where,
Tn = Number of transactions
ni = Number of frequent items in transaction Ti
Cj = The order of combinations and j = 2,3,…|ni|

The above formula produces totally 2ni-ni-1 * Tn.
combinations. So, the complexity of the proposed
algorithm can be defined as O(2ni * Tn). This is less in
count when compared to other methods and hence the
complexity is reduced. These combinations are
calculated using a tree data structure.

5. PERFORMANCE

5.1. Proposed Algorithm Vs Algorithm Apriori

The Apriori algorithm is the first and the foremost
association rule mining algorithm which generates all

Yamuna Devi, N. and J. Devi Shree / Journal of Computer Science 10 (9): 1881-1889, 2014

1886 Science Publications

JCS

frequent itemsets in first phase. There are n levels and in
each kth level, k-itemsets frequent sets (Lk) are generated.
Each Lk is used to generate candidate itemsets Ck+1 in
next level which is formed as Lk⋈ Lk. A huge set of
candidate sets are generated at each level. For each
candidate set, a number of subsets are generated for
pruning process. Each level requires one database scan.
The Apriori property is used to reduce the search space
which eliminates some of the candidate itemsets by
pruning technique. The complexity of the algorithm
depends on the number of levels(n), number of candidate
sets generated in each level (Ck) and the number of
subsets generated in each level to check Apriori property
(Sk*Ck). So, variably the complexity can be defined
O(Sk*Ck), 1< = k< = n.

The proposed Direct-Vertical algorithm does not
generate candidate sets and in turn subsets. Instead, in
generates combinations which is less in count than set
of candidate sets and subsets. The complexity of the

proposed algorithm is
s

c

, where s is number of

frequent items in each transaction and 2 < = c < = s.
The proposed algorithm depends on the number of
transactions in the database (one time scan) and the
maximum length of the transactions.

5.2. Proposed Algorithm Vs ECLAT Algorithm

In ECLAT algorithm, transaction database is
transformed to vertical data format as <item, {TID}>
where item is the name/id of the item and {TID} is the
set of transaction identifiers containing the item. After
one scan of transaction database for transformation, it
follows the procedure of Apriori algorithm by
generating candidate sets and subsets. The support
value of each candidate itemset is counted by
intersecting the sets of {TID} of every pair of frequent
single items instead of database scan. This algorithm
produces a huge number of candidate sets and subsets.
So, the space complexity remains equal to Apriori
algorithm as O(Sk*Ck), 1< = k< = n.

The proposed algorithm follows the vertical data
format representation and intersection process as in
ECLAT. But, it is totally different in reading the input
transaction database and generation of ordered
combinations instead of candidate sets. ECLAT takes
one scan of transaction database initially for complete
transformation. The proposed algorithm reads one
transaction at a time for whole process. An itemset
combination is verified for support count using
intersection method at first occurrence. The second
occurrence of the combination is considered as ‘exist’

category combination which is not required intersection
process. In this case, the current transaction id is
appended to that existing combination. This proves the
reduced number of intersections in proposed algorithm
when compared to ECLAT algorithm.

5.3. Proposed Algorithm Vs AprioriTid

The AprioriTid algorithm also generates candidate
itemsets in each level like Apriori algorithm and
ECLAT. The appreciated thing in AprioriTid
algorithm is it does not scan the database after the first
level. During first level, it reads the transactions and
transforms the individual items as separate set in the
same transaction. This form is known as kC . This

kC is used for counting support value of each

candidate itemsets in Ck+1. Each member of the set Ck
is of the form < TID; {Xk} >, where each Xk is a
potentially large k-itemset present in the transaction
with identifier TID. It also checks whether the
candidate itemsets in Ck+1 are contained in the
transaction with identifier TID by taking subsets.

While comparing this algorithm, the proposed
algorithm does not generate any candidate sets and
subsets and produces ordered combinations which are
less in count. There is no dependency of previous level
results in proposed algorithm. For each transaction, it
finishes generation of all possible frequent itemsets. It
proves the better performance over AprioriTid algorithm.

5.4. Proposed Algorithm Vs AprioriHybrid

AprioriHybrid is a good algorithm which mines the
frequent itemsets. It is a combination of Apriori
algorithm and AprioriTid algorithm. AprioriHybrid
follows exactly Apriori algorithm for certain passes after
which it follows AprioriTid algorithm. This is because
during initial passes Apriori algorithm takes much less
time than AprioriTid algorithm. In later passes,
AprioriTid beats Apriori algorithm. The reason for this is
Apriori and AprioriTid use the same candidate
generation procedure. In the later passes, the number of
candidate itemsets reduces. On the other hand, rather
than scanning the database, AprioriTid scans kC for

obtaining support counts and the size of kC has become

smaller than the size of the database. So, it is a good idea
to use Apriori in initial passes and AprioriTid in later
passes. When the size of kC is enough to fit in memory,

there the switching takes place. There is a cost involved
for this switching.

Yamuna Devi, N. and J. Devi Shree / Journal of Computer Science 10 (9): 1881-1889, 2014

1887 Science Publications

JCS

In general, AprioriHybrid is advantageous over Apriori
based on the decrease in the size of the kC set in the later

passes. On the other hand, if there is a gradual decline in the
size of Ck, a significant improvement can be obtained in the
execution time. The cost of switching must also be
considered. While considering these constraints, the
proposed algorithm does not have any uncertain situations
and there is no extra cost involved for any process.

6. RESULTS

To make the comparison between the algorithms based
on the number of subsets, number of candidate sets and
number of intersections, a real time surveyed numeric
database is used. The database consists of 5000 transactions
includes 30 different items. The implementations were
modified to specify the count of number of subsets,
candidates and interactions. The execution was done with
various support counts. Figure 5 shows comparison
between number of ordered combinations and number of
subsets generated in the proposed algorithm and others
respectively. The comparison between number of ordered
combinations generated in proposed method with total

number of subsets and candidate sets generated in other
methods is shown in Fig. 6.

The intersection method is followed in ECLAT and
AprioriTid of above discussed algorithms. The
proposed algorithm is completely different in
intersection process in terms of the itemsets chosen for
intersection in which the number of intersections is
considerably reduced. It is shown in Fig. 7 that direct
vertical algorithm performs less number of intersections
compared to ECLAT. The same is compared with subset
verification in AprioriTid technique.

The proposed method consumes very less execution
time when compared to Apriori, ECLAT, AprioriTid and
AprioriHybrid methods. To compare the relative
performance of the algorithms, the experiments were
performed on the Adult dataset from UCI machine
learning database repository (Blake et al., 1998). The
Adult dataset contains 48842 records and 14 columns.
The relative performance is analyzed for complexity
based on number of combinations generated and subsets
generated. The comparison of execution time between all
these methods is shown in Fig. 8.

Fig. 5. Count on subsets Vs combinations

Fig. 6. Count on subsets + candidate sets Vs combinations

Yamuna Devi, N. and J. Devi Shree / Journal of Computer Science 10 (9): 1881-1889, 2014

1888 Science Publications

JCS

Fig. 7. Count on intersections Vs subset comparison

Fig. 8. Execution time for various support count

7. CONCLUSION

A new direct-vertical algorithm using combinatorial
approach is proposed to mine frequent patterns in a
large scale databases. The proposed algorithm differs
from other methods in the way of reading the
transaction database and generating combinations and
filtering the infrequent combinations. After compared
with some existing legendary algorithms, it is proved
that the proposed algorithm outperforms others in terms
of execution time and memory usage. The experiments
were conducted with many synthetic datasets while
only one dataset is used to compare the performance in
this study. It is observed that the increase in execution
time with the size of transaction database is linear and
gradual. The experiments help to decide the feasibility
of the proposed algorithm to mine frequent patterns in
efficient manner by overcoming the bottlenecks in
existing algorithms. This algorithm can be further
improved by including the probability to find maximum
possible number of combinations.

8. REFERENCES

Agrawal, R. and S. Ramakrishnan, 1994. Fast algorithms
for mining association rules in large databases.
Proceedings of the 20th International Conference on
Very Large Data Bases, (LDB’ 94), San Francisco,
CA, USA pp: 487-499.

Blake, C.L., D.J. Newman and C.J. Merz, 1998. UCI
repository of machine learning databases.
Department of Information and Computer Science.
University of California. Irvine. CA. USA.

Goswami, D.N., C. Anshu and C.S. Raghuvanshi, 2010.
An algorithm for frequent pattern mining based on
apriori. Int. J. Comput. Sci. Eng., 2: 942-947.

Grahne, G. and J. Zhu, 2003. Efficiently using prefix-
trees in mining frequent itemsets. Proceedings of the
Frequent Itemset Mining Implementations, (FIMI’
03), Melbourne. Florida, pp: 1-12.

Jaishree, S., H. Ram and J.S. Sodhi, 2013. Improving
efficiency of apriori algorithm using transaction
reduction. Int. J. Sci. Res. Public., 3: 1-4.

Yamuna Devi, N. and J. Devi Shree / Journal of Computer Science 10 (9): 1881-1889, 2014

1889 Science Publications

JCS

Jha, I.N. and S. Borah, 2012. Efficient association rule
mining using improved apriori algorithm. Int. J.
Scientific Eng. Res., 3: 1-4.

Jiawei, H., M. Kamber and J. Pei, 2012. Data Mining:
Concepts and Techniques. Morgan Kaufmann, USA.

Jnanamurthy, H.K., H.V. Vishesh, V. Jain, P. Kumar and
R.M. Pai, 2013. Discovery of maximal frequent item
sets using subset creation. Int. J. Data Min. Know.
Manag. Process, 3: 27-38.

Nagesh, H.R., M.B. Kumar and B. Ravinarayana, 2013.
Improved implementation and performance analysis
of Association rule mining in large databases.
Proceedings of the 3rd International Conference,
Jan. 18-19, Mumbai, India, pp: 94-104. DOI:
10.1007/978-3-642-36321-4_9

Shant, K. and B.Y. Choueiry, 2010. Tree-based
algorithms for computing k-combinations and k-
compositions. Department of Computer and
Engineering, University of Nebraska-Lincoln.

Sheila, A.A., 2012. Association rule mining based on
Apriori algorithm in minimizing candidate
generation. Int. J. Sci. Eng. Res., 3: 1-4.

Smythe and Goodman. 1992. An information theoretic
approach to rule induction from databases. IEEE
Trans. Know. Data Eng., 4: 301-316. DOI:
10.1109/69.149926

Sunil, J., R.S. Jadon and R.C. Jain, 2010. An
implementation of frequent pattern mining algorithm
using dynamic function. Int. J. Comput. Appli., 9:
37-41. DOI: 10.5120/1410-1904

Sunil, K.S., K.S. Shyam, K.C. Akshay, A. Prabhu and
K.M. Bharathraj, 2012. Improved aprori algorithm
based on bottom up approach using probability and
matrix. Int. J. Comput. Sci., 9: 242-246.

Tohidi, H. and H. Ibrahim, 2011. Using unique-prime-
factorization theorem to mine frequent patterns
without generating tree. Am. J. Econ. Bus. Admin.,
3:58-65. DOI: 10.3844/ajebasp.2011.58.65

Venkatesan, N. and E. Ramraj, 2011. High performance
bit search mining technique. Int. J. Comput. Applic.,
14: 15-21. DOI: 10.5120/1817-2371

Vijayarani, S. and P. Sathya, 2013. Mining frequent item
sets over data streams using eclat algorithm.
Proceedings of the International Conference on
Research Trends in Computer Technologie, (TCT’ 13),
New York, USA, pp: 27-31.

Zhang, S.L., 2012. A new mining algorithm of
association rules and applications. Proceedings of
the 7th International Conference on Intelligent
Computing, Aug. 11-21, Zhengzhou,China, pp: 123-
128. DOI: 10.1007/978-3-642-24553-4_18

