
Journal of Computer Science 10 (10): 2124-2134, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.2124.2134 Published Online 10 (10) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Araújo, G.F., Núcleo de Pós-Graduação em Ciência da Computação, UFS, São Cristóvão and Brasil

2124 Science Publications

JCS

PARALLEL IMPLEMENTATION OF EXPECTATION-
MAXIMISATION ALGORITHM FOR THE TRAINING OF

GAUSSIAN MIXTURE MODELS

1Araújo, G.F., 2H.T. Macedo, 2M.T. Chella, 2C.A.E. Montesco and 2M.V.O. Medeiros

1Núcleo de Pós-Graduação em Ciência da Computação, UFS, São Cristóvão and Brasil
2Departamento de Computação, UFS, São Cristóvão, Brasil

Received 2013-11-18; Revised 2013-11-22; Accepted 2014-07-07

ABSTRACT

Most machine learning algorithms need to handle large data sets. This feature often leads to limitations on
processing time and memory. The Expectation-Maximization (EM) is one of such algorithms, which is used
to train one of the most commonly used parametric statistical models, the Gaussian Mixture Models
(GMM). All steps of the algorithm are potentially parallelizable once they iterate over the entire data set. In
this study, we propose a parallel implementation of EM for training GMM using CUDA. Experiments are
performed with a UCI dataset and results show a speedup of 7 if compared to the sequential version. We
have also carried out modifications to the code in order to provide better access to global memory and
shared memory usage. We have achieved up to 56.4% of achieved occupancy, regardless the number of
Gaussians considered in the set of experiments.

Keywords: Expectation-Maximization (EM), Gaussian Mixture Models (GMM), CUDA

1. INTRODUCTION

Machine Learning (ML) algorithms are often costly,
since learning is a task that requires a large amount of
knowledge and constant improvement of it, thus
requiring massive data computation. A major problem of
massive computing is the limitation of mainstream
sequential processing in older computer architectures.
Such limitation can be overcome using a parallel
processing of data provided on newer architectures.

One of these recent architecture is the NVIDIA™
CUDA™ architecture, which is a framework for
developing general programs source code and using the
power of Graphical Processing Units (GPUs) to perform
execution. It is possible to use the CUDA-C
programming language, for instance, to provide a
parallelized source code.

GPUs have high amount of internal multiprocessors,
optimized for doing several Computer Graphics
calculations in parallel.

The clear advantage of using GPUs is the small costs
if compared to clusters or supercomputers and its
processing power if compared to multi-core processors.
Even the former NVIDIATM GeForce™ 8400 GS
graphics card, for instance, is able to run up to 32 threads
in parallel per clock cycle, under some restrictions.

The work on CUDA to provide parallelized
implementations of important algorithms in different
domains can be observed in recent scientific literature
(Subbaraj and Sivakumar, 2012; Tharawadee et al.,
2013; Meng et al., 2013; Mielikainen et al., 2012;
Lee and Park, 2012).

Results show average performance gains of up to
30 times compared to processing the same problem
using conventional CPUs. There are also efforts to
further develop the readability of CUDA programs
through the development of an Application
Programming Interface (API) for C/C++ which
automate the processing of sequential code into
parallelized code (Santos and Macedo, 2012).

Araújo, G.F. et al. / Journal of Computer Science 10 (10): 2124.2134, 2014

2125 Science Publications

JCS

In this study we present the CUDA parallel
implementation of the Expectation-Maximization
algorithm for the estimation of Gaussian Mixture
Models. The Gaussian mixture model is one of the most
widely used statistical models for machine learning
tasks, being the most flexible parametric model.

We are particularly interested in verifying whether a
more efficient global memory access can reduce the
concerned overhead, providing better usage of CUDA
cores and, thus, improving performance.

1.1. Expectation-Maximization Algorithm (EM)

Statistical models are used in many machine
learning techniques. The maximum likelihood method
(Maximum- Likelihood Estimation, or just MLE) can
estimate the parameters of a statistical model from a
set of sample data, for further usage in classification
tasks, for instance.

An important concern is what to do when some data
sample are missing. It is yet possible to perform
estimation of model parameters. The Expectation-
Maximization (EM) allows learning of parameters that
govern the distribution of the sample data with some
missing features (Sujaritha and Annadurai, 2011;
Poongothai and Sathiyabama, 2012; Malarvezhi and
Kumar, 2013).

The MLE is defined as Equation 1:

()ln (;)
:

y k
ML

k

p y∂ Θ
Θ

∂Θ∑ (1)

where, y represents the full set of sample data. To deal
with missing data, tough, the EM can iteratively
maximize the hope of the likelihood function, given
the observed samples and the estimate of the current
iteration Θ.

The EM algorithm consists of two steps.
The E-step computes the hope of logarithmic

likelihood, conditionally to the set of observed data and
the current value of the parameters, Θ

t Equation 2:

()()(;) ln ; ;t t
y kQ E p y X Θ Θ ≡ Θ Θ ∑ (2)

The M-step computes the (t+1)-th parameter vector Θ

that maximizes Q (Θ; Θt), given by Equation 3:

1 (;)
:

t
t Q+ ∂ Θ ΘΘ

∂Θ
 (3)

The algorithm starts from a Θ(0) (usually defined
arbitrarily, choice) and iterates through both steps
until a stop criterion is satisfied. The widely used
criterion is the variation of Q between steps, defined as
Equation 4:

1t t ε+Θ − Θ ≤ (4)

1.2. EM for GMM Estimation

Gaussian classifiers are the most widely used
methods for supervised classification. However, these
methods have limitations when dealing with problems
where the classes cannot be linearly separable. Also, they
cannot deal with non-Gaussian data, since their
discriminant functions are linear or quadratic. A
workaround for such limitation is to combine probability
functions (pdf's). Indeed, this approach is widely used
because it is a parametric method that can be applied to
non-linear classification problems. Such technique is
known as Finite Mixture Model and its probability
function is defined as:

() (;)
g

j j

j i

p x p xπ
=

= Θ∑ (5)

where, g is the number of components (pdf) of the
mixture; πj is the probability of the components
(commonly known as the weight of the component),

such that 1
1

g

jj
π

=∑ and p (x; Θj) is the pdf of the

component in regards to the parameters Θj.
When we use Gaussian models, each component

assumes a multivariate normal distribution, where Θj =
{µ; Σj}. This model is known as Gaussian Mixture
Model (GMM) (Shanmugapriya and Nallusamy, 2014),
(Ramalingam and Dhanalakshmi, 2014). Equation 5 cant
thus be rewritten as Equation 6:

() (;)
g

j j j

j i

p x N xπ µ
=

=∑ ∑ (6)

But how to find the parameters that maximize the

likelihood of the GMM? Typically, the parameters of the
components of GMMs are estimated using the EM
algorithm described in the previous section. For the
GMM, the EM steps are defined as follows.

E-step: Calculate for each given i:

Araújo, G.F. et al. / Journal of Computer Science 10 (10): 2124.2134, 2014

2126 Science Publications

JCS

;

; ,

tt t
j i j j

ij tt t
k i kk k

N x
w

N x

π π

π π

 =

∑

∑ ∑
 (7)

where, πj,µj and Σj are the weights, means and covariance
matrices of component j at step t.

M-step: For each given j, update the parameters
Equation 8 to 10:

1

1
n

j ij

i

w
n

π
=

= ∑ (8)

1

1

n
ij ji

j n
iji

w x

w
µ =

=

=
∑
∑

 (9)

()()
1

1
n

T

ij i j i jj
j i

w x x
n

µ µ
π =

− −∑ ∑ (10)

As described above, the EM algorithm iterates until

the convergence of the model likelihood (stopping
criterion). It is possible, though, that the algorithm
becomes stuck in a local minimum, leading to
nonoptimal solutions. It is thus a common practice,
repeat the training process few times more, initializing
the parameters with different values and in the end,
choose the best solution (Webb and Copsey, 2011).
Moreover, both the calculation of w and the calculation
of parameters π, µ and Σ iterate over all sample data.

For a large dataset, the time of the training process
can be huge, especially in cases where there are high
numbers of components. Despite such limitation,
calculations performed for each data are independent and
thus, fully parallelizable.

1.3. Previous Work on Parallel Implementation
of EM and GMM Learning

Tagare et al. (2010), the authors present a strategy to
speed up the EM algorithm using domain reduction. The
approach considers the use of three different kernels to
compute the calculation of latent probabilities and the
Riemann sums for the parameter updates. The EM is
used for reconstructing 3D volumes from noisy Electron
Cryomicroscopy images of single macromolecular
particles. The work focus on problems other than GMM.

Chen et al. (2012), the authors derive an algorithmic
method for incremental GMM learning from a

hypothesis-test and merging based algorithm. EM is not
used. The most time-consuming part of the algorithm is
accelerated by GPU. Davies-Bouldin index is used to
measure the cluster quality of the algorithm.

Pham et al. (2010), the authors proposes a GPU
implementation of the Extended GMM to Background
Subtraction (BGS), which is used in various computer
vision problems.

Pangborn (2010), the author presents a strategy to
speed up the EM algorithm for clustering in single and
multiple GPUs. The approach consists in breaking the
Estep into two kernels and the M-step into three
kernels. The work includes a parallel version of the
cmeans algorithm.

Kumar et al. (2009), the authors spread the EM
algorithm over six CUDA kernels for a fast parallel
parametric estimation of GMM. The work focus is in
speeding up the EM algorithm through improvements
of the kernels and data organization, not using it for
specific problems.

Azhari and Ergün (2011), the authors implements a
CUDA version of the EM algorithm for speaker
verification based on Gaussian Mixture Modeling-
Universal Background Modeling (GMMUBM). The
major difference between this and the previous presented
works is that it uses only 2 kernels for the EM, one for
the E-step and one for the M-Step. There is also a
parallel implementation of the k-means algorithm.

Machlica et al. (2011), the authors present an
implementation of the parallel EM algorithm for
GMM training. According to the paper, their approach
offers better memory occupancy and greater speedup
due to less coalesced access. Their results were
obtained using adapted data taken from 2008 NIST
Speaker Recognition Evaluation.

2. MATERIALS AND METHODS

The method to provide parallelized implementation
of EM for GMM is greatly founded on how to deal
with the specificities of CUDA. In order to provide
better understanding of the approach, firstly, we
depict CUDA itself.

2.1. Technological Background: CUDA

Multiprocessors are responsible for GPU internal
processing and there may exist many of them, varying
according to graphics card's model. Every multiprocessor
is composed by smaller processors, the so-called Core
processors. These core processors share the same
instruction chip, which belongs to the multiprocessor.

Araújo, G.F. et al. / Journal of Computer Science 10 (10): 2124.2134, 2014

2127 Science Publications

JCS

This means that CUDA™ architecture works as a
Single Instruction Multiple Data (SIMD) system, where
every multiprocessor is capable of processing only one
instruction at a time. The basic parallel processing
element is a thread, just like CPU, but there are two
others important concepts: The block and the grid. A
block is a composition of up to t threads, where t is the
maximum value supported by the GPU. It is also the
element seen in the multiprocessors, responsible for fully
process all the threads of a block, when thus a new ready
block is chosen. A grid, on the other hand, is an
aggregation of multiple blocks.

Both the grid of blocks and the blocks of threads can
be uni-, two- or three-dimensional. A kernel call needs to
specify the dimensions of grid and blocks and thus, it is
possible to run kernels with different arrangements of
threads within the same application.

The memory hierarchy consists of local memory,
global memory and shared memory. The local memory is
a high speed memory and private to each thread. The
shared memory is larger and slower than the local
memory, but it is accessible by all threads of the same
block, allowing threads to work collaboratively within a
single run. The global memory is the largest and slowest
memory of GPU, but it is accessible by any thread,
thereby allowing different kernels to share common data.

2.2. Rationale of the Parallelization Approach

The calculation of wij in E-step (Equation 7) and the
calculations of weights πj, means µj and covariances Σj
are extremely parallelizable as they iterate over all the
data and are independent of each other.

An important point to be considered is the transfer of
data from the host (main memory) to the GPU memory.
The bus transfer between these two memories is slow
and its usage should be avoided. As the algorithm must
run iteratively in order to satisfy a stopping criterion and
all steps are parallelizable, it would be more effective if
the whole main loop of the algorithm could run on
GPU, to avoid such data transfer. However, the
arrangement of threads is statically defined in the
kernel. This becomes an inconvenience, since the
arrangement of threads is an important setting for a
better efficiency of parallelization and each step of the
EM algorithm requires a different arrangement.

Similarly to the approach of (Machlica et al., 2011)
and (Kumar et al., 2009), in our proposal the main loop
of the algorithm is implemented sequentially and
different CUDA kernels are in charge of running
different steps of the algorithm.

The implemented CUDA kernels are depicted as
follows:

• p-kernel: For each Gaussian component, j computes

the probability of each data xi conditional to
parameters Θj, multiplied by the weight of
component πj. In this kernel, the thread blocks are
arranged in a grid jmx, where m blocks of line j are
responsible for the calculation for the component j

• ^p-kernel: For each data xi, normalizes their
probabilities computed in the previous kernel for
each component j. It concerns the wij values of
Equation 7. In this step m, blocks of threads are used
and each block is responsible for normalizing the
probabilities for a given data at a time, until the
entire probability base is normalized

• m-kernel: For each Gaussian, estimates its marginal
probability, that is, calculates the sum of the
probabilities of the data related to each component j.
j blocks of threads are used and each block is
responsible for performing the sum of a component
µ-kernel: For each Gaussian, re-estimates the mean
vector µ that maximizes the likelihood, as described
in Equation 9. Again, using j blocks of threads, each
block is responsible for a component

• Σ-kernel: Re-estimates the covariance matrices Σ of the
components. In this step, we use an array of 2D blocks,
where blocks of threads are organized in a square
matrix of order N, where N is the dimension of the
data. Thus, each block is responsible for reestimate an
element sij of each of the covariance matrices

• π-kernel: Re-estimates the weights π of components.
Since the weight of a given component is given by
the marginal probability normalized, as described in
Equation 8, this step contains only a single block of j
threads, which perform the summation and
normalization of the marginal probabilities

• φ-kernel: Calculates determinants and inverse
matrices of covariance matrices, which are used to
calculate the probabilities of p-kernel step. In this
step, the matrix decomposition technique called LU
decomposition is used. In such technique, we rewrite
the matrix as the product of a lower triangular
matrix (L matrix, lower) by an upper triangular
matrix (matrix U, upper). Using j blocks of one
thread only, the thread executes sequentially the LU
decomposition algorithm

Figure 1 summarizes the distribution of component

parameters and input data on the arrangement of blocks
and threads of the grid.

Araújo, G.F. et al. / Journal of Computer Science 10 (10): 2124.2134, 2014

2128 Science Publications

JCS

Fig. 1. Distribution of component parameters and input data on the grid

2.3. The Algorithm

The EM for GMM estimation algorithm takes as input
the samples from the dataset, the number of gaussians to
be estimated and the threshold as the stopping criterion.
At each iteration, the algorithm initializes the parameters
of each gaussian (weight π, mean µ and covariance
matrix Σ). Next, for each sample, it estimates the
likelihoods for each Gaussian and normalizes them.
Finally, the parameters of the gaussian are re-estimated
using the likelihood values. Iterations occur until the
stopping criterion is satisfied (Algorithm 1). Each thread,
one per block, estimates the likelihood of the sample j on
Gaussian i, according to the position (i, j) of its block at
the grid (Algorithm 2). The set of threads in a block
performs the normalization likelihoods of values of a
sample, using the reduction technique (Algorithm 3).
The number of threads in a block performs the
calculation of the probability of a marginal Gaussian
(Algorithm 4). The number of threads in a block
performs the reestimation of the parameter of a Gaussian
mean µ (Algorithm 5). The number of threads in a block
performs the reestimation of the parameter covariance
matrix Σ of a gaussian (Algorithm 6).

Algorithm 1 EM for GMM’s estimation

Input: samples, samplesnum, Gaussiannum:
Thresholdmin

Output: πI, µi, Σj|i∈{1,2…., Gaussiannum}
for i←1, Gaussiannum do
 Initialize parameters (πI, µi,Σi);
end for
while-stop condition () do
 for j ←1, Samplesnum do
 for i←1, Gaussiannum do
 likelihoodij← Calculatelikelihood(Samplej, πi,
 µi, Σi);
 end for
 likelihoodj←Normalize Likelihood (likelihoodsj);
 end for
 for i←1, Gaussiannum do
 πi ←UpdateWeight (likelihoodj);
 µi ←Update Mean (likelihoodsj, Samples, πi);
 Σi ←Update Couariance(likelihoodsj, Samples, πi,
 µi);
 end for
end while

Algorithm 2 CUDA Parallel p-kernel

Input: Samples, Samplesnum, πi, µi, Σi
Output: Likelihoods
i←Block Index. Y;
j←Block Index. X;
likelihoodij←πi×N(samplesj, µi,Σi);

Araújo, G.F. et al. / Journal of Computer Science 10 (10): 2124.2134, 2014

2129 Science Publications

JCS

Algorithm 3 CUDA Parallel p̂ -kernel

Input: Liklelihoods, Samplesnum
Output: Likelihoods
 i←ThreadIndex. X;
 j←BlockIndex. X;
 cachei ←likelihoodij;
 SymchronizeThreads();
 Limit ←ThreadsPerBlock/2;
 While limit ≠ 0 do
 If i<limit then
 cachei←cachej+cachei+limit ;
 end if
 SymchronizeThreads();
 limit←limit/2;
end while
likelihoodij← likelihoodij/cache0;

Algorithm 4 CUDA Parallel m-kernel

Input: Liklelihoods, Samplesnum
Output: Marginals
 j←ThreadIndex. X;
 i←BlockIndex. X;
 cachei ←likelihoodij;
 SymchronizeThreads();
 Limit ←ThreadsPerBlock/2;
 While limit ≠ 0 do
 If i< limit then
 cachei←cachej+cachej+limit ;
 end if
 SymchronizeThreads();
 limit←limit/2;
end while
marginal← likelihoodij/cache0;

Algorithm 5 CUDA Parallel µ-kernel

Input: Liklelihoods, Samples, Samplesnum, marginals
Output: µi
 j←ThreadIndex.X;
 i←BlockIndex.X;
 cachei ← Samplej* likelihoodij;
 SymchronizeThreads();
 Limit ← ThreadsPerBlock/2;
 While limit ≠ 0 do
 If i < limit then
 Cachei ← cachej+cachej+limit ;
 end if
 SymchronizeThreads();
 limit←limit/2;
end while
µi← cache0/marginalj;

Algorithm 6 CUDA Parallel Σ-kernel

Input: Liklelihoods, Samples, Samplesnum, marginals,
Gaussiannum, Dimensionnum
Output: Σk
 l←ThreadIndex.X;
 i←BlockIndex.X;
 j←BlockIndex.Y;
 for k←1Gaussiannum do
 sub1←Sample11-µki;
 sub2←Sampleij-µkj;
 cache1←(sub1*sub2*likelihoodki);
 SymchronizeThreads();
 limit ←ThreadsPerBlock/2;
 while limit ≠ 0 do
 If i< limit then
 Cachel←cachel+cachel+limit ;
 end if
 SymchronizeThreads();
 limit←limit/2;
 end while
 Σkij← cache0/marginalk;
End for

3. RESULTS

3.1. Dataset

We have used the dataset Arabic Spoken Digit 3 from
UCI Repository in order to test the algorithm
implementation. This dataset consists of instances with
13 Mel Frequency Cepstral Coefficients (MFCC), widely
used to represent audio signals in speech processing
systems, which commonly use GMMs to model the
distribution of phones in the language. The database
consists of 8800 instances: A training base with 6600
instances and a testing base with 2200 instances. These
instances correspond to audios of 88 speakers (44 males
and 44 females) pronouncing the digits 0 to 9 in Arabic.

3.2. Metrics

In parallel programming, Speedup (or Speed-up) is
the most widely used metric to evaluate how much a
parallel algorithm is faster than its sequential version. It
its defined as Equation 11:

1
p

p

T
S

T
= (11)

where, p is the number of processors on which the
algorithm is running, T1 is the execution time of the

Araújo, G.F. et al. / Journal of Computer Science 10 (10): 2124.2134, 2014

2130 Science Publications

JCS

algorithm and Tp is the execution time of the parallel
algorithm.

3.3. Experimentation Sets

The GPU used in the first two sets of experiments
was a NVidia GeForce GTS 250 with 16 processors.

In the first experimentation set, the target number of
Gaussians (components) have been varied with a fixed
quantity of 30 iterations to estimate parameters. Figure 2
shows a comparison between the time of parallel
execution and its respective sequential version. This
execution has shown a Speedup S16 = 7. The runtime of
the parallelized version varies from 0.781 to 15.094 sec.

This time results from the execution of φ-kernel
step, which actually performs sequentially on the
GPU. The second set of experiments was conducted
varying the number of the instances in dataset: 23,344
to 263,256. In this case, the algorithms have
performed 30 iterations to estimate two Gaussians.
Results of this step are shown in Fig. 3. In this step,
the Speedup of parallel algorithm was S16 = 6.

3.4. Coalesced Access to Global Memory

We have carried out modifications to the code of
the kernels p-kernel and p-kernel to provide better
access to global memory and shared memory usage.
The kernels used in such arrangements have been
rearranged according to the size of the warp in order
to ensure aligned access with the “cache line” and, at
the same time, maintaining all the CUDA cores
employed as long as possible.

We have carried out modifications to the code in
order to allow a more efficient memory access and a
more appropriate array of threads. An important issue in

regards to memory access is the coalesced access to the
global memory, i.e., the warp threads need to access
adjacent memory blocks and aligned with the "cache
line" (fixed blocks of memory that are loaded once to the
cache memory). In this way, the accesses required by the
various warp threads are part of a single transaction,
thereby reducing the overhead of the global memory
access. The arrangement of threads in the grid and its
blocks are also important for the coalesced access, since
a better arrangement ensures that the accesses of the
active warp threads are aligned on cache size.

In order to verify the performance gain achieved with
the changes, tests with a NVidia GeForce GT 555M
GPU have been performed. An important metric to
consider when considering the arrangement and
coalesced access is the occupancy, which refers to how
effectively the hardware (the CUDA cores) is kept busy,
i.e., the longer busy, best the hardware effective use.

Experiments have been performed by varying the
number of Gaussians and size of the database, for both
versions of the p and p kernel codes (E-Step). Firstly, we
have fixed the database size of 23344 instances and
varied the number of Gaussians. In the second set of
experiments, we have varied the size of the database for
a fixed number of Gaussians (eight). Figure 4 and 5
show the execution time (in milliseconds) for both
kernels by varying the number of Gaussians: 1, 2, 4, 8,
16, 24 and 32. Figures 6 and 7 illustrate the runtimes of
both kernels varying the size of the database. In such
case, the average speedup was 19x and 30x for the
kernels p and p, respectively. In both kernels, the largest
observed speedups (~21x and ~32x) occurred with the
database containing 152526 instances.

Fig. 2. Execution time for both parallel and sequential versions of EM as the number of gaussians increases

Araújo, G.F. et al. / Journal of Computer Science 10 (10): 2124.2134, 2014

2131 Science Publications

JCS

Fig. 3. Execution time for both parallel and sequential versions of EM as the number of instances of dataset varies

Fig. 4. Comparison of the execution time of the p-kernel with and without coalesced access by increasing the number of Gaussians

Fig. 5. Comparison of the runtime of the ^p-kernel with and without coalesced access by increasing the number of Gaussians

Araújo, G.F. et al. / Journal of Computer Science 10 (10): 2124.2134, 2014

2132 Science Publications

JCS

Fig. 6. Comparison of the execution time of the p-kernel with and without coalesced access by increasing the database size

Fig. 7. Comparison of the runtime of the ˆp -kernel with and without coalesced access by increasing the database size

4. DISCUSSION

Results have shows an increase from 38.8 to 50.2%
on the average achieved occupancy for pkernel,
ranging from 16.6 to 60.1% with the growth in the
number of Gaussians. In the case of p-kernel, the
growth was 16.2 to 56.4% of achieved occupancy,
regardless the number of Gaussians. Neither kernels
have varied with the increase in the size of the
database. As had been initially suspected, this
increased occupancy directly reflects the execution
time of kernels. This is clearly shown in Fig. 4-7.

The new version of p-kernel code, for instance, has
achieved an average speed up of ~22x if compared to the
previous one. In regards to the p-kernel, the average
speedup is ~33x and the highest value has been observed
for only one Gaussian.

These results show a clear performance gain when
there is a greater control of hardware resources.

Furthermore, it is important to notice that the
execution settings and resource usage need to be
adjustable to the capabilities of the available
hardware, since the architectures of GPUs with
support to CUDA have undergone changes over the
years, including the cache memory management,
which directly affects the transfer between the
different available memories.

5. CONCLUSION

In this study, we propose an approach to provide a
parallelized implementation of Expectation Maximization
(EM) algorithm for training Gaussian Mixture Models
(GMM). GMM is vastly used in Automatic Speech
Recognition (ASR) systems, for instance.

In our approach for parallelization, the main loop of
the algorithm is implemented sequentially and different
CUDA kernels are in charge of running different steps of

Araújo, G.F. et al. / Journal of Computer Science 10 (10): 2124.2134, 2014

2133 Science Publications

JCS

the algorithm. Pseudocode for each CUDA kernel
implementation is properly provided.

Experiments performed over a UCI database and
varying number of Gaussians have shown a speedup
of 7 if compared to sequential implementation of EM
algorithm. We have also provided modifications in
two of the CUDA kernels in order to allow more
coalesced access to global memory. As a result we
have achieved up to 56.4% of achieved occupancy.

The proposed approach thus contributes to the
stateof-the-art of the research in ASR by providing an
effective algorithm for training GMM.

Future work consists in providing modifications to
the other three CUDA kernels in order to provide more
coalesced access to global memory in a similar manner
we have made to the first two of them.

6. ACKNOWLEDGEMENT

The researchers thank the Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq-
Brasil) for the financial support [Universal 14/2012,
Processo 483437/2012-3] and for granting a scholarship
to M.V.O. Medeiros. The authors also thank the
Fundação de Apoio à Pesquisa e à Inovação Tecnológica
do Estado de Sergipe (FAPITEC-Sergipe-Brasil) for
granting a scholarship to G.F. Araújo.

7. REFERENCES

Azhari, M. and C. Ergün, 2011. Fast Universal
Background Model (UBM) training on GPUs
using Compute Unified Device Architecture
(CUDA). Int. J. Elec. Comput. Sci., 11: 49-55.

Chen, C., D. Mu, H. Zhang and B. Hong, 2012. A
GPUaccelerated approximate algorithm for
incremental learning of gaussian mixture model.
Proceedings of the IEEE 26th International
Parallel and Distributed Processing Symposium,
(WF‘12), pp: 1937-1943.

Kumar, N.S.L.P., S. Satoor and I. Buck, 2009. Fast
parallel expectation maximization for Gaussian
mixture models on GPUs Using CUDA.
Proceedings of the 11th IEEE International
Conference on High Performance Computing and
Commu., (CC‘09), pp: 103-109.

Lee, S. and D. Park, 2012. Evaluation of CUDA for
XRay Imaging System. In: Computational
Intelligence and Intelligent Systems, Springer
Berlin Heidelberg, pp: 621-625.

Machlica, L., J. Vanek and Z. Zajic, 2011. Fast
estimation of gaussian mixture model parameters
on GPU Using CUDA. Proceedings of the 12th
International Conference on Parallel and
Distributed Computing, Applications and
Technologies, (AT ‘11), pp: 167-172.

Malarvezhi P. and R. Kumar, 2013. A novel two stage
carrier frequency off set estimation and
compensation scheme in multiple input multiple
output-orthogonal frequency division
multiplexing system using expectation and
maximization iteration. J. Comput. Sci., 9: 1526-
1533. DOI: 10.3844/jcssp.2013.1526.1533.

Meng, C., L. Wang, Z. Cao, X. Ye and L. Feng, 2013.
Acceleration of a High Order Finite-Difference
WENO Scheme for Large-Scale Cosmological
Simulations on GPU. Proceedings of the IEEE
27th International Symp. on Parallel and
Distributed Processing Workshops and PhD
Forum, (DPW’ 13), IEEE Computer Society, pp:
2071-2078

Mielikainen, J., B. Huang, H. Huang and M. Goldberg
2012. Improved GPU/CUDA Based Parallel
Weather and Research Forecast (WRF) Single
Moment 5-Class (WSM5) Cloud Microphysics.
IEEE J. Selected Top. Applied Earth Observ.
Remote Sens., 5: 1256-1265.

Pangborn, A., 2010. Scalable data clustering using
GPUs. MSc Thesis, Rochester Institute of
Technology.

Pham, V., P. Vo and V. Hung, 2010. GPU
implementation of extended gaussian mixture
model for background subtraction. Proceedings of
the International Conference on Computing and
Communication Technology Research, Innovation
and Vision for the Future, (VF’ 10), pp: 1-4.

Poongothai, K. and S. Sathiyabama, 2012. Efficient
web usage miner using decisive induction rules. J.
Comput. Sci., 8: 835-840. DOI:
10.3844/jcssp.2012.835.840.

Ramalingam, T. and P. Dhanalakshmi, 2014. Speech/
music classification using wavelet based feature
extraction techniques. J. Comput. Sci., 10: 34-44.
DOI: 10.3844/jcssp.2014.34.44.

Santos, B. and H. Macedo, 2012. Improving CUDA™
C/C++ encoding readability to foster parallel
application development. Sigsoft Softw. Eng.
Notes 37: 1-5. DOI: 10.1145/2088883.2088897

Araújo, G.F. et al. / Journal of Computer Science 10 (10): 2124.2134, 2014

2134 Science Publications

JCS

Shanmugapriya, N. and R. Nallusamy, 2014. A new
content based image retrieval system using GMM
and relevance feedback. J. Comput. Sci., 10: 330-
340. DOI: 10.3844/jcssp.2014.330.340.

Subbaraj, P. and P. Sivakumar, 2012. Parallel
memetic algorithm for VLSI circuit partitioning
problem using graphical processing units. J.
Comput. Sci., 8: 705-710. DOI:
10.3844/jcssp.2012.705.710,

Sujaritha, M. and S. Annadurai, 2011. A new
modified gaussian mixture model for color-
texture segmentation. J. Comput. Sci., 7: 279-283.
DOI: 10.3844/jcssp.2011.279.283.

Tagare, H., A. Barthel and F. Sigworth, 2010. An
adaptive expectation-maximization algorithm with
GPU implementation for electron cryomicroscopy.
J. Struct. Biol., 171: 256-265.
DOI:10.1016/j.jsb.2010.06.004.

Tharawadee, N., P. Terdtoon and N. Kammuang-lue,
2013. An investigation of thermal characteristics of
a sintered-wick heat pipe with double heat sources.
Am. J. Applied Sci., 10: 1077-1086. DOI:
10.3844/ajassp.2013.1077.1086

Webb, A. and K. Copsey, 2011. Statistical Pattern
Recognition. 3rd Edn., John Wiley and Sons,
Chichester, ISBN-10: 1119952964, pp: 672.

