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ABSTRACT 

In this study, we propose an Interactive Evolutionary Computation system to design gene networks for 

synthetic biology, of which the objective is to construct new organisms through the artificial synthesis of 

gene networks. Wet laboratories typically design gene networks through trial and error methods, which 

makes the construction of complex networks difficult. As a solution, automation can significantly improve 

the efficiency of identification of useful networks. However, guidance and feedback from biologists are 

required for the automation of this process, primarily because models that are sufficiently accurate at 

precisely simulating network behavior do not exist yet. Therefore, we have implemented an Interactive 

Evolutionary Computation system that allows the automation of the gene network design task while 

incorporating expert knowledge. Our results show that the system can efficiently design oscillating 

networks and can successfully identify complex networks, which are difficult to generate manually. 
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1. INTRODUCTION 

Synthetic biology (Andrianantoandro et al., 2006) is 

a new research field that is rapidly gaining attention not 

only from biologists but also from computer scientists 

and information technologists. Research in synthetic 

biology is based on “construction, utilization and 

analysis” rather than the conventional “observation and 

analysis” and its objective is to construct new organisms 

through the artificial construction of gene networks. 

Conventional biology is typically based on an analytical 

approach, in which individual organisms are observed 

and analyzed, whereas synthetic biology takes a bottom-

up approach, in which accumulated, analyzed insight and 

knowledge about biological organisms are used to 

artificially construct new ecosystems. The artificial 

synthesis of a new living system from individual 

components is expected to result in the development of 

useful new materials with potential medical applications. 

One role of information science in synthetic biology 

is the design, simulation and analysis of artificial genetic 

circuits and metabolic pathways. The genetic circuits are 

designed by combining identified interacting 

biomolecules; however, there are an infinite number of 

combinations and identifying a circuit that behaves as 

intended is very difficult. Although a number of 

relatively simple genetic modules have been proposed, 

such as switches (Gardner et al., 2000), oscillation 

circuits (Elowitz and Leibler, 1999) and logic circuits 

(Anderson et al., 2007) - these are small modules that 

have been discovered through trial and error - a 

limitation imposed by the fact that the mathematical 

models used in computational design can reproduce only 

part of the actual phenomenon. When many modules are 
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brought together to create large-scale dynamic genetic 

circuits, inclusion of parameters that have not been 

precisely measured for accurate simulation and an 

incomplete understanding of many of the mechanisms in 

real organisms can result in unexpected behavior. 

Guidance from biologists, who have an in depth 

knowledge of actual reaction systems, is crucial to 

designing artificial genetic circuits that contain such 

problems. The use of Interactive Evolutionary 

Computation (IEC) is proposed here as a feedback 

method to accurately reflect biological properties that 

are difficult to quantify or to predict based on 

experience. IEC directly applies qualitative evaluation 

by the user for optimization based on implicit indices 

such as personal preferences and emotions that are 

difficult to explicitly express on a computer; it is used 

in various situations such as creativity support 

systems in the graphic arts (Unemi, 2000) and musical 

composition (Ando and Iba, 2007), as well as for 

optimization of engineering problems including 

speech processing (Watanabe and Takagi, 1995) and 

data mining (Terano and Inada, 2003). The goal of 

this study is to propose a method that uses IEC to 

efficiently design practical artificial genetic circuits. 

As a case study, here we present the interactive 

evolution of various types of oscillatory circuits. The rest 

of the paper is organized as follows. Section 2 describes 

the background of the research. Section 3 describes the 

materials and methods. Experiment result is given in 

section 4 and conclusion is given in section 5. 

2. BACKGROUND 

2.1. Synthetic Biology 

Synthetic biology is a rapidly developing discipline 

involved in the construction of biological systems that do 

not exist in nature by combining biomolecules such as 

Deoxyribonucleic Acid (DNA), genes and proteins. The 

synthetic biology community defines synthetic biology 

as follows. “Synthetic biology refers to both: 
 

• The design and construction of new biological parts, 

devices and systems and 

• The re-design of existing, natural biological systems 

for useful purposes 
 

The two definitions point to the construction of 

biological systems that do not exist in nature and the 

objectives can be categorized as either “understanding 

living phenomena through reconstruction” and 

“construction of useful biological systems”. 

Approximately 10 years have passed since synthetic 

biology began garnering attention; however, most of 

the research reported to date concerns processes that 

have not resulted in development of novel biological 

systems (Dinh et al., 2014). 

Of the two main objectives described above, the 

“creation of useful biological systems” can be 

understood literally as enriching people’s lives by 

constructing new organisms that make a contribution to 

humankind. Examples of past research include gene 

networks that detect DNA damage (Kobayashi et al., 

2004) and bacteria that preferentially infiltrate cancer 

(Anderson et al., 2006). 

Concerning the second objective, “understanding 

living phenomena through reconstruction”, the process 

of constructing new organisms is used to identify novel 

properties of organisms, draw comparisons with existing 

knowledge gathered using conventional biology, and 

contribute to the development of biology. Using this 

process, it is possible to detect properties that cannot be 

identified by simple observation; therefore, artificial 

construction of organisms has the potential to make 

novel contributions to several fields. 

Collaboration between wet laboratories that conduct 

experiments by actually building gene networks using 

organisms such as the bacterium Escherichia coli (E. 

coli), and dry laboratories that design gene networks 

through computer simulation, is common in synthetic 

biology. In wet laboratories, one method for artificially 

constructing organisms is the use of circular DNA 

plasmids of E. coli to build artificial gene networks and to 

investigate protein functions. In other words, protein 

concentrations are varied with time to generate artificial 

organisms that act as switches or oscillators. Here, 

computer simulations are used to design gene networks that 

can perform the desired functions. 

Synthetic biology is also closely related to electronic 

engineering, information engineering and chemistry 

and one of the objectives is to use biomolecules and 

biological systems in an engineering context. From an 

electronic engineering perspective, computers are built 

using standardized fundamental components to form 

devices and electronic circuits; these functionally 

differentiated modules can be combined to form a 

computer. In synthetic biology, biomolecules, which 

are regarded as fundamental components, are combined 

to form modules, which are reaction system networks 

that behave as intended and these modules are 
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combined to form useful biological systems. This 

characteristic of combining minute biomolecules 

connects synthetic biology to “nanotechnology”, in 

particular to nanobio technology. 

“Construction of useful biological systems”, which is 

one of the goals of synthetic biology, includes research 

to add new functionalities to organisms that already exist 

in nature. The introduction of new functionalities and 

features to organisms by genetic modification has been 

attempted using “genetic engineering” technology since 

the 1970 s and some outcomes are already on the market, 

for example the genetically modified organism GloFish. 

The greatest differences between synthetic biology and 

genetic engineering are in the type of genes handled and 

in operability. Genetic engineering usually focuses on 

mutation of a single gene, whereas synthetic biology 

typically handles entire reaction systems that consist of 

many genes. Furthermore, in synthetic biology, attempts 

are made to standardize biomolecules to simplify joining 

of genes or to mutate genes to allow them to function in 

a targeted organism (Knight, 2003). 

2.2. Interactive Evolutionary Computation 

Interactive evolutionary computation (IEC) is a 

method that enables tasks such as musical composition 

or graphic arts, which were previously considered 

impossible for computers to perform, through 

interactions between the user and the computer. 

Evolutionary computation is an optimization method to 

achieve target specifications and performance by 

evolving systems such as organisms, which can 

efficiently find the global optimal solution by effectively 

utilizing the diversity of populations and neighborhood 

queries. The system configuration and design data are 

considered to be the genes (chromosomes) of organisms 

and the following steps are taken. (1) Systems 

corresponding to individual organisms are generated 

based on the chromosomes. (2) These organisms are 

evaluated based on designated criteria. (3) Crossovers 

between highly evaluated individual chromosomes of 

organisms and mutations are performed to generate the 

next generation of these chromosomes. Complex 

systems are designed and optimized by iterating this 

procedure. Standard or non-interactive Evolutionary 

Computation (EC) uses the evaluation functions in Step 

(2), which take well-defined values that can be processed 

by a computer; therefore, criteria such as human 

preferences and emotions cannot be completely modeled. 

In contrast, in IEC users iteratively evaluate each 

individual and generate new individuals based on highly 

evaluated individuals. In other words, the evaluation step 

of EC is replaced by human involvement and thus 

optimization problems that were considered too difficult 

for computers to handle can be solved because no 

evaluation function is required. When humans attempt to 

search for a solution, the search often becomes local and 

cannot escape from a particular pattern. However, IEC 

uses evolutionary computation to propose solutions that 

users cannot conceptualize. Therefore, IEC is widely 

applied to creative support systems in the arts, as well as 

to simple optimization problems (Ando and Iba, 2007). 

Because the user performs all the evaluations in IEC, 

one drawback is limitation by user fatigue. The number 

of individuals that can be presented simultaneously is 

also limited by the screen size (for images) and the 

memory capacity of the user (for music and videos). 

Furthermore, user fatigue limits the number of 

generations to be searched to approximately 10 or 20. 

Measures to counter these disadvantages include 

improvement of the user interface (Ohsaki et al., 1998) 

and integration with EC (Ono and Nakayama, 2012). 

3. MATERIALS AND METHODS 

3.1. Reaction Model 

One of the objectives of synthetic biology is to 

construct organisms that have particular desired 

functionalities. However, because no established method 

for reasonably constructing controllable artificial 

biomolecular networks exists, research and development 

is based on trial and error. Research to simulate the 

behavior of biomolecular networks by modeling known 

fundamental reactions based on DNA engineering is 

being undertaken to resolve this issue. One example is 

the following experiment based on the reaction network 

model by (Montagne et al., 2011). 

Most of the reaction networks in biomolecules combine 

three fundamental reactions: Activation, inhibition and 

destruction. Montagne et al. (2011) model uses oligomers 

for activation, 3’-mismatched oligomers for inhibition and 

RecJ exonuclease for destruction. The input, output and 

inhibitor are all short oligomers; therefore, reaction 

networks can be configured with arbitrary combinations, as 

shown in Fig. 1. Biological reaction networks were 

searched based on this model that acts as an oscillator 

circuit and the time change of each molecule was 

observed. The circuit is an oligomer oscillator and 

therefore Montagne et al. (2011) named it an “obligator”. 
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3.2. Gene Representation for the Reaction 

Network 

Figure 2 shows the gene representations used in our 
system. The left side of this figure shows an example of 
a reaction network and the two matrices on the right 
represent the connections in the reaction network. The 
blue matrix is for activation and each element contains 1 
or 0. If oligomer i activates oligomer j, the element in the 
ith row and j th column becomes 1 and if there is no 
activation, it becomes 0.  

The red matrix is for inhibition and each element 

contains a 0 or the name of an oligomer. The element 

0 indicates that there is no inhibition of the 

corresponding activation. If oligomer k inhibits the 

activation from oligomer i to oligomer j, the element 

in the ith row and j th column becomes k. However, if 

there is no activation, the corresponding element must 

be 0, which is a constraint for inhibition matrices. 

Each child in the next generation is generated by 

two parents selected by tournament selection. At the 

beginning of the process of generating a child, the 

system executes a crossover of the activation matrices 

of the parents. In the crossover operation, each element 

in the child’s activation matrix inherits the 

corresponding elements from the matrix of one of the 

two parents. In the next step, the system executes a 

mutation, which randomly alters a part of an element in 

the child’s matrix. After generating the activation 

matrix, the system generates the inhibition matrix 

randomly, considering the constraints. 

 

 
 (a) (b) 

 

 
 (c) 
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 (d) 

 

 
 (e) (f) 

 
Fig. 1. Model of a reaction network (Montagne et al., 2011). (A) Schematic of the reaction from adjustment of genes. (B) Model in 

which genes are replaced by single-strand DNA. (C) Activation reaction. (D) Inhibition reaction. (E) Cascading reaction. (F) 

Oscillator model with a positive-feedback loop (+) and negative-feedback loop (-) 

 

 
 

Fig. 2. Gene representation of the reaction network 
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3.3. Evaluation Score 

In our search system, the reaction network search 
is performed with the initial concentration and rate 
constant fixed to the standard values in the reaction 
model (Montagne et al., 2011). Each individual is 
evaluated using a linear weighted average of the 
qualitative evaluation score given by the user and a 
quantitative computational evaluation score, as 
follows Equation 1: 

 

( ) ( ) ( ) ( )'
. 1 .F x w P x w Q x= + −  (1) 

 

Here, P(x) is the evaluation score given by the user 

and Q’(x) is the quantitative evaluation score. Users 

evaluate each displayed graph as “good”, “default”, or 

“bad” in IEC. The evaluation score is determined by P(x) 

= 1 for “good” individuals and P(x) = 0 for “default” 

individuals and “bad” individuals are never chosen as 

parents when generating the next generation. We used 

0.5 for the parameter w in this study. 

However, Q(x) was defined as follows, to become 

larger when the number and amplitude of oscillations 

increase, because the objective of this experiment was to 

search for an oscillator network Equation 2 and 3: 

 

( ) ( ) ( ){ } 2
.

max min
Q x A A / Maxvalue Minvalue n= − −∑  (2) 

 

Here, Amax represents the local maximum, Amin 

represents the corresponding nearest local minimum, n is 

the number of oscillations and Maxvalue and MinValue 

represent the maximum and minimum values in the system. 

This quantity is calculated for each existing oligomer 

system and then summed. Q’(x) is defined as shown below 

for normalization before taking a linear sum with P(x):  

 

( )( )

( )
( )( )

1 300
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Q'( x ) Q x
, Q x

 ≥


= 
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 (3) 

 

Q(x) in Equation 2 usually does not have a maximum 

value; however, the above normalization was performed 

because sufficient oscillation was observed in the 

resulting time-series graph when Q(x) was greater than 

300 in this experiment. 

We used a population size of 30 for this experiment. 

To minimize user fatigue, the system first calculates 

quantitative scores for the whole population and then 

asks the user to evaluate the top 6 individuals. 

4. RESULTS 

4.1. Oscillator with 2 Oligomers 

We conducted an experiment to design an 

oscillator with 2 oligomers. The system obtained an 

existing oligator (Fig. 3) proposed by Montagne et al. 

(2011). For visualization of the network in the system, 

intermediary nodes are used to express inhibiting 

connections. For the example in Fig. 3, the inhibition 

(from oligomer β to the activation from oligomer α to 

α) is expressed with intermediary nodes. 

The time of calculation to find this network, 

including human evaluation, is approximately 30 min 

for a PC with an Intel Core i7 Q720 CPU and 4 GB of 

memory. This result shows that the system can design 

a simple module for oscillation in a reasonable 

calculation time. Unknown networks can also be 

found in the same experiment. One example is shown 

in Fig. 4. Networks having both a positive-feedback 

loop and a negative-feedback loop are known to be 

robust for the noise in the initial concentration and 

rate constant. This network includes both types of 

feedback loop. 

4.2. Utilization of the Expert’s Experience and 

Knowledge 

If the number of oligomers increases, the number 

of possible networks increases exponentially and in 

this case, manual design of networks through trial and 

error is difficult and inefficient. Therefore, the 

contribution of automatic network design increases 

when seeking networks containing many oligomers. 

However, as already stated, because of user fatigue, 

the system should reduce the number of evaluations as 

much as possible. To identify useful networks more 

efficiently, it will be helpful to evaluate not just 

phenotypes but also the entire network configuration. 

Although it is difficult to convert expert experience 

and knowledge into data, reflecting judgments such as 

“this section may be useful” or “this part of the circuit 

has a relatively robust configuration”, in IEC should 

result in faster and easier convergence into more 

realistic networks. For this purpose, we added the 

following two functions to the system. 
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• Manual fixation for a part of the elements in the 

activation and inhibition matrices 

• Switching from evolutionary computation to a 

local search 

 

A local search is achieved by selecting a single 

individual and populating the next generation with 

mutations of the selected individual only. Using these 

functions, a user can directly guide the search scheme. 

Manual fixation of the gene has been shown to be 

effective in Japanese anagram sentence generation 

(Ono and Nakayama, 2012). 

4.3. Oscillator with 3 Oligomers 

We compared our IEC system with an EC that only 

uses quantitative scores, mentioned in the previous 

section. In this experiment, the search performances of the 

two systems for design of an oligator with 3 oligomers 

were compared. Population size and other settings for the 

experiment were the same as in the experiment with 2 

oligomers. Figure 5 shows the fitness transition after 1 

run with IEC and 3 runs with EC. The vertical axis 

indicates the quantitative score before normalization and 

the horizontal axis indicates the number of generations, up 

to 10. The pink line shows the results of IEC and the 

other lines show the results of EC. 

The best networks obtained from the 4 total runs are 

shown in Fig. 6 to 9. Examining the fitness transition 

shows that IEC found a potentially useful network more 

rapidly than EC. A human user can judge if the network 

has the potential for oscillation, whereas the quantitative 

score used in EC can only judge whether or not the 

network already contains oscillation. This property 

affects search performance at the beginning of the 

search. Examining the networks obtained in the 

experiment, it can be observed that although the 

networks obtained by EC actually contain oscillation, 

oligomer γ contains no oscillation in all 3 cases. This 

problem originates in the definition of the quantitative 

score, which uses the total value of each oligomer’s 

oscillation, with the result that these networks are 

assigned high scores even though they do not possess the 

desired qualities. However, in an IEC system, users can 

avoid problems caused by the definition of the 

quantitative score by scoring unintended networks as 

“bad.” In Fig. 5, a reduction of the quantitative score 

occurs in generation 5, using IEC, indicating user 

avoidance of unintended networks. IEC successfully 

identified a network in which all 3 oligomers were 

oscillating and that ultimately obtained a higher 

quantitative score than the other identified networks. 

4.4. Complex Oscillators 

In the previous section, the efficiency of IEC for the 

design of oligomers was demonstrated from the view 

point of search performance. Next, we attempted to 

design complex oscillators that had not previously been 

identified by biologists. Data for oscillators that display 

complex and interesting behavior is useful for the 

development of synthetic biology. “Complex” or 

“interesting” behavior cannot easily be defined, making 

our method using human evaluation particularly useful. 

Chaotic oscillation is an “interesting” behavior. Figure 

10 shows an example of chaotic oscillation called a 

Duffing oscillator, which is generated when an iron 

pendulum and a magnet are on a surface that is oscillated 

by external forces. This type of chaotic oscillation is 

known to exist in living organisms. For example, our 

brain waves contain chaotic elements. 

For this problem, we changed the strategy of the 

search system. First the system generates simple 

oscillators using EC, as described in the previous 

section. Since we used a population size of 20, the 

system prepared 20 oscillators. Then, using the 20 

oscillators as the initial population, the system evolved 

them into complex networks using IEC. Quantitative 

scores cannot be applied to this phase of IEC because the 

purpose has been shifted to generate “complex” or 

“interesting” networks. However, without quantitative 

scores, the instability of human evaluation becomes a 

significant problem, because using this method, the only 

dependable information available for improving 

networks is human evaluation. A human evaluation score 

can differ, even for the same network, after evaluating 

other networks. Therefore, we implemented another 

interface and algorithm which use relative comparisons 

between individuals. Takagi and Pallez (2009) noted 

that, when using IEC, information obtained from relative 

comparisons is more stable than that obtained from 

absolute comparisons. Figure 11 shows the GUI of an 

IEC system that employs relative comparisons, in which 

the user selects one network from three candidates. This 

GUI also performs the function of user guidance, 

mentioned in the section 4.2. In this system, the user 

selects one network from three, using an A, B, or C 

button located to the right of each network. The panel to 

the right of the A button is for user guidance.
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Fig. 3. Well-known oscillating network 

 

 
 

Fig. 4. Unknown oscillating network 

 

 
 

Fig. 5. Fitness transition for the design of oscillator with 3 oli-gomers 
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Fig. 6. Best network obtained by EC 1 

 

 
 

Fig. 7. Best network obtained by EC 2 

 

 
 

Fig. 8. Best network obtained by EC 3 
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Fig. 9. Best network obtained by IEC 

 

 
 

Fig. 10. A waveform of a duffing oscillator 

 

 
 

Fig. 11. GUI of IEC using relative comparison 
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The three candidate networks are generated by the 

algorithm shown in Fig. 12. For each individual, the 

system randomly chooses another individual as a parent 

and generates a child via crossover and mutation. 

Repeating this process, the system generates 2 children 

and asks the user which of the networks, of the original 

and the 2 children, is best. Only the selected network 

remains in the population and the others are discarded. 

The system that included the GUI and the algorithm 

that ameliorates the instability of human evaluation 

obtained several networks that displayed complex 

behavior. We showed these networks to biologists and 

asked for their comments. The network shown in Fig. 

13 contains an oscillation which gradually increases in 

amplitude. Biologists commented that this network 

contains a number of structures which are important for 

oscillation and this makes the behavior of the network 

complex. Chaotic oscillation also requires these 

multiple oscillating structures. 

In Fig. 14, it can be seen that the waveform of the 

oscillation is distorted. Biologists commented that this 

study has the structure of a “double inhibitor” for the 

oligomers α, β and γ. One example of a simple “double 

inhibitor” structure is shown in Fig. 15. A “double 

inhibitor” represents a special relationship between 

oligomers, in which activation of each oligomer is 

inhibited by the other oligomer. For example, in Fig. 15, 

the oligomer α activates itself and this activation is 

inhibited by the oligomer β. Conversely, self-activation 

of the oligomer β is inhibited by the oligomer α. 
The next network shown in Fig. 16 also has the 

structure of a “double inhibitor” for the oligomers α, 
β, δ and this network displays time-lag oscillation. 
The expression level of each oligomer becomes stable 
at the beginning and after a certain period of time, the 
network begins oscillating. 

In this experiment, we showed that our IEC system 

can be used to obtain networks that display complex 

behavior. If we are able to implement the operations 

required to properly combine these networks, the IEC 

system will be able to identify a network that possesses 

more complex behavior, such as Duffing oscillation. 

 

 
 

Fig. 12. An algorithm for finding complex oscillator 
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Fig. 13. A network with an amplified oscillation 

 

 
 

Fig. 14. Oscillation with a distorted waveform 

 

 
 

Fig. 15. A simple example of a “double inhibitor” 

 

 
 

Fig. 16. A network with a time lag before oscillation begins 
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5. CONCLUSION 

In this study, we applied the principles of synthetic 

biology and the IEC technique to design oscillating 

networks. We succeeded in automation of a portion of 

this task and demonstrated the efficiency of using 

human evaluation, which greatly reduced the 

computational time required. Our system also 

succeeded in identifying several complex networks 

with useful structures, which are difficult to design 

manually. Data on networks such as these that possess 

“complex” and “interesting” behaviors are useful for 

the study of synthetic biochemical systems. 
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