
Journal of Computer Science 10 (3): 411-422, 2014 
ISSN: 1549-3636 
© 2014 Science Publications 
doi:10.3844/jcssp.2014.411.422 Published Online 10 (3) 2014 (http://www.thescipub.com/jcs.toc) 

Corresponding Author: Govindarajalu Bakthavatsalam, Department of Computer Science and Engineering, 
 Sri Venkateswara College of Engineering, Irungattukottai, India 
 

411 Science Publications

 
JCS 

A CASE FOR HYBRID INSTRUCTION ENCODING FOR 
REDUCING CODE SIZE IN EMBEDDED SYSTEM-ON-CHIPS 

BASED ON RISC PROCESSOR CORES 

1Govindarajalu Bakthavatsalam and 2K.M. Mehata 

 
1Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, Irungattukottai, India 

2School of Information and Computer Sciences, B S Abdur Rahman University, Chennai, India 
 

Received 2013-10-13; Revised 2013-11-12; Accepted 2013-11-23 

ABSTRACT 

Embedded computing differs from general purpose computing in several aspects. In most embedded 
systems, size, cost and power consumption are more important than performance. In embedded System-on-
Chips (SoC), memory is a scarce resource and it poses constraints on chip space, cost and power 
consumption. Whereas fixed instruction length feature of RISC architecture simplifies instruction decoding 
and pipeline implementation, its undesirable side effect is code size increase caused by large number of 
unused bits. Code size reduction minimizes memory size, chip space and power consumption all of which 
are significant for low power portable embedded systems. Though code size reduction has drawn the 
attention of architects and developers, the solutions currently used are more of cure than of prevention. 
Considering the huge number of embedded applications, there is a need for a dedicated processor 
optimized for low power and portable embedded systems. In the study, we propose a variation of 
Hybrid Instruction Encoding (HIE) for the embedded processors. Our scheme uses fixed number of 
multiple instruction lengths with provision for hybrid sizes for the offset and the immediate fields 
thereby reducing the number of unused bits. We simulated the HIE for the MIPS32 processors and 
measured code sizes of various embedded applications of MiBench and MediaBench benchmarks using 
an offline tool developed newly. We noticed up to 27% code reduction for large and medium sized 
embedded applications respectively. This results in reduction of on-chip memory capacity up to 1 
mega bytes that is very significant for SoC based embedded applications. Considering the large market 
share of embedded systems, it is worth investing in a new architecture and development of dedicated 
HIE-RISC processor cores for portable embedded systems based on SoCs. 
 
Keywords: Chip Space, Code Size, Instruction Encoding, Instruction Set Architecture, SoC  

1. INTRODUCTION 

An embedded system is not a general purpose 
computer. Instead, it is a preprogrammed system to 
perform one or more dedicated functions. In most 
embedded systems, size, cost and power consumption 
are critical than performance (Hennessy and Patterson, 
2012). A large number of embedded systems such as 
cellular phones, cameras, toys are portable and battery 
operated and their design is based on System-on-a-Chip 

(SoC). As applications become increasingly complex, 
code memory consumes a large portion of the area in 
SoC architectures. Apart from increased chip space and 
cost, the power consumption also increases due to 
larger code memories. Hence minimizing code size is 
an essential requirement in Battery Operated Portable 
Embedded Systems (BOPES). In the study, we deal 
with reduction of code size at processor Instruction Set 
Architecture (ISA) level so that the code generated by 
the compiler is shorter. 



Govindarajalu Bakthavatsalam and K.M. Mehata / Journal of Computer Science 10 (3): 411-422, 2014 

 
412 Science Publications

 
JCS 

The RISC processors such as ARM and MIPS are 
widely used in the embedded SoCs, due to high 
performance offered by the RISC Architecture. The Fixed 
Instruction Encoding (FIE) of RISC processors helps in 
simpler instruction decoding and easy pipeline design 
(Hennessy and Patterson, 2012). But the FIE increases the 
code size as some fields are either unused or underutilized 
in several instructions. In embedded SoCs, the code 
memory is integrated with the processor and the other 
system hardware on a single chip (Fisher et al., 2005). This 
limits the available space for the application memory for the 
SoC architectures. Although embedded systems typically 
cost far less than desktop computers, several billion 
embedded SoCs are sold annually compared to a few 
hundred million desktop processors (Vahid and Givargis, 
2006). Our paper proposes replacing the ‘uniform 
instruction size’ feature by ‘hybrid instruction size’ in the 
embedded RISC cores used in BOPES so as to reduce the 
code memory space, for embedded programs. 

The main contributions of this work can be summarized 
as follows. The study proposes replacement of FIE with 
Hybrid Instruction Encoding (HIE) with two modifications 
to RISC Architecture: Multiple instruction sizes and hybrid 
lengths for the offset and immediate fields. We designed a 
HIE-ISA for the MIPS processor as a modification to 
MIPS32 ISA for evaluating the HIE-ISA and developed an 
offline tool, that converts the object codes from MIPS ISA 
to HIE-ISA. This tool measures the code size savings for 
embedded applications in MiBench and MediaBench 
benchmark suites.  

1.1. RISC Instructions and Code Density 

RISC processors generally have three types of 
instructions: ALU, Load or store and Branch and Jump 
(Hennessy and Patterson, 2012). Figure 1 summarizes the 
basic formats of MIPS32 integer instructions (other than 
floating-point instructions) with examples. All the 
instructions are 32-bits and the most significant 6 bits 
contains the opcode. In the I-type and J-type instructions, 
the opcode itself indicates the exact operation. In the R-type 
instructions, the op field identifies the instruction type and 
the fn field (least significant bits 0-5) indicates the exact 
operation. The R-type is for register-to-register operations. 
The I-type is for data transfers, branches and immediate 
operations. In load/store type instructions, the offset field is 
added to the contents of the rs register, usually an address, 
to form the effective address for one of the operands, either 
the source or the destination. The major drawbacks of RISC 
instruction formats causing increased code size are listed 
below using MIPS32 as example. 

Five bits are unused in most R-type instructions as 
illustrated in Fig. 2 for the and instruction. 

In most immediate type instructions, 8 bits are 
sufficient for the operand and the remaining 8 bits are 
redundant. Figure 3-6 illustrate the four different cases 
of immediate field patterns out of which only in one 
case, both bytes of immediate field are non-zero. 

In branch instructions such as beq, the offset field is 
underutilized in those cases where the offset required can 
be specified in 8 bits. 

1.2. Related Work 

There have been significant efforts at system design 
level to compensate for the code size increase caused by 
the FIE., Several techniques (Heikkinen et al., 2009) 
have been implemented to minimize the object code. 
These are classified into three types (Xie et al., 2006), 
Offline Code compression, Compiler techniques and 
ISA modification. The first two techniques retain the 
original ISA but require software/hardware additions 
by the system developers, whereas the third technique 
involves supporting a new instruction set that is a 
subset of the original ISA. 

In ISA modification cases, such as ARM Thumb 
and MIPS16, the original ISA is modified with shorter 
instructions, limited instruction set, smaller operand 
fields and fewer GPRs. This results in code size 
reduction by 30 to 40%, but reduces performance by 
15 to 20% (Bonny and Henkel, 2008) and also 
requires a decoder and de-compressor inside the 
processor to support both ISAs. The other drawback 
of this approach (Benini et al., 2004) is the 
performance penalty caused by lack of several 
instructions in the dense instruction set. This approach 
customizes the existing RISC instruction set 
architecture with narrow instructions supporting fewer 
operations, smaller operand fields and fewer registers. A 
variation of this approach is used by microMIPS 
(ITGPLC, 2009; 2010) that is a recent addition to MIPS 
architecture. It offers a new ISA that supports both 16-bit 
and 32-bit instructions in a single program. However, its 
new instructions have restrictions on using certain 
registers. Some of the 16-bit microMIPS instructions can 
access only 8 of 32 GPRs. RISC-V project at University 
of Berkeley is somewhat similar to microMips 
architecture permitting 32-bit base instructions and 16-
bit extensions of compressed instructions. It hopes to 
achieve up to 30% savings in static and dynamic 
memory space. Though the researchers term it as 
variable instruction decoding, it offers a two instruction 
length feature similar to microMIPS. 



Govindarajalu Bakthavatsalam and K.M. Mehata / Journal of Computer Science 10 (3): 411-422, 2014 

 
413 Science Publications

 
JCS 

 
 

Fig. 1. MIPS32 basic instruction formats 
 

 
 

Fig. 2. Format of and instruction in MIPS32 ISA 
 

 
 

Fig. 3. Format of addiu instruction with immediate field containing zero value 
 

 
 

Fig. 4. Format of addiu instruction with only most significant byte of immediate field containing zero value 
 

 
 

Fig. 5. Format of addiu instruction with only least significant byte of immediate field containing zero value 
 

 
 

Fig. 6. Format of addiu instruction with both bytes of immediate field containing non-zero value 
 

A mixed approach is also followed (Bonny and 
Henkel,  2008) by re-encoding unused bits in the 
instruction format for a specific application, using 

Huffman Coding algorithm. The compressed code and 
the decoding table are stored in the code memory. 
During execution of the program, a hardware decoder 



Govindarajalu Bakthavatsalam and K.M. Mehata / Journal of Computer Science 10 (3): 411-422, 2014 

 
414 Science Publications

 
JCS 

external to the processor decodes the compressed 
instructions.  

The study presents an architectural solution that is 
application independent and recommends fixing the 
length of various instructions to 1, 2, 3 or 4 bytes instead 
of uniform size of 4 bytes. Though compiler and 
processor modifications are required to existing RISC 
architectures, these are one time efforts by the processor 
manufacturers/compiler developers and there is no 
burden on embedded system developers as required in 
other approaches. Also, it is a program independent 
solution for embedded applications. However, this 
strategy does not prevent inclusion of other methods for 
achieving additional amount of code size reduction for 
specific applications. 

The organization of the study is as follows. Section 2 
discusses the behavior of RISC processors for embedded 
applications and describes the HIE-ISA proposed by 
us for BOPES as a modification to existing MIPS32 
ISA. Section 3 describes the architecture of the offline 
tool developed by us for static simulation of HIE-ISA 
and details the experiments carried out with this tool 
using MiBench and MediaBench applications for 
comparing the object code sizes for MIPS32 ISA and 
the proposed HIE-ISA. Section 4 discusses the results. 
Section 5 presents conclusions. 

2. MATERIALS AND METHODS 

2.1. Behavior of Embedded Applications on 
RISC Processors  

In order to estimate the extent of wastage in RISC 
object codes, we analyzed the MIPS32 object codes 
(Patterson and Hennessy, 2008) for the embedded 
benchmark suits, MiBench and MediaBench. The 
MiBench (Guthaus et al., 2001) is a set of benchmark 
programs in C, for six embedded applications: 
Automotive and Industrial control, Consumer Devices, 
Office Automation, Networking, Security and 
Telecommunications. Table 1 lists the MiBench 
programs used by us for evaluating the HIE for MIPS32. 
Typical applications of Automotive and Industrial 
Control are air bag controllers, engine performance 
monitors and sensor systems. These benchmarks perform 
mathematical, calculations, bit counting, sorting and 
image recognition. The typical examples of consumer 
devices are scanners, digital cameras and Personal 
Digital Assistants (PDAs). 

The benchmarks mainly consist of multimedia 
applications with the representative algorithms for jpeg 
encoding/decoding, image color format conversion, 
image dithering, color palette reduction, MP3 
encode/decoding and HTML typesetting. The typical 
examples of network devices are switches and routers. 
The work done by the embedded processors in these 
devices involves shortest path calculations, tree and table 
backups and data input/output.  

The algorithms used in these benchmarks are finding 
a shortest path in a graph and creating and searching a 
Patricia trie data structure. There are some benchmarks 
common to network, security and telecommunication 
classes. The Telecommunications benchmarks have 
algorithms for voice encoding/decoding, frequency 
analysis and checksum calculation. The Office 
applications are primarily text manipulation algorithms. 
The typical examples of office automation are printers, 
fax machines and word processors. The security 
benchmarks have algorithms for data encryption, 
decryption and hashing.  

The MediaBench suite (Lee et al., 1997) is composed of 
multimedia applications. MediaBench 1.0 contains 19 
applications collected from image processing, 
communications and DSP applications. Certain applications 
such as jpeg and gsm are common to MiBench and 
MediaBench suites. A short note on the selected 
applications in MediaBench suite is given in Table 2.  

We cross-compiled the MiBench and MediaBench 
programs on Intel PC and analyzed the compiler output 
using our tool MIDACC, an offline code analyzer tool. 
Given a MIPS object code, this tool produces the instruction 
count for each instruction type. It also analyzes the 
utilization of the offset and immediate fields in the 
instructions and lists extent of wastage in terms of 
percentage of total program size. Analysis of MIPS object 
codes using this tool reveals two interesting behaviors. 

Four instructions, addu, addiu, lw and sw, dominate 
the embedded programs consuming as high as 60% of 
the code, as shown in Fig. 7. Applying 80-20 rule, any 
technique to improve the density of these four 
instructions will reduce the code size. 

The extent of wastage due to underutilization of the 
offset and immediate fields varies from 10 to 20% of the 
code size (Table 3) for the embedded applications. 

The largest program of Automotive applications of 
MiBench suite is the susan occupying 51,000 bytes of 
memory. It is an image recognition package used for a 



Govindarajalu Bakthavatsalam and K.M. Mehata / Journal of Computer Science 10 (3): 411-422, 2014 

 
415 Science Publications

 
JCS 

vision based quality assurance application. Figure 8 
shows that in susan, the immediate/offset field is fully 
used in 80% of the cases only. This amounts to wastage 
of 10,200 bytes, i.e., 20% of the code memory. Our 
proposed HIE-ISA for MIPS processor gives overall 
code reduction of susan and mpeg2 by 27 and 21% 

respectively due to hybrid instruction length feature and 
hybrid length provision for the offset and immediate 
fields. Though the HIE-ISA does not eliminate the 
wastage totally, it minimizes the wastage to a major 
extent. The extent of code size reduction achieved with 
HIE-ISA is also indicated in Table 3. 

 
Table 1. MiBench benchmarks used for evaluation of FIE 

Auto/Industrial applications 

Program Functions 
basicmath Simple mathematical calculations such as cubic function solving, integer square root and angle conversions 

from degrees to radians  
bitcount Tests the bit manipulation abilities of a processor by counting the number of bits in an array of integers  
qsort Sorts a large array of strings into ascending order using the quick sort algorithms  
susan An image recognition package for recognizing corners and edges and typically used for a vision based quality 

assurance application 
Consumer applications 
Program Functions 
jpeg An algorithm for image compression and decompression; used to view images embedded in documents  
lame An MP3 encoder that supports constant, average and variable bit-rate encoding 
typeset A general typesetting tool with a front-end processor for HTML; representative of a core component of a web 

browser that might be used in a consumer device 
Office applications 
Program Functions 
stringsearch Searches for given words using a case insensitive comparison algorithm 
ispell A spelling checker supporting contextual spell checking, correction suggestions and non English languages  
rsynth A text to speech synthesis program that integrates several pieces of public domain code into a single program 
Network applications 
Program Functions 
dijkstra Constructs a large graph in an adjacency matrix representation and calculates the shortest path between every 

pair of nodes using dijksra’s algorithm 
patricia Creates and searches a patricia trie structure 
CRC32 Same as CRC32 in telecom 
sha Same as sha in security 
blowfish Same as blowfish in security 
Security applications 
Program Functions 
blowfish A symmetric block cipher with a variable length key.  
sha A secure hash algorithm that produces a 160-bit message digest for a given input; used in the secure exchange 

of cryptographic keys and for generating digital signatures  
rjindael A block cipher with the option of 128-, 192- and 256-bt keys and blocks. 
Telecommunications applications 
Program Functions 
CRC32 Perform a 32-bit Cyclic Redundancy Check (CRC) on a file. Useful to detect errors in data transmission  
FFT Performs a fast fourier transform and its inverse transform on an array of data; useful in digital signal 

processing to find the frequencies contained in a given input signal 
ADPCM Adaptive differential pulse code modulation; takes 16-bit linear PCM samples and converts them into 4-bit 

samples, yielding a compression rate of 4:1 
GSM Global standard for mobile communications. A standard for voice encoding/decoding data streams 



Govindarajalu Bakthavatsalam and K.M. Mehata / Journal of Computer Science 10 (3): 411-422, 2014 

 
416 Science Publications

 
JCS 

Table 2. MediaBench benchmarks used for evaluation of FIE 

Program Functions 

jpeg A standardized compression method for full colour and gray-scale images. JPEG is lossless, meaning that the output  
 image is not exactly identical to the input image. Two applications are derived from the JPEG source code; cjpeg does  
 image compression and djpeg does decompression 
MPEG A dominant standard for high quality digital video transmission. The important computing kernel is a discrete cosine  
 transform for coding and the inverse transform for decoding. The two applications used are mpeg2enc and mpeg2dec  
 for encoding and decoding respectively 
GSM European GSM 06.10 provisional standard for full rate speech transcending, pry-ETS 300 036, which uses residual  
 pulse excitation/long term prediction coding at 13 Kbit/s. GSM 06.10 compresses frames of 160 13-bit samples (8 kHz  
 sampling rate, i.e., a frame rate of 50 Hz) into 260 bits. 
G.721 Voice compression:Reference implementations of the CCITT (International Telegraph and Telephone 
 Consultative Committee) G.711, G.721 and G.723 voice compressions 
PEGWIT A program for public key encryption and authentication 
EPIC An experimental image compression utility. The compression algorithms are based on a bi-orthogonal critically  
 sampled dyadic wavelet decomposition and a combined run-length/Huffman entropy coder. The filters have been  
 designed to allow extremely fast decoding without floating-point hardware 
ADPCM Adaptive differential pulse code modulation is one of the simplest and oldest forms of audio coding 
 

 
 

Fig. 7. Distribution of four frequent instructions in MiBench and MediaBench benchmarks 
 

 
 

Fig. 8. Usage of immediate/offset fields in susan 



Govindarajalu Bakthavatsalam and K.M. Mehata / Journal of Computer Science 10 (3): 411-422, 2014 

 
417 Science Publications

 
JCS 

Table 3. Impact of four major instructions and offset/immediate fields in Embedded object codes for MIPS32 
MiBench/MediaBench Percentage usage of Percentage underutilization Percentage reduction  
Program four major instructions of offset/immediate fields of code size in HIE 
basicmath 33 10 21 
bitcnts 58 16 27 
qsort 57 13 24 
susan 65 21 27 
jpeg 63 20 26 
typeset 62 19 21 
lame 45 16 18 
dijkstra 59 16 22 
patricia 59 16 22 
rijndael 59 16 22 
blowfish 59 16 22 
sha 42 18 23 
adpcm 59 16 22 
CRC32 59 16 22 
FFT 56 16 21 
gsm 58 16 21 
ispell 53 14 19 
rsynth 47 13 22 
stringsearch 59 16 22 
pegwit 58 16 22 
mpeg2 56 15 21 
G721 59 16 22 
epic 59 16 21 
 

 
 
Fig. 9. HIE-RISC instruction formats 
 
2.2. HIE-Methodology For MIPS32  

Our goal for the HIE-ISA is minimizing unused 
fields within instructions and improving the utilization 

of the offset and immediate fields. Based on our 
analysis of all the 66 integer instructions of MIPS32 
ISA, we finalized on 8 different types of instructions 
for the HIE-MIPS ISA.  

2.2.1. HIE-MIPS Instructions 

For the HIE-ISA, we decided on four sizes for the 
integer instructions: Three 8-bit, seven 16-bit, twenty 
one 24-bit, three 32-bit and thirty two with three 
options: 16/24/32 bits. Figure 9 shows the proposed 
instruction formats for HIE-MIPS. To evaluate the 
effectiveness of our proposed HIE-ISA, we modeled it 
for the MIPS32 ISA. Basically, for every integer 
instruction of MIPS32 ISA, we provide an equivalent 
HIE-ISA instruction. Out of 66 integer instructions, j, 
jal and break, are retained as 32 bits as in MIPS32 
ISA. The remaining instructions are translated into 
one of the 8 types. In several ALU instructions, there 
are five zeroes. If three more bits are made free, these 
instructions can be reduced to 24 bits. Hence we 
reduced the register fields by 1 bit each. This restricts 
the number of GPRs to 16; however, it will not strain 
the compiler as graph coloring technique for register 
allocation works satisfactorily for 16 GPRs, (Hennessy 
and Patterson, 2012). Popular RISC Processors such as 



Govindarajalu Bakthavatsalam and K.M. Mehata / Journal of Computer Science 10 (3): 411-422, 2014 

 
418 Science Publications

 
JCS 

ARM and SH4 have only 16 registers. In addition to 
reducing the length of register fields, the shift amount 
(sa) field (used in the shift instructions) is reduced by 1-
bit. The nop, rfe and syscall are 8-bit instructions with a 
common opcode and a 2-bit iid field to identify the 
instruction. The 16-bit instructions are jr, mfhi, mflo, 
mthi, mtlo, mfcz and mtcz. In mfcz and mtcz, the rd field 
is retained as 5 bits since it refers to coprocessor 
registers. The iid bit differentiates between mfcz and 
mtcz. The mthi, mflo, mthi and mtlo have a common 
format and the register field is shared between rd and rs. 
In mfhi/mflo/mthi/mtlo format, the rd/rs field denotes rd 
for mfhi and mflo. For mthi and mtlo, it denotes rs. 

The 24-bit instructions that form three different R-
types, are add, addu and div, divu, mult, multu, nor, 
or, sll, sllv, sra, srav, srl, srlv, sub, subu, xor, slt, sltu 
and jalr. In type1, there is no sa field. In type2, there is 
no rs field. In type3, there are four zeroes to maintain 
byte alignment. The remaining 32 instructions have 
three length options: 16, 24, or 32 bits. The offset and 
immediate fields are encoded in a unique way in our 
proposal. If the value of the offset/immediate is zero, 
these fields are omitted. When one of the bytes in the 
offset/immediate is zero, that byte is omitted and the 
hybrid length identifier hl is formed. Table 4 shows a 
typical example using hexadecimal notation. All the 
four cases have a common opcode. 

2.2.2. Mapping MIPS32 ISA to HIE-MIPS 

MIPS Instructions are converted into new HIE 
instructions of 8 different types and the conversion 
depends on the opcode and immediate/offset fields. Table 
5 indicates the length of each converted instruction. All 
unconverted instructions are retained as 32 bits.  

3. RESULTS 

3.1. HIE-Simulator Tool-MIDACC 

We developed a standalone software tool for 
simulating the HIE for MIPS32 and measuring the 
code size reduction. Since we need to simulate a new 

ISA, it will be a complex process if we were to use 
any existing simulator for the HIE-MIPS. Our 
objective is not executing any program, but measuring 
static code sizes of HIE-MIPS, for various embedded 
applications and comparing with static code sizes of 
MIPS32 for the same applications. Hence we decided to 
develop a simple offline tool that can convert the object 
codes of MIPS32 into object codes of HIE-MIPS. We 
built the tool, MIPS Instruction Distribution Analyser 
And Code Converter (MIDACC), in C#, with twin 
functions: Code analysis and code compression. The 
first module performs analysis of given MIPS32 object 
code and identifies the distribution of 66 integer 
instructions in the object code. This module also 
provides details on utilization of the immediate and 
offset fields by different instructions in the application 
programs (Table 3 and Fig. 8). The second module is a 
code converter that converts each instruction in the 
object code, from MIPS32 ISA to HIE-MIPS ISA, as 
per the HIE-MIPS methodology. The integer 
instructions of MIPS32 are converted into nine groups 
in HIE-ISA (Table 5). The software tool was developed 
under Windows XP on Intel PC and occupies 2 MB 
memory and runs in. NET Framework 3.5. 

3.2. Estimating WASTIO Percentage 

WASTIO refers to wastage due to unused 
(underutilized) bits in immediate and offset fields in the 
MIPS32 code. The wastages are classified into four types 
A, B, C and D based on the number of immediate/offset 
bytes that are redundant in the code; type A: 2 bytes 
wastage; type B: 1 byte wastage of,least significant byte; 
type C: 1 byte wastage of,most significant byte; and type 
D: no wastage. WASTIO percentage is calculated using 
the formula below: 
 

WASTIO percentage = 100 × (WASTIO/code size) 
 

We observed varying extent of reduction for 
embedded programs as shown in Fig. 10. Since certain 
applications contain multiple benchmarks, the figures 
use geometric means for the reduction percentages. 

 
Table 4. Encoding Offset/Immediate field in HIE-MIPS 
MIPS32 encoding HIE-MIPS encoding hl bits Instruction size in HIE (bits) 
0000                                        -                                                00 16 
000F 0F 01 24 
0F00 0F 10 24 
0F0F 0F0F 11 32 



Govindarajalu Bakthavatsalam and K.M. Mehata / Journal of Computer Science 10 (3): 411-422, 2014 

 
419 Science Publications

 
JCS 

Table 5. MIPS32 ISA Vs  HIE-ISA mapping 

HIE No. of HIE 
group instructions size (bits) Instructions MIPS32 type Remarks 

A 3 8 rfe, syscall, nop Exception and interrupt A common OP field with two-bit  
     iid field to differentiate 
B 2 16 mfcz, mtcz Data movement A common OP field plus one-bit iid. The   
    with coprocessor rt denotes the CPU register and the rd  
      (5 bits) the  coprocessor register  
C 5 16 jr, mfhi, mflo, mthi, mtlo  jr is jump register instruction; The OP and fn fields are similar to  
    others  are data movement type MIPS32. The 4-bit register field is rs for jr, 
     mthi and mtlo. For mfhi and mflo, the 
     register field is rd. 
D 13 24 add, addu and, nor, or, sllv, R- type; slt and slu are HIE R-type1. All fields are similar to  
   srav, srlv,sub, subu, xor,slt, comparison instructions;  MIPS32 except that unused zeroes are  
   sltu others are arithmetic deleted and the register fields are 4 bits   
    and logical instructions                   in HIE. 
E 3 24 sll, sra, srl R- type; shift instructions HIE R-type2. All fields are similar to  
     MIPS32 except that the unused rs field is 
     deleted and the register fields are 4 bits in 
     HIE. 
F 5 24 jalr, div, divu, mult, multu  R-type; arithmetic HIE R-type3. All fields are similar to  
    instructions MIPS32 except that 6 unused zeroes are 
     deleted and the register fields are 4 bits in 
     HIE; 4 zeroes maintain byte alignment. 
     In jalr, the register fields are rs and rd; in 
     other instructions, these are rs and rt.  
G 32 3 options; addi, addiu andi, ori, xori,       I -type /branch/load/store.  A HIE I- type. All fields are similar 
  16/24/32 lui, slti, sltiu, bczt,bczf,beq, mixture of arithmetic/logical, to MIPS32 except that the immediate/   
   bgez, bgezal, bgtz,blez, constant manipulation, compare, offset field can take three different lengths;  
   bltzal, bltz, bne, lb,lbu,lh, branch, load and store type   0/8/16 bits as indicated by the hl field.In lui,     
   lhu, lw, lwcz, lwl, lwr,sb,sh, instructions. Most are of I-type the rs field contains 4 zeroes.  All register    
   sw, swcz, swl, swr with 16-bit immediate field.The    fields are 4-bits. 
    branch / load/store instructions     
    have 16-bit offset field.                    
H 2 32 j,jal jump type. Exactly similar to MIPS. 
I 1 32 break break is interrupt and exception Exactly similar to MIPS. 
                                                                                                                type. 

 

 
 

Fig. 10. Extent of code size reduction with HIE for mibench and mediabench 



Govindarajalu Bakthavatsalam and K.M. Mehata / Journal of Computer Science 10 (3): 411-422, 2014 

 
420 Science Publications

 
JCS 

 
 

Fig. 11. Impact of instruction mix and immediate/offset fields on code size 
 
Table 6. Typical code size reduction of embedded applications for HIE-MIPS 
% Reduction Small (≤8KB) Medium (8KB-32KB) Large (≥32KB) 
Below 20 - - Lame, ispell 
20-25 basicmath, rsynth typeset, fft, CRC 32, dijkstra, patricia, 
 qsort, sha  blowfish, rijndael, adpcm, gsm, 
     stringsearch , pegwit, rnpeg2, g721, epic  
Above 25 bitcount - jpeg, susan 

 

4. DISCUSSION 

It is observed that the Automotive and Consumer 
applications gain maximum with HIE-ISA; the mpeg2 
and the office applications gain least. The other 
applications get medium reduction. The Automotive 
and Industrial Control benchmarks show reduction 
varying from 21 to 27%. The image recognition 
program, susan, gets best reduction and the basicmath 
program gets the least reduction. Though 65% of 
susan code consists of the four major instructions, the 
poor result for the Automotive group is due to 
basicmath in which the four major instructions form 
only 33% of the code. The consumer benchmarks, get 
reasonably good reduction. The jpeg gets maximum 
reduction whereas the lame gets the least. The 
network benchmarks, dijkstra and patricia, get equal 
amount of reduction. In both benchmarks, 59% of the 
code is made up of the four common instructions. All 
the Telecommunications benchmarks undergo almost 

equal extent of reduction. In the office automation 
benchmarks, the rsynth and stringsearch programs get 
the maximum reduction and the ispell the least. The 
security benchmarks get medium reduction. The 
MediaBench programs also get medium reduction. 

There is a wide variation in the sizes of the benchmark 
programs. Out of the 23 embedded applications, four are 
small (≤ 8KB), one is medium (8KB-32KB) and eighteen 
are large (≥ 32KB). Table 6 summarizes the extent of 
code size reduction by HIE for the 23 benchmark 
programs classified according to their sizes. It is obvious 
that HIE offers satisfactory extent of code reduction for 
majority of the embedded applications. A relationship is 
found between the code size reduction in HIE-MIPS and 
two properties of MIPS32 object codes: One is quantum 
of four major instructions and the other is percentage 
underutilization of immediate and offset fields. This is 
visible from Fig. 11. 

It is noticed from Fig. 11 that code size reduction is 
higher for those programs that have higher amount of 



Govindarajalu Bakthavatsalam and K.M. Mehata / Journal of Computer Science 10 (3): 411-422, 2014 

 
421 Science Publications

 
JCS 

four major instructions and higher amount of under 
utilization of immediate and offset fields. This behavior 
forms the backbone of our HIE methodology. However, 
there are marginal exceptional behaviors by some 
programs. For instance, the sha has only 42% of four 
major instructions and only 18% of the code is wasted 
due to under utilization of immediate and offset fields. 
However, there are marginal exceptional behaviors by 
some programs. For instance, the sha has only 42% of 
four major instructions and only 18% of the code is 
wasted due to under utilization of immediate and offset 
fields. In spite of this, there is 23% code size reduction 
with HIE for the sha. This could be due to increased 
number of R-type instructions in the MIPS32 code for 
the sha. These instructions have been reduced to 24 bits 
in the HIE-MIPS code.  

The instruction fetch and decode logics need to 
manage hybrid instruction lengths and multiple sizes 
of offset and immediate fields. These hardware 
changes do not need much additional space in the 
processor. However, reduced number of registers in 
HIE-RISC saves chip space. The processor itself 
occupies lesser area than the on-chip memory in 
embedded SoCs and hence the HIE reduces the overall 
chip area for SoCs. The study has estimated the static 
code size reduction for HIE based ISA and dynamic 
simulation is to be done for evaluating performance 
and power consumption. Marginal performance 
reduction can be tolerated for BOPES in view of 
savings in chip space and power consumption.  

5. CONCLUSION 

In The study, we have proposed a modified Hybrid 
Instruction Encoding in place of Fixed Instruction 
Encoding so as to reduce the code memory size in SoCs. 
We have established that four major instructions 
dominate the embedded applications occupying up to 
65% of the code and up to 20% of the code size is 
wasted due to underutilization of the offset and 
immediate fields. This is in addition to wastage due to 
unused bits in other fields of the instructions. 

An HIE-ISA has been proposed for RISC 
processors supporting multiple instruction sizes and 
four options for immediate and offset fields. We 
simulated HIE with four instruction sizes for MIPS32 
processor and the results show code size reduction up 
to 27%. We experimented with twenty three 
benchmark programs collected from MiBench and 

MediaBench suites, using an offline static simulator 
developed by us. We noticed that except for two 
programs all others got reduced by more than 20%. 
Whereas two large programs got reduced by more 
than 25%, only two large programs got reduced by 
less than 20% in HIE code and the remaining 14 large 
programs got reduced between 20-25%. Considering 
the significant extent of savings in code memory and 
chip space in SoCs, we recommend development of 
dedicated HIE-RISC processor cores for the 
embedded market.  

6. REFERENCES 

Benini, L., F. Menichelli and M. Olivieri, 2004. A class 
of code compression schemes for reducing power 
consumption in embedded microprocessor systems. 
IEEE Trans. Comput., 53: 467-482. DOI: 
10.1109/TC.2004.1268405 

Bonny, T. and J. Henkel, 2008. Instruction re-
encoding facilitating dense embedded code. 
Proceedings of the Conference on Design, 
Automation and Test, Mar. 10-14, IEEE Xplore 
Press, Munich, pp: 770-775. DOI: 
10.1109/DATE.2008.4484772 

Fisher, J.A., P. Faraboschi and C. Young, 2005. 
Embedded Computing: A VLIW Approach to 
Architecture, Compilers and Tools. 1st Edn., 
Elsevier, ISBN-10: 1558607668, pp: 671. 

Guthaus, M.R., J.S. Ringenberg, D. Ernst, T.M. 
Austin and T. Mudge et al., 2001. MiBench: A 
free, commercially representative embedded 
benchmark suite. Proceedings of the 4th Annual 
Workshop on Workload Characterization, Dec. 2-
2, IEEE Xplore Press, pp: 3-14. DOI: 
10.1109/WWC.2001.990739 

Heikkinen, J., J. Takala and H. Corporaal, 2009. 
Dictionary-based program compression on 
customizable processor architectures. Microproc. 
Microsyst., 33: 139-153. DOI: 
10.1016/j.micpro.2008.10.001 

Hennessy, J.L. and D.A. Patterson, 2012. Computer 
Architecture: A Quantitative Approach. 1st Edn., 
Elsevier, San Francisco CA., ISBN-10: 
012383872X, pp: 493.  

ITGPLC, 2009.  microMIPS instruction set architecture-
32-bit performance. Minimum System Cost. 

ITGPLC, 2010. Beyond the Hype: MIPS-the Processor 
for MCUs. 



Govindarajalu Bakthavatsalam and K.M. Mehata / Journal of Computer Science 10 (3): 411-422, 2014 

 
422 Science Publications

 
JCS 

Lee, C., M. Potkonjak and W.H. Mangione-Smith, 1997. 
MediaBench: A tool for evaluating and synthesizing 
multimedia and communications systems. Proceedings 
of the 13th Annual IEEE/ACM International 
Symposium on Microarchitecture, Dec. 1-3, IEEE 
Xplore Press, Research Triangle Park, NC, pp: 330-
335. DOI: 10.1109/MICRO.1997.645830 

Patterson, D.A. and J.A. Hennessy, 2008. Computer 
Organization and Design. 4th Edn., Morgan 
Kaufmann, Amsterdam, ISBN-10: 0080922813, pp: 
912. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vahid, F. and T. Givargis, 2006. Embedded System 
Design: A Unified Hardware/Software Introduction. 
1st Edn., Wiley India Pvt. Limited, New Delhi, 
ISBN-10: 812650837X, pp: 348. 

Xie, Y., W. Wolf and H. Lekatsas, 2006. Code 
compression for embedded VLIW processors using 
variable-to-fixed coding. Proceedings of the 15th 
International Symposium on System Synthesis, Oct. 
2-4, IEEE Xplore Press, USA., pp: 525-536. DOI: 
10.1109/TVLSI.2006.876105 


