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ABSTRACT 

Proteins are very important components in any living cells. A number of diseases such as Retinitis 
pigmentosa, Stargadt-like macular degeneration and Doyne Honeycomb Retinal Dystrophy (DHRD) 
diseases are shown to result from misfunctioning of proteins. Protein folding problem is a way to predict the 
best and optimal 3D molecular structure (tertiary structure) of a protein which is then considered to be a 
sign for the protein’s proper functionality. This comparative study’s purpose is to calculate the protein’s 
energy using the Empirical Conformational Energy Program for Peptides (ECEPP) package and 
experiments were performed on the Rhodopsin proteinusing three different evolutionary algorithms in order 
to find the best energy in parallel with the best structure for the protein and a comparison for the results 
obtained from the three algorithms was performed. It was found that the best result was -11.8 obtained from 
the Extended Compact Genetic Algorithm (ECGA). ECGA has proved from the obtained results to be the 
best algorithm from the chosen algorithms in the comparative study in obtaining the Rhodpsin protein’s 
energy and its equivalent structure. 
 
Keywords: Extended Compact Genetic Algorithm, Rhodopsin Protein, Particle Swarm Optimization 

Algorithm, Memetic Algorithm and Protein Folding Problem 
 

1. INTRODUCTION 

Proteins are very important in all living algortihms’ 
cells. They are involved in almost all cell functions. 
Each protein within the body has certain functionality. 
Some proteins such as Enzymes are responsible for 
facilitating biochemical reactions where they are 
referred to as catalysts because they speed up chemical 
reactions, while others such as Contractile proteins are 
involved in body movements, also there exist 
antibodies which are specialized proteins in defense 
against germs and foreign invaders to our body, all of 
these are examples for important proteins in the human 
body. In spite of huge and different functionalities 
proteins perform, all proteins are like long necklaces 

with differently shaped beads. Each “bead” is a small 
molecule called amino acids which are considered the 
‘building blocks’ of proteins. Proteins typically contain 
its own sequence from 50 to 2,000 amino acids in a 
linear arrangement hooked end-to-end in many 
different combinations to end up in formation of a long 
chain. These acid chains do not remain straight and 
order (DHH, 2007). They twist and fold upon 
themselves and that’s what we call protein folding. 

Inappropriate protein folding is one way in which a 
protein balancemay get damaged. The mis-folded 
protein can be non functional totally or not optimal in 
its functionality that’s required from this protein. There 
are a number of serious diseases such as Retinitis 
pigmentosa, Stargadt-like macular degeneration and 
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Doyne Honeycomb Retinal Dystrophy (DHRD) which 
have a common property which is they all appear to 
involve inappropriate folding of a particular protein 
(Lee and Yu, 2005). 

1.1. Motivation of the Work 

This study helps a lot in accelerating better drug 
discovery for various diseases for the retina such as night 
blindness and also discovering other new proteins which 
help the Rhodopsin protein in functioning and this may 
help in discovering new diseases for the retina and 
finding a proper cure for them. 

1.2. Related Work 

Many researchers before tried to find and reach the 
proper three dimensional structure of the protein only 
depending on the amino acid sequence (Calabretta et al., 
1995; Dill et al., 2008). All proteins are constructed from 
same twenty amino acids but with different number of 
amino acids chained and linked together to form this 
unique protein and also this linked chain is unique in 
structure and order  (Calabretta et al., 1995). The protein 
structure is formed in three levels; the first level is “the 
primary structure of the protein” which represents the 
linked linear chain of the amino acids sequence in the 
residue along the polypeptide chain and all other 
subsequent levels depend mainly on the primary 
structure of the protein. From the primary structure we 
obtain the secondary structure of the protein which is 
the local conformation of the almost alike amino acids 
residue that are close in the primary sequence and it’s 
built from the segments of the protein polypeptide 
chain. At last, the tertiary structure is formed from the 
secondary structure which represents the folding of the 
polypeptide chain which as a result represents the real 
final three dimensional structure of the protein. And 
because it is possible to change the order of the twenty 
amino acids which in return forms different amino acid 
sequence in the protein, therefore the tertiary structure 
(3-dimensional structure) changes as a consequence for 
it. And so, at the end of the folding process the protein 
reaches a stable 3-dimensional structure for it 
(Calabretta et al., 1995; Whitford, 2005). 

Plenty of approaches have been used recently in 
order to predict the optimum three dimensional 
structure of a certain protein. Efforts to predict the 
molecular structure of a protein from its amino acid 
sequence only isn’t an easy task but has many 
advantages and helpful in many applications such as 
drug and medication industry for various diseases 
 (Merkle et al., 1993; Piccolboni and Mauri, 1998). 

In order to solve this problem it has been always 
assumed that the native conformation corresponds to 
the global minimum free energy state of the system. 
As a result for this assumption, it was important to 
develop efficient global energy minimization 
techniques. In return many techniques have been used 
and developed to try to solve this problem which is 
the protein folding problem but it has been found that 
the protein folding problem is a difficult optimization 
problem due to the non-linearity and the multi model 
of the energy function (Merkle et al., 1993; 1996). 

Most techniques were performed on the penta-
peptide Met-Enkephalin protein using different 
computational methods. 

One of these computational approaches was using a 
Parallel Fast Messy Genetic Algorithm (PFMGA) on the 
Met-Enkephalin protein. Experiments were done to 
estimate the scalability of the PFMGA design in 
particular for the application of the energy minimization 
for the Met-Enkephalin protein. Experiments were 
performed using 1, 2, 4, 8, 16, 32, 64 and 128 processors. 
Unfortunately the conformational energies are not as low 
as those obtained in studies using refined energy models 
but are near the lowest known for the PFMGA model 
(Merkle et al., 1993). 

Also, another computational method have also been 
used before to try to solve the protein folding problem 
for the Met-Enkephalin protein which was using the 
elitism based compact genetic algorithm with the help 
also of the Empirical Conformational Program for 
Peptides (ECEPP) package to calculate the energy for the 
Met-Enkephalin protein. It has been showed that ECGA 
reached the minimum required energy better than other 
techniques (Badr et al., 2008). 

Finally the last computational method we will show 
here concerning the energy minimization of proteins is a 
technique called” Hybrid Genetic Clonal Selection 
Algorithm” used also to find the minimized energy for 
Met-Enkephalin protein. An enhancement over clonal 
selection algorithm was made to minimize the energy of 
the protein by adding the crossover function from 
Genetic Algorithm. Experiments performed showed that 
the Met-Enkephalin protein reached its minimized 
energy which is -20.919 using the enhanced algorithm 
(Mohamed et al., 2010). 

In this research we will use the Rhodopsin protein 
which wasn’t investigated a lot before in many fields and 
below is a brief on the Rhodopsin protein. 
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1.3. Outline of the Work 

The aim of this study is applying three different 
evolutionary algorithms for both predicting the 
Rhodpsein protein’s proper 3-dimensional structure 
(tertiary structure) starting from its primary structure 
which is its linear amino acid sequence only and 
predicting the energy of the Rhodopsin protein. 

Also the second aim is performing a comparative study 
between the performance and the results of applying the 
three evolutionary algorithms to the Rhodopsin protein. 

2. MATERIALS AND METHODS 

2.1. Rhodopsin Protein 

We choose the Rhodopsin protein to be our target 
protein for the work in this research. Rhodopsin protein, 
the visual pigment (sometimes called the visual purple) 
is a biological pigment of vertebrate rod cell 
in the retina that is responsible for the first steps in the 
perception of light. It has been studied intensively for at 
least two decades because it is both fascinating and 
accessible  (Sakmar, 2002). 

Rhodopsin properties are very unique and fascinating 
which allow it to function as a visual photoreceptor.  It 
also serves as a prototype of the largest family of 
membrane receptors in the human genome which is 
the G-protein coupled receptor family which is known 
for being extremely sensitive to light, enabling vision in 
low-light conditions. 

Rhodopsin is bound to the plasma membrane of the 
rod behind the retina and forms transmembrane protein 
complexes within it. Rhodopsin undergoes a cyclic 
decomposition and reconstitution in response to the 
presence of light. This rather complicated cycle is the 
basis for absorption of light and its transduction into a 
nervous signal. 

Rhodopsin is composed of two components: 
Scotopsin and 11-cis-retinal. When combined, these 
two components create the Rhodopsin moleculeas 
shown in Fig. 1. 

Energy from impinging light excites the electrons in 
the 11-cis-retinal and converts it to 11-trans-retinal. 
Because 11-trans-retinal is not compatible with the 
scotopsin, it begins to detach from it and the Rhodopsin 
conjugate begins to break up into its component parts. 
One of the breakdown components is metarhodopsin II, 
which is an enzyme that affects strongly the change in 
the rod membrane’s charge. 

The disintegration of Rhodopsin into 11-cis-retinal 
and scotopsin is progressive, with a series of short-lived 

intermediate components formed, as shown Fig. 2. The 
final result is release of the two components of 
Rhodopsin from each other completely. 

Obviously, Rhodopsin has to be regenerated, or the 
ability to respond to light will be completely lost in few 
seconds at most. This takes place through two paths. 
First path is when the 11-trans-retinal is re-converted to 
the 11-cis-retinal form by an isomerase enzyme. Since 
the scotopsin is present (having been removed before 
from the Rhodopsin), it immediately will combine with 
11-cis-retinal to regenerate new Rhodopsin. Second path 
is when the 11-cis-retinal is generated from 11-trans-
retinol, or vitamin A. Vitamin A is a derivative form of 
11-trans-retinal. The isomerase reaction can convert 
the trans form to the cis isomer, making new 11-cis-
retinal available to recombine with scotopsin. By this 
second pathway additional Rhodopsin is manufactured. 

Animals that live in dark environments (such as deep-
water fishes and cave creatures) always have far more 
rods, because it is important to them to be able to see 
in the minimum amount of light. Adaptation to dark in 
most animals is a matter of generating more 11-cis-
retinal from vitamin A and combining it to scotopsin 
to make more Rhodopsin. Similarly, reduction of 
sensitivity to light means a reduction of the 
availability of Rhodopsin and hence a conversion of 
the 11-cis-retinal to the inactive trans-retinal form and 
conversion of trans-retinal back to vitamin A, making 
it unavailable for conjugation to scotopsin. 

Anything which interferes with the Rhodopsin cycle 
will obviously affect vision, especially in the dark for any 
creature animal or human being. An individual on a diet 
deficient in vitamin A can have supplements so as to make 
him capable of producing enough 11-cis-retinal to see 
effectively in dim light. Drugs or chemicals that affect 
vitamin A metabolism may lead to problems in vision. 

Since Rhodopsin protein is very important for vision, 
if anything goes wrong with the protein folding of 
Rhodopsin it will cause a lot of damage and serious 
diseases such as retinitis pigmentosa (night blindness). 

As a result, our main concern in this research was to 
try to find the suitable energy to perform the binding of 
the angles for the protein to be folded well so as to 
prevent any damage. 

As a result for what is needed in this research, 
Evolutionary Algorithms (EAs) were the first choice for 
the work in this research. Evolutionary Algorithms (EAs) 
have a very common way in general to solve application 
problems which are: The problem is first represented 
then the EA is applied on this representation to reach 
almost an optimum solution for this problem.  
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Fig. 1. Formation and Decomposition of Rhodopsin  (Caceci, 1998; Radetic and Pelikan, 2010; Paul and Iba, 2002) 
 

 
 

Fig. 2. Results of ECGA, PSO and MA 
 
Below is a brief description for each of the algorithms 
needed to understand this comparative study  
(Piccolboni and Mauri, 1998). 

2.2. The Algorithms 

2.2.1. Genetic Algorithm 

GA was developed in the early 70’s in USA by J. 
Holland, K. DeJong, D. Goldberg. GA’s were inspired 

and developed based on the Darwanian principle 
“Survival of the fittest” through biological systems. The 
representation of a solution in genetic algorithm is in the 
shape of a string called “chromosomes” which also 
consists of elements called “genes”. 

GA’s pattern is to work using a random population of 
solutions which are called the chromosomes. Those 
chromosomes’ fitness is evaluated with a fitness function. 



Iman Ahmed Mahmoud et al. / Journal of Computer Science 10 (10): 1890-1899, 2014 

 
1894 Science Publications  JCS 

As a result for this fitness, offspring chromosomes are 
then produced by exchanging through crossover and 
mutation best chromosomes information which are later 
evaluated to decide which good solutions will be used in 
the next offspring and which weak ones will be 
eliminated. And iteratively, generations are produced n 
order to obtain the best fit near to optimality result 
(Elbeltagi et al., 2005). 
 
Pseudo code for GA 
1. Initialize a random population of P solutions 

(chromosomes). 
2. For each (i) belongs to P; calculate the fitness of (i). 
3. For (i) = 1 to n (number of generations given): 

• Either perform Mutation or crossover 
• If crossover chosen:  

� Select two parents i1 and i2 and generate 
their offspring from their crossover together. 

• If mutation chosen: 
� Select 1 chromosome (i) randomly and 
generate an offspring from its mutation. 

4. Calculate the fitness of the output offspring from 
step (3) and if the new offspring is better than the 
worst chromosome, then replace the worst 
chromosome by it. 

5. Repeat step (2),(3) and (4). 
6. If best fit has been obtained, then stop the algorithm. 
7. If best fit hasn’t been obtained, repeat steps from 

2 to 5. 
 
2.2.2. Memetic Algorithm 

MA was developed in the early 80’s by (Dawkins, 
2006) when he was coining to the theory of Universal 
Darwinism and stating that evolution is not exclusive to 
biological systems only but applicable also to any system 
that adopts the principles of inheritance and selection. 
Inspired by both The Darwinian principle of natural 
evolution and Dawkins’ notion of a meme, the term 
“Memetic Algorithm” (MA) was first introduced by 
Moscato in his technical reportin 1989 (Krasnogor et al., 
2006). The representation of a solution in Memetic 
algorithm is in the shape of a string called 
“chromosomes” consisting of set of elements called 
“memes”  (Elbeltagi et al., 2005; Krasnogor et al., 2006). 

MA’s main aspect is that all chromosomes and 
offsprings are allowed to gain experience through a local 
search before being in the evolutionary process. MA.s 
work is similar to that of GA.s where an initial 
population is generated at random. A local search is then 

performed on each member in the population to improve 
its experience and results in a local optimum solution. As 
in GA, crossover and mutation are performed on off 
springs to produce new off springs. Local Search is 
performed on these off springs so that local optimality 
is always maintained through these off springs  

(Elbeltagi et al., 2005; Krasnogor et al., 2006). 
 
Pseudo code for MA 
1. Initialize a random population of P solutions 

(chromosomes). 
2. For each (i) belongs to P;  

• Calculate the fitness of (i) 
• Perform local search at (i) 

3. For (i)=1 to n (number of generations given): 
• Either perform Mutation or crossover 
• If crossover chosen:  

� Select two parents i1 and i2 and generate 
their offspring from their crossover together. 
� Perform local search at new offspring. 

• If mutation chosen: 
� Select one chromosome (i) randomly and 
generate an offspring from its mutation. 
� Perform local search at new offspring. 

4. Calculate the fitness of the output offspring from 
step (3) and if the new offspring is better than the 
worst chromosome, then replace the worst 
chromosome by it. 

5. Repeat step (2),(3) and (4). 
6. If best fit has been obtained, then stop the algorithm. 
7. If best fit hasn’t been obtained, repeat steps from 2 

to 5. 
 
2.2.3. Particle Swarm Optimization Algorithm 

PSO was developed in (Eberhart and Kennedy, 1995) 
[95 PSO]. PSO was inspired by the social behavior of 
flocks of birds migrating from one place to another and 
how this flock with their cooperation find their own path 
till they reach their target (new destination) each solution 
is called a “particle” and refers to a bird in the flock 
[last]. The evolutionary process here in PSO is different 
than that of GA; new birds are not created from old ones 
through the process. Rather, the birds develop their 
social behavior in order to move towards their 
destination. As a result, the process always involves both 
social interaction and intelligence to learn from both 
local and global search  (Elbeltagi et al., 2005). 

Each bird looks in a specific direction then they 
communicate together and identify the bird in the best 
location. As a result, each bird speeds towards the best 
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bird using a velocity that depends on its current 
position. Later, each bird starts a new local search 
from its new current position and this repeats until all 
the birds in the flock reach their required destination 
(Elbeltagi et al., 2005). 
 
Pseudo code for PSO 
1. Initialize a random population of P solutions 

(particles). 
2. For each (i) belongs to P;  

• Calculate the fitness of (i) 
3. Initialize the value of the weight factor (w). 
4. For each particle (i): 

• Set the best position of the particle (i) as pBest 
• If the fitness of (i) is better than pBest, then set 

pBest to be equal to the fitness of the particle (i) 
• Calculate for each particle (i) velocity 
• Update for each particle (i) its own position 

5. Set gBest as the best fitness between all particls’ 
fitness. 

6. Update the value of the weight factor (w). 
7. If optimum solution is obtained terminate. 
8. If optimum solution is not obtained, repeat steps 4,5 and 6. 

 
2.2.4 Compact Genetic Algorithm 

The poor behavior of simple Genetic Algorithms 
(sGA) in some problems has led to the development of 
other types of algorithms such as compact Genetic 
Algorithm (cGA)  (Rastegar and Hariri, 2009). Compact 
Genetic Algorithm (cGA) is an Estimation of 
Distribution Algorithm (EDA). The Estimation of 
Distribution Algorithms (EDAs) is a class of algorithms 
which has been developed recently. 
 
Pseudo code for cGA 
1. Initialize a probability vector p[i] and all its values is 

equal to (0.5). 
2. Generate two new chromosomes x and y. 
3. Make the two chromosomes (x and y) compete 

together. 
4. A winner and a loser chromosome will be the output 

from step (2). 
5. Update the probability vector according to the winner 

chromosome from step (3).  
6. If the vector has converged, then stop the algorithm. 
7. If the vector didn’t converge, repeat steps from 2 to 5. 
 

The cGA is one of the simplest algorithms that 
generate offspring population according to the estimated 
probabilistic model of the parent population instead of 

using traditional recombination and mutation operators. 
T he main concept in this technique is to prevent the 
disruption of partial solutions contained in a provided 
solution by building a probabilistic model  (Harik et al., 
1999b). This algorithm initializes a Probability Vector 
(PV) and then two solutions are randomly generated by 
using this PV. The generated solutions are ranked based 
on their fitness values. Then, the PV is updated based 
on these solutions. This process of adaptation continues 
until the PV converges. The cGA represents the 
population as a PV over a set of solutions and imitates 
the order-one behavior of the simple GA (sGA) with 
the uniform crossover  (Harik et al., 2006; 1999b; 
Rastegar and Hariri, 2009). The cGA only needs a 
small amount of memory; therefore, it may be quite 
useful inapplications which have much memory 
constraints (Harik et al., 2006). 

2.2.5. Extended Compact Genetic Algorithm 

The Extended Compact Genetic Algorithm (ECGA) 
was proposed by (Harik et al., 1999a; Thyago et al., 
2008). The idea of ECGA is to solve hard problems by 
learning genetic linkage. ECGA is aparticular GA that 
uses the Marginal Product Model (MPM) to summarize 
important information on the population and to sample a 
new and may be also a better population (Thyago et al., 
2008). Moreover, ECGA represents the joint probability 
distribution of genes or variables. Unlike the model used 
in cGA, MPMs. in ECGA can represent the probability 
distribution for more than one gene at a time (Sestry and 
Goldberg, 2000). Furthermore, ECGA adopts the 
Minimum Description Length (MDL) as the criterion to 
determine how good the learned joint probability 
distribution is. ECGA is considered to be reliable and 
accurate because of the ability of detecting building 
block (Hung and Chen, 2006). Harik’s numerical 
experiments indicated also that ECGA has better 
performance than a simple GA does when solving hard 
problems (Thyago et al., 2008).  

 
Pseudo code for ECGA 
1. Initialize a population of size (N) randomly 
2. For first generation, each (i) in (N);  

• Find the fitness value of each individual 
(chromosomes)  

• Perform a tournament selection of size (s). 
• Build a probabilistic model for the population 

using a greedy MPM search 
• Sample the probabilistic model generated for 

appearance of new individuals 
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3. If MPM model has converged, then terminate. 
4. If MPM model hasn’t converged, repeat all steps on 

step 2 until convergence of MPM model has been 
obtained 

 
ECGA is an algorithm with clear features and steps 

as stated above in the pseudo code of the ECGA. ECGA 
starts by initializing a population with size (N) randomly. 
Afterwards, ECGA finds the fitness value of each 
individual in the initialized population. ECGA then starts 
building a probabilistic model for the population using a 
greedy MPM search. After the probabilistic model being 
built for the population, the model is being sampled for 
new individuals to be created. The ECGA stop criterion 
occurs only when the MPM model has converged. In 
case the MPM model hasn’t converged, a new 
population is generated using the available MPM model 
and all steps being done before by ECGA are repeated 
until the MPM model converges. 

Two features of ECGA are considered to be very 
clear which are the algorithm’s population and selection. 
In ECGA, a remodeling for the population 
(chromosomes) occurs after each generation and that’s 
why the structure of the models might not be very stable 
and so in return a concrete population is required, 
moreover selection of elite chromosomes can’t be 
replaced by a simple update as what occurs in cGA 
 (Harik et al., 1999b). 

From all the above stated properties of ECGA, it is 
clear that ECGA can speed up the solutions of the 
problems that are partially deceptive. That’s why 
ECGA is much more preferable than normal cGA 
 (Harik et al., 1999b). 

Some proteins’ functionalities are important and 
act as enzymes which in return act as a catalyst for its 
chemical process which is essential for its 
functionality. What makes the functionality of a 
protein to be very accurate and highly specific is the 
surface pattern of each protein especially regarding its 
shape which is known to be very complicated, very 
unique and individual. This accurate surface pattern 
generates from the unique three dimensional structure 
of each protein’s polypeptide chain. Therefore it’s 
totally believed until now that any protein can be 
determined and understood from its amino acid chain 
but the problem exactly we’re facing is how the 
information in the amino acid sequence can be easily 
encoded and translated to the three dimensional 
structure which then is mainly responsible for this 
protein’s functionality and that’s what we so call 
“protein folding problem” (Szilagyi et al., 2007). 

Many computational methods have been used in 
order to find the minimum free energy which leads 
then to the stable conformation three-dimensional 
structure of the protein. But it was found to be very 
difficult to find the minimum free energy of the folded 
protein (Unger and Moult, 1993). 

In this research the chosen algorithms for this 
comparison were the MA since it’s better than simple 
GAs in their learning properties in each generation. PSO 
was the second chosen algorithm since it’s a fast learning 
and intelligent algorithm. The last chosen algorithm was 
the ECGA which is very capable in learning through 
generations and obtaining their best properties and 
handing it out through generations to help in keeping 
always the best properties of the population. 

2.6. The Proposed Structure Model for Protein 
Folding Problem 

In this section we will illustrate the protein folding 
proposed structure model which has been used to reach 
the most suitable structure with equivalent minimized 
energy for Rhodopsin protein. 
 
Pseudo code for the Proposed Structure Model 
1. Obtain the energy of the given Rhodopsin protein 

using ECEPPAK. 
2. Choose the required algorithm from the three given 

for minimization (optimization) of output energy 
from step 1: 
• For (i = 1 to 3) 

Choose ALGi 
� If (i = 1) 

 Choose (Memetic Algorithm (MA)): 
�Parameters entered: 

1. Population size  
2. Number of generations 
3. Crossover rate 
4. Mutation rate 

• For (i = 1 to n) 
� Calculate energy from Iteration 
1(I1) 
� If (energy in I2<I1) 

Complete calculating energy  
Else if (I2 > I1) 
 Print out “Error” 
Else 
Check if energy is stable and 
doesn’t change anymore, then stop 
and the equivalent structure 
obtained is the optimum structure. 

� Else if (i = 2) 
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Choose (Particle Swarm Optimization 
Technique (PSO)): 

�Parameters entered: 
1. Population size  
2. Number of generations 
3. V max 
4. W 

• For (i=1 to n) 
� Calculate energy from Iteration 
1(I1) 
� If (energy in I2<I1) 

Complete calculating energy  
Else if (I2 > I1) 
 Print out “Error” 
Else  
Check if energy is stable and 
doesn’t change anymore, then stop 
and the equivalent structure 
obtained is the optimum structure. 

Else if (i = 3) 
� choose (Extended Compact Genetic 

Algorithm (ECGA)): 
�Parameters entered: 

1. Population size  
2. Chromosome length 
3. Seed 
4. Cross over probability 
5. Tournament size 

• For (i = 1 to n) 
� Calculate energy from Iteration 1(I1) 
� If (energy in I2<I1) 

Complete calculating energy  
Else if (I2 > I1) 
 Print out “Error” 
Else 

Check if energy is stable and doesn’t 
change anymore, then stop and the 
equivalent structure obtained is the 
optimum structure. 
Else Print error. 

3. Repeat steps 2 and 3 for other non-chosen 
algorithms to realize the best algorithm for 
minimization of the Rhodopsin protein energy. 

 
First of all we had to start to evaluate the energy on 

the Rhodopsin protein and that was done by the energy 
evaluator package ECEPPAK. The ECEPPAK allows us 
to study the energy of the required structure of the 
protein. So, the ECEPPAK helped us eventually to find 
out the individual energy. 

Table 1. Results of ECGA, PSO and MA 
Alg./population size  80 192 288 
MA -12.96 -12.32 -10.29 
PSO -12.93 -12.85 -11.72 
ECGA -12.97 -12.76 -11.82 

 
The next step shows how to find suitable techniques 

to minimize the energy evaluated as much as possible 
until the optimum structure of the Rhodopsin protein is 
reached and that was performed using three different 
evolutionary algorithms which are: Memetic Algorithm 
(MA), Particle Swarm Optimization Algorithm (PSO) 
and Extended Compact Genetic Algorithm (ECGA) 
which were implemented using Microsoft Visual C++. 
A special dll file called “alleg40” was used in order to 
perform the drawing of the protein in the coding 
partition which allows the connection between the 
energy evaluation file obtained from the ECEPPAK and 
the ECGA coding to perform the final drawing and 
structure for the optimum structure of the Rhodopsin 
protein. This special alleg40.dll file is used mostly for 
graphics in games. The result of trying to reach the 
optimum structure has been drawn step by step until the 
optimum structure with minimum energy reached using 
the Ramachandran Plot Explorer which is designed to 
make it easy to examine the conformation of a 
polypeptide (Table 1). 

The three algorithms proceed in clear progress 
towards the optimal interacting angles 3D structure, by 
generating individuals conforming to higher fitness 
probability distribution in a clear GUI which allows the 
user to choose which algorithm to choose to perform on 
the chosen protein. 

3. RESULTS 

The best energy result which was equal to -11.8 
was obtained from the Extended Compact Genetic 
Algorithm (ECGA). 

The second best energy result which was equal to -
11.72 was obtained from the Particle Swarm 
Optimization algorithm (PSO). 

The least energy result which was equal to -10.29 
was obtained from the Memetic Algorithm (MA). 

4. DISCUSSION 

The main purpose in this research was to find the 
structure in conjunction with the minimum energy that is 
compatible with the reached optimum structure of the 
protein, the fitness of the individuals is calculated in 
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terms of energy. And of course in our research the best 
algorithm used for the energy and three-dimensional 
structure is the algorithm which was able to obtain the 
minimum energy which is almost near to that of the lab 
result which is -12. 

Afterwards a comparative study was performed 
between the results and outputs of the three algorithms 
on the same protein. 

The best result obtained as mentioned in results 
section was from ECGA because ECGA has two very 
important properties which made this result obtained 
from it compared to the other two algorithms which is 
the “linkage learning” and “MPM models”. 

ECGA’s linkage learning property helps in learning 
properties of generations through transferring those 
properties of gene building blocks crossover which are 
linked and related together by a certain property required 
and preferred to be available in the coming generations. 
As a result, the whole solution will be swapped to 
divided sub problems instead of single genes which will 
help a lot to work on individually to obtain better 
solution output. 

ECGA’s using MPM model as a structure helps in 
translating this structure easily to a linkage map with the 
partition used. As a result, defining exactly which genes 
in the generation should be tightly linked together 
through crossover in order to preserve their wanted 
properties through other coming generations. 

The near result to that of ECGA occurred from the 
PSO since this algorithm involves both social interaction 
and intelligence so that individuals learn from their own 
experience (local search) and also from the experience of 
others around them (global search). 

Also, this near result is because PSO is known for its 
simplicity, convenience, fast convergence and fewer 
parameters. 

In spite the good properties of PSO, but also it has a 
very bad disadvantage which getting easily trapped in the 
local optimum which makes this algorithm a second 
choice after ECGA until a solution could be found and 
applied to solve this point. 

From the reasons that was the cause of the least 
energy obtained by MA was since MA algorithm has the 
same aspect as Simple Genetic Algorithms (SGA) in 
addition to a local experience on each population 
member to improve its experience so that local 
optimality only is always maintained through off springs. 
Moreover, MA crossover operation is for each gene by 
its own which in return results that the fitness value was 
lessened for each chromosome unlike building blocks in 
linkage learning property of ECGA. 

5. CONCLUSION 

In this study, the molecular required structure of 
Rhodopsin protein which states the global minimum free 
energy state of the system has been obtained by three 
algorithms which was the best of them is the ECGA. 

The measurement of the probability distribution 
quality is always done according to the Minimum 
Description Length principle (MDL). Since the base of 
ECGA is the probability distribution as mentioned 
before, so in return the MDL concept prevents in 
accuracy and complexity and as a result probability 
distributions of high quality are provided. 

Moreover, the probabilistic model obtained from 
each generation makes ECGA reflects the problem 
structure more and so in return better performance is 
being achieved through exploiting and exploring the 
relationship between the genes due to balancing both 
exploitation and exploration for a high quality result. 

In further research, other algorithms may be used or 
enhancements of ECGA also can be used (such as 
IECGA) or other evolutionary algorithms (such as Ant 
colony and Shuffled frog leaping algorithms) over 
Rhodopsin protein’s energy so as to compare the results 
with the results from this study and find out better 
optimization for the protein folding problem of the 
Rhodopsin protein if exists. 

Also in proposed future work, a hyberdized model for 
PSO can be used to overcome the problem of local 
optimum fast convergence in it and compare the results. 
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