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ABSTRACT

Index tracking is an investment approach whergptimaary objective is to keep portfolio return aesd as
possible to a target index without purchasing radleix components. The main purpose is to minimiee th
tracking error between the returns of the selept&tfolio and a benchmark. In this study, quadrasavell

as linear models are presented for minimizing theking error. The uncertainty is considered initiput
data using a tractable robust framework that césttee level of conservatism while maintaining &nigy.
The linearity of the proposed robust optimizationd®ls allows a simple implementation of an ordinary
optimization software package to find the optimabust solution. The proposed model of this study
employs Morgan Stanley Capital International Indsxthe target index and the results are reportesixo
national indices including Japan, the USA, the ®¢rmany, Switzerland and France. The performance of
the proposed models is evaluated using severaidiabcriteria e.g., information ratio, market gtSharpe
ratio and Treynor ratio. The preliminary resultsndastrate that the proposed model lowers the anmfunt
tracking error while raising values of portfoliorf@mance measures.

Keywords: Robust Optimization, Index Tracking, Portfolio S#ilen, Mean Absolute Deviation Model,
MinMax Model

1. INTRODUCTION There are typically two ways to find a portfoliaat
matches the performance of an index. In the first

Fund management approaches can be divided intapproach, called “full replication”, the investorakes a
two categories: Active and passive management. Inportfolio including every constituent of the index
active management, the portfolio manager is willing proportional to its market share. In this approaitie
to beat a predetermined index through trading stock investor could achieve a perfect match. However,
according to her experience and expertise. On thencurring high transaction costs as well as theeudlyihg
other hand, a passive manager tries to gain retasns complications for portfolio rebalancing make this
close as possible to a theoretical portfolio etige S approach inapplicable. The second approach, called
and P 500 index. It is assumed that passive siegeg “partial replication”, includes investment in a dma
can acquire higher returns in comparison to thévact number of the stocks while attempting to imitate th
strategies in the long term. Index tracking is oh¢he performance of the entire index. This obviouslyuirsc
passive portfolio management strategies which seekdower transaction costs and, at the same time, snike
to gain returns as close as possible to a targktxin  easier to rebalance the portfolio weights whennlaeket
without buying all index components. conditions change. Partial replication naturallyowab
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the investor to limit the choices of investmenty fo
instance through insisting on the inclusion and/or
exclusion of some pre-specified stocks by setting t
proportion of the available capital that is to beeasted.

In fact, partial replication requires an error kiag
measure to quantify the deviation of the tracking
portfolio from the index.

Full replication has many drawbacks and augmests th
costs dramatically. Roll (1992), who solves thebpgm of
minimizing tracking error, the variance of the diffnce
between the returns of a benchmark and the tangekj
maximizes the average performance of a portfolatixe
to a benchmark in a determined amount of trackingre
volatility and considers a strategy for limitingtdethe
systematic risk. Ammann and Zimmermann (2001)
demonstrate the relation between the statisticalsores
of tracking error and asset allocation constraiatel
present a method for measuring them. Jansen amd Dij
(2002) limit the number of stocks in a tracking tfwio

programming problem. The proportion of the entire
capital to be invested in each stock is calcul@ggart
of the same problem. Meade and Salkin (1990) faautaul
the portfolio selection problem as a quadratic paoy
and investigate the effects of different policiesed by
fund managers on their returns.

Although quadratic programs have many interesting
statistical properties, linear models are appeafiogn
the computational aspect. Therefore, many attehmgpie
been made to linearize the portfolio selection fob
Konno and Yamazaki (1991) proposes a portfolio
optimization model that uses mean absolute deviaifo
the risk to deal with the modern portfolio theory-
suggested by Markowitz (1952)-difficulties. Derigad
Nickel (2003) propose a simulated annealing-based
metaheuristic for index tracking problem. In their
approach, stock returns and covariances are defriged
a linear multi-factor model based on macro-economic
variables. They present a real-world case studgdas

and propose a new mathematical model. Jorion (2003pn an investment trust tracking, the German DAX30

follows Roll (1992) by investigating the effect &t
constraint on the tracking error volatility andergrets it
as Value at Risk (VaR). He also portraits the meshior
mitigating inefficiency of using constraints on TEV
Tracking Error Volatility- and shows the TEV-corasired
portfolios by an ellipse in a mean-variance space.
Fabozzi et al, (2004) propose clustering as a
methodology to construct a tracking portfolio.
Gaivoronski and Pflug (2005) uses VaR as risk nreasu
and introduces/sets forth mean-VaR frontiers. Koenal

index. They also consider their approach taking awcount
an investment portfolio of 500 available stocksider to
track the MSCI World Developed Market index.

Recently, there has been an extensive use of robust
optimization in index tracking and other finandiiglds.
Robust optimization technique can be used as aftool
handling uncertainty with data that was traditityal
dealt with using sensitivity analysis, stochastid fuzzy
programming approaches. Robust optimization is &emo
tractable approach compared to the stochastic

(2005) present a branch and bound algorithm foroptimization that is especially suitable for probkein

constructing or rebalancing a portfolio and useohlte
deviations of returns rates. Yaa al (2006) solve the
index tracking problem with a portfolio containiagly few
assets. They formulate it as a stochastic quadratitrol
problem and solve the proposed model using sermiigef
programming. Laiet al (2006) present a Markowitz-
based model for index tracking problem where they

assume that index tracking problem relates to the

constraining the probability of the tracking polifiadeturn
falling below index return, generally referred ts a

downside risk. They presume that stock returns are

jointly and normally distributed and that shortlisg) is
allowed which is not permissible in every stock kedr
Later, Bertrand (2010) following Jorion (2003), calls
tracking error to vary instead of fixing trackingrer
volatility, TEV, but fixes risk aversion for voléity and
explores iso-aversion frontiers.

The ultimate goal of the investor is to minimizes th
tracking error in her portfolio over time. Usually,
tracking error is defined in a quadratic term. The

which input data and their corresponding distritnusi

are uncertain (Gregomt al, 2011). The initiation of this
technique is attributed to Soyster (1973) who ps&so
robust optimization models for over-conservative
decision makers. Since then, other robust optinginat
approaches have been developed to address the issue
with over-conservatism.

Robust optimization has been extensively applied in
many financial applications (Fabozzi, 2007). Muhegyal
(1995) develop a general robust optimization meated
then compare it with different approaches of sentit
analysis and stochastic linear programming. Thdyeso
some popular optimization problems like financial
planning. Ben-Tal and Nemirovski (2002) propose a
robust optimization methodology and apply it to som
real world applications like portfolio selection.
Goldfarb and lyengar (2003) formulate robust pdidfo
selection problems. They systematically aim at
combating the sensitivity of the optimal portfolio

resulting model can be expressed as a quadratistatistical and modeling errors in the estimateshef
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relevant market parameters. EI Ghaaii al (2003) they argue that linear deviations give a more ateur
propose a robust optimization approach for poudfoli description of the investors risk attitude rathéan
optimization problem with VaR. They define the wers squared deviations. The main common feature willin
case VaR as the largest possible VaR, given thi@apar models is that absolute deviations are minimizestead
information on the returns' distribution and comesithe of squared deviations as is the case for traditiona
problem of computing and optimizing the worst-case optimization models. In order to compare the
VaR and show that these problems can be treated agerformance of different approaches, they adopead r
semi-definite programs. data set containing six national stock market ieslic
Bertsimas and Sim (2004) present a new approach foincluding the USA, Japan, the UK, Germany, Frammt a
controlling excessive conservatism of solutions aali Switzerland and the tracking error with respectthe
it “budget of uncertainty”. Pinar and Tutuncu (2005 MSCI (Morgan Stanley Capital International Index)
present a robust model in a multi-period settingl an world stock market index is minimized. They als@wsh
solve it as a quadratic programming problem. Kasrad  that linear tracking error optimization is equivaleo
Thiele (2011) suggest a new approach named logstobu expected utility maximization and lower partial memh
in which they formulate the robust problem as &din  minimization. This study is closely related to tlaest
programming problem. Gregomgt al (2011) evaluate work of Rudolf et al (1999). We propose a robust
the cost of robustness for the robust countermathé optimization approach and compare different models
maximum return portfolio optimization problem. using recent data sets (2003-2011). In this stdiolyt
Further, in a review, Gabrelt al (2013) present the models based on the mean absolute deviation are
areas in robust optimization that attracted the tmos presented and their robust counterparts are derikeel
attention in recent years. The most noticeablet poitiheir proposed robust models have linear forms as in
paper is providing a big picture of robust optiniiza Bertsimas and Sim (2004) which makes them
applications, particularly in finance. Nguyen ara (2012) computationally tractable.
apply a robust ranking model to portfolio optiminat The organization of this study is as follows. Satt2
that develops a new ordering strategy for buildng presents different models and formulates the wedivkn
portfolio, instead of utilizing estimates of the quadratic as well as the linear models. Robust
parameters. Fertist al. (2012) define the concept of counterparts of some linear programming models are
robust risk measure as the worst possible of righan discussed in section 3. Section 4 compares the
each of probability measures are feasible. They als performance of different models using a real-wadde
present a robust CVaR that is optimized by conueatity study based on a broad spectrum of performancerierit
methods. Doaet al (2013) present a distributional robust Finally, concluding remarks are presented in saclido
portfolio optimization model depending on overlagpi  put in a nutshell the contribution of this study.
multivariate marginal distribution information thedén be

solved by linear programming. Ztes al (2013) propose 2. QUADRATIC AND LINEAR MODEL S
a portfolio selection framework based on dual rahess

with a mixture distribution on returns. They showatt ~In this section, we formulate a quadratic model fa
their proposed model can be reformulated as elitnear ~ linear models including Mean Absolute Deviation (BIa\
or second-order cone program. Mean Absolute Downside Deviation (MADD), MinMax

(2012) are the only practitioners to investigatelein  (DMinMax) for tackling tracking error in passive rfolio
tracking with robust approach. They present a modelManagement. The ultimate objective of the invesstao
using a 0-1 integer program in which they allow find the portfolio v_ve|ght5 _that follow thg benc_hmaetur_n
uncertainty in the objective function. Their trdia  as close as possible. This close tracking of imeéxrn is
robust framework controls conservatism of the sotut ~ defined based on a variety of distance measures.
which_ protects against worst-case _re_alizations °f2.1. M odel Formulations

potential estimation errors and other deviations.

Rudolf et al. (1999) propose four linear models for Consider an investor who choosesassets of the
minimizing the tracking error between the returfisao  index to construct the tracking portfolio. L@t (nx1
portfolio and a benchmark. Their idea of linealizatis vector) represent the portfolio weigh¥(Tx1 vector) be
based on the fact that in the real market we confrnath the vector of market index return over time aa@rxn
linear performance fees of fund managers; thergfore matrix) be the matrix of returns amassets for each time
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period where the returns are continuously compodinde
T is the number of observations ands the deviation
between returns of the tracking portfolio and thegét
index. In this formulation,Xs denotes the tracking
portfolio return. Using the distance definitions to
measure the error, the index tracking problem cdagd
formulated as in the following sections.

2.1.1. Mean Squar e Formulation

Similar to Rudolfet al (1999) the objective function
is to minimize some function of tracking error owtock
weights,s. Typically, the deviation between the tracking
portfolio and the index is defined as Equation 1:

e=Y -XBYOR X0 K BOR" zOR" (1)

point of view, risk happens only when the returnthu#
tracking portfolio falls below the benchmark, knoas
“downside risk” of an investment (Harlow, 1991).€Th
objective function of different models is summadzzs
follows Equation 4a and b:

Therefore, the mean square tracking error based on

Roll (1992) is presented as Equation 2:

mine's = n}fin(Y SBY (Y - XB). )

It can be verified that the vector of optimum asset
weights in the mean square tracking error of Equaf?)
is f = (XX)™ XY. We can add some linear constraints
such as short-selling that requires positivity dfe t
portfolio weights. Furthermore, the sum of the vasgis
equal to one, which means the sum of asset weigtiti
the portfolio must add up to unity. Therefore, thean
square tracking error problem can be formulatedhas
following quadratic programming problem Equation 3:

mﬁin(Y - B) (Y - X5)

S t:

1.3=1, where 1= (1,...,1)IR"
£B=0, where0O= (0,..,00 R

®3)

2.1.2. Linear Models for the Tracking Error
Minimization Problem

The linear models presented here minimize absolute

deviations between the targeted index and the itrgck
portfolio returns. The first linear model is call&tiAD,
which minimizes the average of absolute deviatidine
second model, called MinMax, minimizes the maximum
deviation between returns of tracking portfolio athe
benchmark. Another approach is to focus only on the
negative deviations of tracking portfolio from the
benchmark returns. The reason is that from thesiovis
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TEqp =min(Y= )Y = 3%) (42)

TEMAD =nI18in1' (XB-Y), (4b)

TEMADDznjBinl' AX-Y, (4c)
for some t where Y <Y;,

TEpjinMax = mﬁir{ max| X3~ ¥ (4d)

(4e)

TEpMinMax = rrllgir{ n}ax| x-Y1,
for some t Where_?gk\?t,

where, X; represents row of matrix X and Y, is the
elementt th of vectorY, while matrices X and vector
Y consider only those rovisvhereXg <Y .

In order to derive the MinMax models in the claabic
linear form, we define an auxiliary variabie0 as the
upper bound of absolute deviations similar to Rudbkl
(1999). Hence, for the MinMax model we have:

22X Y | t=1....T
Two forms can be considered for edch

it X(f2Y = Xf-2<Y
it X(f<Y = Xp+z2Y,

Thus, we can formulate the MinMax model as follow
Equation 5:

inz
s.t Xt,B -< \{ (5)
Xtﬁ+zzY[
JCS
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Since in theD MinMax model only the positive
deviations of index is of interest, we derive Eiqua®:

mé'nzs.t. Xp+z=Y,. (6)

Letz and z  represent the absolute value of positive

and negative deviations of tracking portfolio améi
period t, respectively. The MAD model can be
formulated as Equation 7:

Minz (%" +7) )
stXp-z +z =Y,

For the MADD model, we omitzt+ from the

objective function of problem (7). Then, the prablés
stated as Equation 8:

minzjtrzlq_
stXf-7 +3 =Y.
3. ROBUST FORMULATION

(8)

In the classic linear programming, we typically
assume that the input data is precisely known aed t
values are known with certainty. However, in thalre
world optimization problems this assumption doeshatd
since it ignores underlying effects of parametareniainty
in the model. This could potentially affect the erging
feasibility and/or optimality of the final solution
After/when the model is solved using the nomindlLiga
(i.e., the expected value of data), future reatinatof the
parameters may violate some constraints and thexefoe
so-called optimal solution which is based on thminal
data may no longer even exist in the feasible regio

In order to overcome the above-mentioned
drawbacks, robust optimization approach is usethén
real-world applications of linear programming
(Bertsimas and Sim, 2004). Soyester (1973) propases

formulation of the original problem called the rsbu
counterpart. The robust counterpart proposed by- Ben
Tal and Nemirowski (1998, 1999, 2000) is typicatiythe
form of conic quadratic programming since they wppl
elliptic uncertainty. Bertsimas and Sim (2004) mep a
new approach wherein they define a linear norm and
linear uncertainty set. Their approach preservedrikarity

of the original problem, which is computationalicent.
Consider the following simple linear programmingendn
the technical matrix is subject to uncertainty Eigue9:

max c'x
S t.:
Ax< b

IJ-sxjsuj O j

9)

where, data uncertainty only affects the elements i
technical matrix A. Furthermore, assume- without loss
of generality-that the objective function'x is not
subjected to uncertainty, since in that case thectile
function can be converted into a simple constraintt be
added to the main constraints.

They propose another linear programming problem
called the robust counterpart, which could be sbiustead
of the nominal problem (9) as follows Equation 10:

max c'X
s t.:

Tjgjx *fi *Zjp <p b
zi+qj 2% )r Hijgyg,
VisX Y i,

Ij sxj suj 0j,

pj 20.0ij03

y; 20,0j,

z=0/[i.

(10)

conservative technique where the solution remainswhere,a; is the nominal value of uncertain parameter

feasible for all realizations of input data. He simlers

the worst-case solution where the uncertain pararset
belong to a convex set.
approaches in the literature that try to addressoter
conservatism of the Soyester approach.
researchers including El-Ghaoei al (1998), Ben-Tal

and Nemirowski (1998, 1999, 2000) and Bertsimas andnecessarily

Sim (2004) address the uncertainty of data usiffgreint
robust approaches. The distinction among theseagipes
is the way they define uncertainty sets. They salvaew
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There are some other i - : .
J; define the set of coefficient (s) in constrditihat may

Otherbe subjected to uncertainty. The paramdigrtaking
value in [0,J], is defined for each constrainand is not

robustness of the solution against the
conservatism, e.g., fafj = 0 the robust counterpart is
equivalent to the nominal problem and on the otteerd

2454

&, §is the allowed deviation from the nominal value,
i.e., we considerd, takes values irfa, -§ ,g +a]. Let

This the

of

controls
level

integer. parameter
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I = J; represents the worst-case situation and is 4. EXPERIMENTAL RESULTS
equivalent to the Soyster approach. In the abovédemo

y; is defined as absolute value gf zx andp; are some In this section, we implement previously proposed
auxiliary variables that together define the protec models using a real data set to compare their
function of constraint (Bertsimas and Sim, 2004). performance empirically. Consider an investor who i

In the robust optimization we are not allowed tefke interested in constructing an internationally daiéed
equality constraint in the model, so the robustnternpart portfolio. Additionally, she has an objective to
for the MAD and MADD cannot be defined. In thisdyy minimize the tracking error between her portfolio
we formulate the robust counterpart of both MinMaed return and the world stock index. MSCI index, which
Downside MinMax problem based on Bertsimas and Simmeasures the performance of equity market within
(2004) approach. In this case, considas the portfolio  developed countries, is used as the target indée T

weights and X, as uncertain return of stodkat time  index has been maintained by Morgan Stanley Capital
International incorporation since 1969. MSCI world

pgnqd t we asAsumeAthe uncertain re-tl)ﬁn takes ya!ue constitutes of indices of 24 developed country raark

within intervall%; —A, % +A], whereA is the deviation  jygices  which is a common benchmark for the global

parameter. Based on the assumptions and definitiongquity funds. It should be noted that emerging raerk

mentioned above we formulate the robust countemgiart index has been excluded from the benchmark.

MinMax (RMinMax afterwards) and DMinMax The investor is going to compose a portfolio of kear

(RDMinMax afterwards) problems as a similar appioac  index of 6 industrial countries: The United Stafédse
The RMinMax model is formulated as Equation 11: USA), Germany (D), France (F), the United Kingddhre(

UK), Switzerland (CH) and Japan (JAP). The objectis

min z to minimize the tracking error between the retushshe
st: composed portfolio and the MSCI world index. Mowthl
N - N data, including 100 monthly return observationsg ar
Zj=1th ﬁj 'Z+Wtrt+zj=1Ptj =W collected from January 2003 to September 2012.
W +Fi' >A)A(t' u 0t | Moreover, the whole observation period is dividetbi
/A A

(11) two sub-periods: 80 Observations used as train lsamp

-u: £ 8. <u. 0 observations from Januar to August

i ﬁ] J O b f J y 2003 to August 2009 &hd 2
P >0.0t i observations from September 2009 to September 212
== L] assumed as test sample observations. Train pestadade

W 20,0t used for constructing optimized portfolios for titetained
. models. Then, the test sample observations aretagedt
uj 20,0]] the efficiency of obtained portfolio weights. Akturns
are calculated in USD. Mean, standard deviation @&nd
The RDMinMax model is formulated as Equation 12: relative to the MSCI world index of each serieslafa are
summarized imable 1.

min z The proposed modeling is solved using Lingo
S t: software. Table 2 contains the weights of optimized

N ¢ p 4. vN p portfolios for linear and robust models. In additio
szlxtJﬁJ tz-W I Zlle'f’J =% values of objective functions are calculated fochea
W, + Fﬁ zA)”&j uj At model in a separate column.

, (12) Bertsimas and Sim (2004) propose some probability

“uj s gy =upLb] bounds of constraint violation. Based on their
P. >0,0t,] propositions, we set the paramefeand the budget of
y== uncertainty to limit the upper bound for the proitigh
W 20,0t of violation for each constraint up to 5%. It is
u; 20,0j noteworthy that the parametErcontrols the underlying

J trade-off between the probability of violation afie
effect of the objective function of the nominal

In all proposed models, short-selling is prohibiggdi  problem. We tuned the robust model parameter in

finally, there is a constraint on portfolio weightisat  such a way that the constraint would not to beatied

must add up to unity. with 95% confidence interest.
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Table 1. Risk/return characteristics of MSCI total returdiges in terms of USD

Whole observation period:

Train sample period:

estTsample period:

Jan 2003 to Sep 2012 Jan 2003 to Aug 2009 e te0Sep 2012

Index I o s I X s u X s

MSCI 0.44 4.79 1.00 0.27 4.81 1.00 1.12 4.76 1.00
USA 0.36 441 0.90 0.10 4.37 0.89 1.38 451 0.92
JAP 0.27 5.00 0.77 0.33 5.20 0.82 -0.01 4.20 0.59
UK 0.31 5.31 1.04 0.14 5.28 1.03 1.01 5.48 1.09
D 0.77 7.11 1.39 0.63 7.21 1.40 1.31 6.87 1.35
F 0.46 6.51 1.29 0.42 6.22 1.24 0.60 7.75 1.52
CH 0.71 4.82 0.87 0.59 4.84 0.89 1.15 4.82 0.78

Monthly average return and standard deviationrafé.i
B is respect to MSCI.

Table 2. Optimized portfolio weights based on the train periJan 2003 to Aug 2009) for different optimizatimodels

Model USA JAP UK D F CH Value of objective function

QTE 50.28 11.80 18.63 6.43 12.87 0.00 2.55
MAD 51.46 11.12 20.54 7.13 9.75 0.00 17.49
MADD 48.70 11.80 17.63 9.36 11.66 0.84 10.25
MinMax 49.84 12.57 14.50 7.64 15.45 0.00 0.69
DMinMax 49.06 11.77 19.29 14.07 5.81 0.00 0.59
RMinMax 22.20 15.34 23.78 12.89 12.89 12.89 8.81
RDMinMax 26.23 11.85 26.36 11.85 11.85 11.85 8.80

Square root of objective function is calculated@arE.
All figures in percent %.

Clearly, high weights are dedicated to the USA,Uke
and JAP stock markets. There is an obvious resaltalthe
fact that MSCI index is capital weighted and thesentries
have the highest capital values of market indekenworld.

It is worth noting that MAD, MADD and quadratic ¢ttdng
error results are similar in a noteworthy mannéis Tesult

is consistent with the perceptions of Konno and dzaki
(1991) and signifies that the optimization resulte the
same whether linear or quadratic objective funstiane
used when the joint probability distribution of the
benchmark and portfolio returns is normally disttéal.
Moreover, Rudolfet al (1999) report the same results in
their empirical work. Slight differences could bepected
between the MAD and the quadratic tracking errodeho
since the normality of the returns is non-existitdreover,
MAD and the MinMax models have almost different
results, which is not surprising due to the diffieses among
the tracking error criteria. It could be observédttthe
portfolio weights differ substantially between tiobust and
non-robust modelsT@ble 2). For instance, the weight of
the US market in the portfolio declines to almagf bf its
value when we use the robust models instead ofdhenal
models. The most significant feature of the rolnustlels is
that the portfolio weights are distributed in a enaniform
and diversified manner/uniformity and diversity tife
portfolio weights distributionTable 2).
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So far, the results have disclosed that the lineadels
provide quite different portfolios than the traolital
quadratic models. The benefit of the linear models,
however, is that the value of the objective funtpoovides
an intuitive and immediate interpretation. It isieafor an
investor to determine her attitude toward the cphad
risking if she can express the tracking error imie of
absolute deviations from the benchmark index ratinen
squared deviations. A comparison of the optimizelies
of the objective functions is summarizedriable 3.

The minimum values of the objective function across
the different models are in bold face. For examtie,
lowest tracking error of a portfolio regarding the
benchmark using the quadratic model is providedhey
QTE portfolio. Nevertheless, more interesting ihsig
emerge from the objective functions of the alteneat
models. For instance, if an investor is concernleaua
the  maximum  absolute  downside deviation
(DMinMax), the maximum risk she takes by holding th
Downside MinMax portfolio is 0.588%. This is quite
lower than the QTE portfolio which has a maximum
Downside deviation (DMinMax) of 0.759% from the
benchmark. If the investment objective is the Minim
sum of Absolute Downside Deviations (MADD), the
total deviation may be boosted by 3.85% in casé)XhE
portfolio is substituted by the MADD portfolio.

JCS
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Table 3. Optimal objective function values for differenttmpization models over the train period (Jan 2a93ug 2009)

Tracking error criteria

Model QTE MAD MADD MinMax DMinMax

QTE 0.065 17.671 10.662 0.820 0.759
MAD 0.068 17.490 10.909 0.908 0.770
MADD 0.073 18.363 10.251 0.793 0.669
MinMax 0.076 19.095 10.655 0.685 0.685
DMinMax 0.085 19.734 10.722 1.014 0.588
RMinMax 0.375 44.760 19.223 1.353 1.353
RDMinMax 0.304 40.712 18.165 1.484 1.133

All figures in %.

It is obvious that robust model objectives are not models are negative, which represent an inferior
minimum values in any criteria. For example, in gom performance with respect to market index. Howeee,
cases, the tracking error criteria have grown twhfo robust models have higher returns together with
However, it should not be considered as the péfafi positive market-related ratios that reveal the siope
the robust modeling. The minimum possible value performance regarding non-robust approaches to the
could be gained since the objective function ofheac market portfolio. A graphical comparison of diffate
model optimizes the weight. We cannot compare theseMinMax models together with their robust countetpar
models using the same data, applied to find tragkin is illustrated in a radar diagrarkig. 1).
portfolio, i.e., the train data. To the best of the  The relevant data setis normalized to depigt 1. It
investor’s behavior, the investor definitely knotimt could be observed that regarding train period retur
this would deteriorate the objective function when robust models outperform non-robust models based on
robust modeling is used. The investor trades retarn  market-related portfolio performance measures.
confidence. Using the test data set, the performaric ) )
different portfolio is tested in the following séan. 4.3. Further Analysis Applying Test Data

4.1. Performance Metrics So far, the comparisons were conducted based on the
) . ) . train data, i.e., the data used to obtain optimjzedfolio
In this section, the most important portfolio me@su ot each tracking error approach. In this sectioe, test
are summarized iable 4 according to which we could  5ia are used in order to test viability of theutess

examine the performance of different models. It is L ;
. Keeping in mind that the data set used for testhe
apparent that the higher these measures, the liter results (test data; the period from September 2@09

performance of the portfolio. We also test their . : )

performance using test sample returns so that wme CaSeptember 2012) IS a very _extraordmary circumsanc

arrive at an unbiased judgment wherein a huge financial crisis occurs and the avorl
X witnesses lots of important economic and political

In this table,R and R, are the returns of tracking h focti h K KetsThble 6
portfolio and target benchmark index, respectivally. changes affecting t e stpc mar gts. €5, average
returns, standard deviations, tracking errors dffdrdnt

is the tracking error and is the standard deviation of . . .
market-related ratios for the portfolios are digpld

the portfolio return. ; . :

An outstanding outcome is that Beta of different
4.2. Numerical Results of Performance Criteria models are all negative; this proves that the nstare
moving in the opposite direction of the index imer to

In this section, we compare different portfolio )
get higher returns.

models based on multiple investment performance ) . .
criteria. In Table 5 average returns, standard Figure 2 depicts the tracking error of robust models

deviations, tracking errors and different markdewed ~ With respect to the world index fluctuations.

ratios for the portfolios are displayed. Given the It can be seen .that the resulting error is directly
previous results, it is astounding how similar tigk related to the world indexX.able 7 summarizes monthly

characteristics are. Except for the MAD and the returns of each portfolio in each column and theldvo
quadratic QTE model, average returns are consiljerab index monthly returns in the last column. One could
different. The well-known observation is that thgher ~ report that the returns are fluctuating in the sawmag
the expected return, the higher the standard dewiathe with world return when comparing different methads
Information, Sharp and Treynor ratios of the nobusi almost all observation period.

////4 Science Publications 2457 JCS



Mohsen Gharakhait al / Journal of Computer Science 10 (12): 2450.22634

In order to increase validity of our comparison, we suggests that the robust models have a better
added noise to our test data to simulate dataGauBs. performance for the noisy dathigure 3 compares the
We added a random noise to the test data thatdrazah  relative tracking error of different models for spidata
distribution with mean and standard deviation eqad with respect to nominal test data for 50 runs of
and 0.2, respectively. Then, we ran the simulafoorb0 simulation. The robust models have lower amount of
times. The calculated tracking error values for ribésy relative tracking error among models. This occurs
data are given inTable 8. It is noticeable that the because when the noise is added to data, robustisnod
tracking error values for robust models are less tthe are expected to change less in their objectivetions
tracking error values for the non-robust modelsisTh with respect to non-robust models.

Table 4. Performance metrics formulations and descriptions

Performance metric  Formulation Description

Beta g :%ﬁ??) Beta of a portfolio is a number which shows hatiehship between the return
of the portfolio and a benchmark

Information ratid IR :% Information ratio, typically known as AppraisaltiRa is the difference between
returns of tracking portfolio and a selected tenark divided by the standard
deviation of the tracking error

Sharpe ratib S= @ Sharpe ratio is a measure of excess return efdénty strategy or tracking
portfolio for each unit of risk the investor take

Treynor ratiG T :w Treynor ratio measures the returns obtained aiuna the investment could gain

I
Market ratid M = i:; Market ratio measures the relative performandeaaking portfolio to benchmark index

#Sharpe (1994)

®Sharpe 1966)

“Treynor (1964)

dCornuejols and Tutuncu (2007)

Table5. Risk/return characteristics of optimized portfollwessed on train period (Jan 2003 to Aug 2009)

Average Standard Tracking Information ~ Sharpe noey Market

Model returdt deviatio?  erroP Betd ratic? ratic® ratid ratic?

QTE 0.232 4.735 2.83E-03 0.9830 -0.1467 -8.78E-03  4.23E-04 0.9996
MAD 0.225 4.715 2.89E-03 0.9788 -0.1696 -1.04E-02  5.00E-04 0.9995
MADD 0.249 4.782 3.02E-03 0.9924 -0.0824 -5.21E-03 -2.51E-04 0.9998
MinMax 0.248 4.780 3.08E-03 0.9919 -0.0838 -5.48E-0 -2.60E-04 0.9997
DMinMax 0.253 4.813 3.27E-03 0.9984 -0.0643 -4.38%E- -2.10E-04 0.9998
RMinMax 0.346 4.963 6.85E-03 1.0223 0.1053 1.45E-02 7.05E-04 1.0007
RDMinMax  0.323 4.940 6.18E-03 1.0192 0.0795 9.92E-0 4.82E-04 1.0005

#Monthly returns and standard deviations in %

®Tracking error measured by standard deviation offpid excess return to MSC&(XB-Y))
‘eta of each portfolio to MSCI world stock markedéx

dExcess return to square root of tracking error in %

°Excess return to volatility ratio in %

fExcess return to Beta in %

9Relative performance of tracking portfolio to bemzlrk index
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Table 6. Risk/return characteristics of optimized portfglivased on test sample period (Sept 2009 to S&fj 201

Average  Standard Tracking Information  Sharpe noey Market
Model returt Deviatiof  ErroP Betd ratic” ratio® ratid ratio?
QTE 1.069 4.855 3.144E-03 1.0173 -0.1695 -1.098E-02 -5.239E-04 0.9995
MAD 1.093 4.806 2.961E-03 1.0071 -0.0986 -6.075E-03 -2.899E-04 0.9997
MADD 1.079 4.868 3.271E-03 1.0199 -0.1342 -9.018E-0 -4.303E-04 0.9996
MinMax 1.055 4.909 3.466E-03 1.0286 -0.1948 -1.302E -6.564E-04 0.9993
DMinMax 1.114 4.819 3.390E-03 1.0093 -0.0238 -16108 -8.009E-05 0.9999
RMinMax 0.973 4.963 9.208E-03 1.0243 -0.1626 -3B08 -1.462E-03 0.9985
RDMinMax  1.020 4.980 8.463E-03 1.0308 -0.1209 -200?2 -9.923E-04 0.99900
Monthly returns and standard deviations in%
®Tracking error measured by standard deviation offid excess return to MSCE(XB-Y))
“Beta of each portfolio to MSCI world stock markedéx
YExcess return to square root of tracking error in%
°Excess return to volatility ratio in %
'Excess return to Beta in %
9Relative performance of tracking portfolio to bemark index
Table 7. Comparison of different model returns based ondeta
Date QTE MAD MADD MinMax DMinMax RMinMax RDMinMax
Sep-09 0.008594 0.004411 0.00651 0.011516 -0.00162 -0.00188 -0.00245
Oct-09 0.009085 0.008935 0.010766 0.010864 0.012327  0.014258 0.01314
Nov-09 0.034821 0.03549 0.036237 0.035621 0.037809 0.035862 0.03639
Dec-09 0.007785 0.006838 0.007738 0.009098 0.006384  0.004086 0.00370
Jan-10 -0.00035 -0.00161 -0.00083 0.00112 -0.00108 -0.00664 -0.00758
Feb-10 0.00812 0.009915 0.00846 0.006055 0.010439 .013R12 0.01397
Mar-10 0.018063 0.020006 0.019134 0.01693 0.023375 0.021688 0.02186
Apr-10 0.006165 0.005031 0.00462 0.006107 0.000701 -0.00178 -0.00024
May-10 -0.00737 -0.0081 -0.00627 -0.00631 -0.00776 0.004762 0.00286
Jun-10 -0.01299 -0.01371 -0.01217 -0.01161 -0.01226 -0.00779 -0.00899
Jul-10 -0.00783 -0.00603 -0.00708 -0.00913 -0.00349 -0.00449 -0.00452
Aug-10 -0.01795 -0.01892 -0.01516 -0.01439 -0.01401 -0.00646 -0.00938
Sep-10 0.007881 0.00891 0.010762 0.010106 0.01639 .011003 0.00968
Oct-10 0.000664 0.002712 0.000661 -0.00251 0.003426  0.011006 0.01119
Nov-10 -0.02199 -0.02138 -0.01994 -0.02087 -0.01689 -0.01275 -0.01427
Dec-10 0.011974 0.010779 0.010554 0.011132 0.007198 0.016461 0.01553
Jan-11 -0.00782 -0.01105 -0.00638 -0.00356 -0.00932 0.004923 0.00119
Feb-11 -0.00855 -0.00833 -0.00859 -0.00866 -0.00861 -0.0108 -0.01007
Mar-11 0.009302 0.009344 0.009372 0.009542 0.009458  0.006754 0.00712
Apr-11 -0.00506 -0.00534 -0.00543 -0.006 -0.00739 .00R777 0.00309
May-11 -0.01076 -0.01102 -0.00935 -0.00983 -0.00726 0.002906 0.00023
Jun-11 -0.01558 -0.01499 -0.01486 -0.01562 -0.01221 -0.0111 -0.01224
Jul-11 -0.00159 -0.00065 -0.00026 -0.0009 0.00335 0.00212 -0.00216
Aug-11 -0.03724 -0.03428 -0.03493 -0.03853 -0.02709 -0.02525 -0.02636
Sep-11 0.027016 0.031645 0.0281 0.024189 0.036441 .015293 0.01988
Oct-11 -0.00421 -0.00136 -0.00187 -0.00502 0.00437 0.002724 0.00239
Nov-11 0.017178 0.017599 0.017729 0.017708 0.018574  0.012912 0.01380
Dec-11 0.015416 0.014657 0.014817 0.01526 0.012004  0.016806 0.01753
Jan-12 -0.00637 -0.00471 -0.00334 -0.00429 0.002286 -0.00812 -0.00779
Feb-12 -0.06041 -0.05847 -0.05902 -0.06221 -0.05332 -0.04175 -0.04453
Mar-12 -0.01886 -0.023 -0.01993 -0.01701 -0.02648 0.00257 -0.00626
Apr-12 -0.02094 -0.02224 -0.02004 -0.01907 -0.02035 -0.01174 -0.01468
May-12 -0.01229 -0.01317 -0.01199 -0.01237 -0.01309 0.003844 0.00196
Jun-12 -0.05353 -0.05345 -0.0514 -0.05457 -0.05038 -0.0127 -0.01644
Jul-12 0.002801 0.000899 0.003529 0.004541 0.001123  0.016893 0.01426
Aug-12 0.031605 0.032491 0.030931 0.03113 0.031967 0.016691 0.01789
Sep-12 0.011932 0.012627 0.012665 0.011807 0.014753  0.015535 0.01446
All figures in %
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Table 8. Tracking error values of noisy data for 50 runsest data simulation

Period QTE MAD MADD MinMax DMinMax RMinMax RDMinMax
1 0.0110 0.0109 0.0109 0.0113 0.0117 0.0141 0.0136
2 0.0164 0.0164 0.0163 0.0167 0.0164 0.0177 0.0176
3 0.0209 0.0206 0.0206 0.0213 0.0206 0.0209 0.0206
4 0.0319 0.0318 0.0317 0.0324 0.0322 0.0316 0.0316
5 0.0394 0.0395 0.0395 0.0395 0.0397 0.0387 0.0388
6 0.0317 0.0317 0.0317 0.0318 0.0321 0.0299 0.0300
7 0.0351 0.0352 0.0353 0.0354 0.0358 0.0314 0.0318
8 0.0347 0.0349 0.0349 0.0351 0.0363 0.0326 0.0327
9 0.0373 0.0374 0.0372 0.0380 0.0388 0.0353 0.0354
10 0.0414 0.0412 0.0410 0.0425 0.0426 0.0382 0.0383
11 0.0360 0.0356 0.0352 0.0374 0.0377 0.0343 0.0340
12 0.0394 0.0389 0.0387 0.0406 0.0400 0.0361 0.0359
13 0.0428 0.0424 0.0424 0.0438 0.0431 0.0381 0.0382
14 0.0450 0.0447 0.0446 0.0460 0.0456 0.0401 0.0401
15 0.0430 0.0424 0.0423 0.0442 0.0431 0.0398 0.0395
16 0.0440 0.0434 0.0433 0.0453 0.0445 0.0397 0.0393
17 0.0531 0.0521 0.0520 0.0548 0.0517 0.0465 0.0464
18 0.0528 0.0518 0.0518 0.0545 0.0508 0.0452 0.0450
19 0.0574 0.0567 0.0570 0.0586 0.0553 0.0469 0.0472
20 0.0545 0.0539 0.0543 0.0558 0.0529 0.0427 0.0430
21 0.0566 0.0559 0.0563 0.0579 0.0544 0.0453 0.0458
22 0.0502 0.0498 0.0501 0.0512 0.0495 0.0416 0.0419
23 0.0498 0.0498 0.0501 0.0504 0.0499 0.0434 0.0435
24 0.0493 0.0490 0.0492 0.0500 0.0484 0.0439 0.0438
25 0.0494 0.0496 0.0500 0.0498 0.0494 0.0433 0.0434
26 0.0576 0.0580 0.0586 0.0579 0.0579 0.0485 0.0489
27 0.0579 0.0585 0.0591 0.0579 0.0579 0.0477 0.0482
28 0.0618 0.0626 0.0633 0.0617 0.0620 0.0493 0.0504
29 0.0672 0.0681 0.0689 0.0671 0.0670 0.0513 0.0529
30 0.0668 0.0679 0.0687 0.0663 0.0676 0.0533 0.0548
31 0.0764 0.0777 0.0787 0.0757 0.0769 0.0607 0.0627
32 0.0953 0.0967 0.0978 0.0946 0.0956 0.0771 0.0793
33 0.0993 0.1009 0.1023 0.0987 0.0991 0.0722 0.0755
34 0.0810 0.0822 0.0832 0.0807 0.0815 0.0612 0.0637
35 0.0885 0.0901 0.0912 0.0878 0.0893 0.0661 0.0691
36 0.0952 0.0970 0.0984 0.0944 0.0952 0.0682 0.0718
37 0.1023 0.1043 0.1059 0.1013 0.1020 0.0700 0.0744
38 0.1127 0.1143 0.1156 0.1118 0.1124 0.0884 0.0915
39 0.1069 0.1085 0.1099 0.1062 0.1067 0.0808 0.0840
40 0.1093 0.1111 0.1127 0.1085 0.1089 0.0788 0.0824
41 0.1183 0.1200 0.1215 0.1176 0.1179 0.0884 0.0920
42 0.1047 0.1066 0.1083 0.1041 0.1044 0.0698 0.0742
43 0.1211 0.1231 0.1252 0.1205 0.1197 0.0777 0.0831
44 0.1101 0.1114 0.1127 0.1097 0.1097 0.0853 0.0881
45 0.1184 0.1198 0.1212 0.1180 0.1177 0.0902 0.0934
46 0.1345 0.1361 0.1376 0.1340 0.1340 0.1061 0.1093
47 0.1410 0.1428 0.1446 0.1404 0.1403 0.1052 0.1093
48 0.1565 0.1590 0.1616 0.1557 0.1548 0.1043 0.1105
49 0.1917 0.1946 0.1975 0.1907 0.1900 0.1358 0.1423
50 0.1486 0.1510 0.1533 0.1479 0.1472 0.1010 0.1067
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