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Abstract: The development of digital signal processing technology 
encourages researchers to develop better methods for automatic lungs 
sound recognition system than the existing ones. Lung sounds were 
originally assessed manually according to doctor's expertise. Signal 
processing techniques are intended to reduce subjectivity factor. Signal 
processing techniques for lung sound recognition are developed by 
researchers based on their point of view to the lung sounds. Several 
researchers developed signal processing methods in a time domain. 
Meanwhile, other researchers developed signal processing techniques in a 
frequency domain or combined some signal domains. This paper describes 
the sensor used, the dataset used and the characteristics of extraction 
techniques as well as the classifier in the system developed by the previous 
researchers. In the final section, we describe some possible development of 
the future potential application of lung sound analysis. 
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Introduction 

Auscultation has become a standard procedure to 
determine the health condition of the respiratory organs. 
Although auscultation has several disadvantages 
(Melbye, 2001), auscultation is still used because of the 
advantages that accompany it (Pasterkamp et al., 1997). 
With advances in digital signal processing, lung sounds 
can be recorded, processed and analyzed so that lung 
sounds can be classified automatically. This system is 
called computerized respiratory analysis (CORSA) 
(Sovijärvi et al., 2000). Research on lung sound analysis 
never completed due to lung disease patients is increasing 
from year to year (Buist et al., 2007). Many researchers 
have developed various digital signal processing 
techniques for lung sound analysis. Additionally many 
papers have been written to review various signal 
processing techniques with a variety of viewpoints. 

Review on lung sound digital signal processing with 
a very broad scope is presented by (Earis and Cheetam, 
2000). On this paper, all stages of lung sounds analysis 
are discussed and calculated how many research is done 
in the certain case of lung sounds. Reichert et al. (2008) 
presented almost similar paper with  recent data. In their 
study, they discussed marker of each adventitious lung 
sounds and methods used by previous researchers. 
Palaniappan et al. (2013a) discussed research of lung 

sounds based on the analysis techniques comprising 
visual analysis, statistical analysis and analysis using 
machine learning. Palaniappan et al. (2013) investigated 
the performance of a variety of machine learning 
techniques in lung sound analysis. This study 
demonstrated that the hybrid machine learning increases 
the performance of the classification of lung sounds. 
Another study with a particular case can be read in the 
paper by (Shaharum et al., 2012). Their study discussed 
various techniques for lung sound detection in patients 
with asthma wheeze. Research in the signal domain of 
lung sound signal processing method has not been done 
before. By looking at domain signal from the signal 
processing is done can be seen what is considered to 
have valuable information. Each researcher has his 
considerations in choosing signals domain for lung 
sound feature extraction. 

This current paper discusses the lung sound 
classification method based on the signal domain. From 
the signal domain, signal processing techniques may be 
divided into the time domain, frequency domain and 
time-frequency domain. Wavelet domain is classified in 
a class by itself because principally the wavelet domain 
is different from the time-frequency domain. Many 
researchers use the method with various signal domains 
such as time domain and frequency domain. It can be 
interpreted that sometimes one individual domain alone 
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is not enough used in the lung signal processing. By 
looking at previous work, it is expected to make it 
easier to develop signal processing method for 
abnormalities in the lungs and respiratory organs 
detection using lung sound. 

Respiratory Sound Overview 

Lung Sound Classification 

Respiratory sounds are produced by the turbulence of 
air flow in a respiratory track. On inspiration, air moves 
into a narrower airway to the alveoli as the end track. 
When the air hits the wall of the respiratory tract, it 
forms a turbulent and produces sound. At the time of 
expiration, the air flows in an opposite direction towards 
a wider respiratory tract. In this phase, it occurs less 
turbulent, so that the normal expiration forms a smaller 
sound than inspiratory phase (Pasterkamp et al., 1997). 

The first attempt to quantitatively analyze the lung 
sounds was made by McKusick (McKusick et al., 1955;   
Bohadana et al., 2014). Even an attempt to analyze the 
pulmonary sound was done a long time ago. However, 
research to develop lung sound signal method continues 
until today. Traditionally, lung sounds were analyzed 
based on the intensity, pitch, location and the ratio of 
inspiration and expiration. Table 1 shows the 
classification of lung sounds and types of lung sounds. 

Normal Lung Sound 

Normal lung sounds are produced by healthy lung in a 
certain location. The normal lung sounds are divided into 
four types and they are named based on the locations. 

Tracheal Sound 

Heard in the tracheal area, upper respiratory airway. 
Practically it is rarely used in routine auscultation. The 
tracheal sound has a high pitch and same length between 
inspiratory and expiratory phase (Bohadana et al., 2014). 

Bronchial Sound 

Heard in bronchus or lung branch. The bronchial 
sound has high pitch and pause between inspiratory and 
expiratory phase. Expiratory phase has a longer duration 
than the inspiratory phase. If the bronchial sound is 
heard anywhere in lung surface, it indicates lung disorder 
(Pasterkamp et al., 1997). 

Bronchovesicular Sound 

Bronchovesicular sound has a medium level of 
intensity and pitch. Bronchovesicular sound has same 

length inspiratory and expiratory phase. This sound is 
heard over the upper chest wall. If this sound is audible 
everywhere, it usually indicates consolidation area 
(Loudon and Murphy, 1984). 

Vesicular Sound 

Vesicular breath sounds are the most common normal 
lung sound in almost all the lung surface. Its voice is a 
soft and low pitch. The inspiratory sound is longer than 
the expiratory sound (Bohadana et al., 2014). The 
vesicular sound could be heard rougher and partially 
audible longer if there is a rapid and profound ventilation 
(for example after exercise) or in children who have 
thinner chest wall. 

Abnormal Lung Sound 

Abnormal sound is divided into two conditions. The 
first condition is when the bronchial sound heard in an 
improper location. If this happens, then it indicates a 
consolidation of the lungs. In this case, there is usually 
fluid in the lungs. The second condition is when lung 
sounds have low intensity or even disappears. This 
indicates that the respiratory tract covered by a liquid or 
a foreign object. 

Adventitious Lung Sound 

Additional lung sound consists of two kinds, 
Continuous Adventitious Sound (CAS) and Discontinued 
Adventitious Sound (DAS). Each adventitious lung sound 
is divided into two types. The following is a detailed 
explanation of each adventitious lung sounds. 

Wheeze 

CAS is often called the wheezes is continuous, high 
pitch, rather sighing sound that it is usually heard at 
expiration and sometimes on inspiration. It occurs when 
the flow of air through the narrowed airways due to 
secretions, foreign body or injury that prevents air flow 
(Abbasi et al., 2013). Wheeze can occur in the 
inspiration phase, expiratory phase or both. Some 
references split wheeze into two categories, wheeze and 
ronchi based on pitch. High-pitched wheeze is called 
with stridor while a low pitch is called to ronchi. 
Wheeze usually occupies a frequency of 400-600 Hz 
with more than 100 ms duration. Abnormalities 
associated with wheeze, e.g., asthma, Congestive Heart 
Failure (CHF), chronic bronchitis and pulmonary 
edema (Gross et al., 2003). 

 
Table 1. Lung sound classification (Palaniappan et al., 2013) 

Normal Abnormal Adventitious 

Tracheal Vesicular Absent/-decreased Continuous Discontinuous /Crackle 
Bronchial Aronchial Wheeze Coarse crackle 
Broncho-vesicular  Ronchi Fine crackle 
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Crackle 

Crackles are discontinuous, nonmusical, short 
duration, explosive and more often heard on inspiration. 
These sounds are classified as fine crackle and coarse 
crackle. Fine crackle has a high pitch, high intensity and 
a very short duration. Fine Crackle occurs as a result of 
the narrower airway that is suddenly open after closed on 
previous respiratory cycles. Coarse crackle has a lower 
intensity than fine crackle intensity. The pitch of coarse 
crackle is lower and the duration is not too short than 
fine crackle pitch and duration. It usually occurs at the 
beginning of inspiration and sometimes when 
inspiration. Coarse crackle occurs when there is fluid in 
the respiratory tract (Bohadana et al., 2014). Health 
problems associated with crackles, among others are 
ARDS, asthma, bronchiectasis, chronic bronchitis, 
consolidation, early CHF, interstitial lung disease, 
pulmonary edema. 

Respiratory Sound Recording and Analogue 

Processing 

Lung Sound Recording and Lung Sound Database 

Based on studies on lung sounds, in general, there are 
two sources of data used. The first is the data recorded 
directly from patients in the hospital and the second is a 
data record from the database. In a paper reported by 
(Reyes et al., 2008), lung sounds are taken from patients 
with interstitial pneumonia using electrets microphone 
and pneumotachometer. Yamashita et al. (2014) record 
data of lung sound from patients with pulmonary 
emphysema and normal patients using a piezoelectric 
microphone. Data lung sounds recordings are usually 
taken from patients with certain lung disease cases and 
normal subjects as a control. 

Some lung sound database is available either on CDs 
or files that can be accessed from the internet. One 
database lung sounds that are often used to study lung 
sounds are Rale database used in (Palaniappan and 
Sundaraj, 2013) and (Mayorga et al., 2012). Another 
available database is a database of Marburg Respiratory 
Sound (MARS) (Gross et al., 2003) or data on the 
Internet is used in (Jain and Vepa, 2008). 

Sensor Types and Sensor Placement 

The most common devices used for the acquisition of 
the lung sounds are electronic stethoscope (Hashemi et al., 
2011; Maciuk et al., 2012; Emmanouilidou et al., 2012; 
Lin et al., 2006; Ayari et al., 2012; İçer and Gengeç, 
2014). The stethoscope is a primary device for 
auscultation, using an electronic stethoscope it is 
possible to record and analyze lung sounds. Some 
researchers use a microphone with a slight modification 
to put it in the chest (Taplidou and Hadjileontiadis, 2007; 

Jin et al., 2008; Reichert et al., 2008; Alsmadi and 
Kahya, 2002). One of the most often used microphones 
is ECM from Sony. Several researchers utilized 
piezoelectric contact microphone or condenser 
microphone in the acquisition of the lung sounds 
(Lozano et al., 2013; Xu et al., 1998). The stethoscope is 
often combined with the pneumotachometer to determine 
the air flow, inspiration or expiration (Taplidou and 
Hadjileontiadis, 2007; Ponte et al., 2013; Aydore et al., 
2009). Other additional devices used are PVT 
spirometer, accelerometer and a flowmeter (Homs-
Corbera et al., 2000; Gnitecki and Moussavi, 2005; 
Kahya et al., 2006). 

Besides the types of the device, the number of 
devices used to record lung sounds also varies. The 
simplest is to use one electronic stethoscope 
(Emmanouilidou et al., 2012; Ayari et al., 2012) until 
5×5 matrix microphone mounted on the chest (Reyes et al., 
2008) or use the chest belt containing seven electronic 
stethoscopes (Becker et al., 2013). 

Analogue Prefiltering 

Analog prefiltering is intended to reduce unnecessary 
frequency components such as DC components or high-
frequency components, or to serve as an anti-aliasing 
filter. BPF is constructed from 7.5 Hz HPF and LPF 2.5 
kHz is used by (Mayorga et al., 2012). BPF with different 
bandwidth used by (Alsmadi and Kahya, 2002) is BPF 90-
1200 Hz (Alsmadi and Kahya, 2002). Another technique 
used is LPF 1 kHz (Hadjileontiadis, 2009) or HPF 75 Hz 
to reduce heart sound (Charleston-Villalobos et al., 2007). 
Selection of pass frequency depends on lung sound to be 
analyzed. Hadjileontiadis use of LPF 1 kHz due to lung 
sounds to be processed is the crackle that has frequency 
<1000 Hz (Hadjileontiadis, 2009). While in a paper by 
Mayorga et al. (2012) asthma, Crackle, wheeze, stridor 
and normal are analyzed. Some data used in research by 
have frequency > 1000 kHz. 

Sampling Frequency 

In digital signal processing, sampling frequency plays a 
significant role. The frequency of sampling will determine 
the bandwidth to be processed and may limit the noise that 
will fit into a signal (Lu et al., 2013). The design of the filter 
depends on the selected sampling frequency. The standard 
sampling frequency is 44100 kHz (Fs) for music. Even the 
frequency is too high for lung sound (<2500 Hz), some 
researchers using Fs for the acquisition of the lung sounds 
(Jin et al., 2008; Emmanouilidou et al., 2012). Other 
researcher uses Fs/2, Fs/4 or Fs/8 (Taplidou and 
Hadjileontiadis, 2007; Kandaswamy et al., 2004; Lin et al., 
2006; Uysal et al., 2014). 

Another sampling frequency is quite widely used for 
lung sound signal acquisition is 10 KHz (Palaniappan and 
Sundaraj, 2013; Reyes et al., 2008; Ponte et al., 2013) 
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and 8 kHz which assumes lung sounds the same as the 
speech signal (Mondal et al., 2014; Hashemi et al., 2011; 
Maciuk et al., 2012; Emmanouilidou et al., 2012; 
Alsmadi and Kahya, 2002). Other frequencies were also 
used are 4000, 5000, 9600 and 16000 Hz (Aydore et al., 
2009; Homs-Corbera et al., 2000; Hadjileontiadis, 2009; 
Emrani and Krim, 2013). 

Denoising Methods 

One of the problems in the lung auscultation using 
stethoscope is noise. One of the most significant noises 
that cannot be eliminated directly is heart sound. Heart 
sounds arise as a result of the process of opening and 
closing of the heart valves in the pumping of blood by 
the heart. The emergence of the heart sounds in the lung 
sound recording cannot be avoided because, during the 
recording process of lung sounds, the heart keeps 
beating. Heart sound occupies a frequency range of 20-
150 Hz which means overlap with the low-frequency 
component of the sound of the lung (Hadjileontiadis and 
Panas, 1997). Heart sounds and lung sounds have a 
different pattern so that the emergence of heart sounds 
changing in each phase of respiration (Al-Naggar, 
2013). The simplest technique to eliminate heart sound 
is used with cut-off frequency 70-100 Hz HPF or BPF 
100-2000 Hz (Lin et al., 2006; Homs-Corbera et al., 
2000). More complex techniques to eliminate heart 
sound on the lung sound could use an adaptive filter, 
high order statistics, independence component analysis, 
the method of fractal and others (Gnitecki and 
Moussavi, 2003; Ahlstrom et al., 2005; Hadjileontiadis and 
Panas, 1997; Chien et al., 2006). 

Another noise that often arises is the sound of 
swallowing as the body's mechanisms to prepare for 
consumption and to avoid aspiration (un-breathing 
condition) (Lazareck and Moussavi, 2002). Patient’s 
swallowing sound appears on the lung sound recording 
when the patient feels nervous, or lung sound recording 
process is too long. These sounds can be removed by 
signal processing such as using root mean square 
calculations, average power and fractal (Aboofazeli and 
Moussavi, 2004; 2005). Another type of noise that can 
interfere with lung sound recordings, for example, the 
movement of a stethoscope, a voice conversation 
between the patient and the physician or crying sound of 
baby’s patient (Emmanouilidou and Elhilali, 2013). 

Respiratory Sound Signal Processing 

For the ease of the comparison of pulmonary speech 
recognition, the methods that have been done by 
previous researchers are divided by the signal 
processing domains. Also, each study describes the 
sensors used, the data set used, the method used, the 
extracted features and classification techniques. Some 

studies do not include the performance of the system 
that are made because they only measure or test the 
characteristics of lung sounds. 

Time Domain Signal Processing 

In time-domain signal processing research, the most 
widely used sensor is electrets microphone, followed 
by electronic stethoscope for data acquisition in real 
terms. Also, some studies use the database on the 
internet as data input. Autoregressive modeling (AR 
modeling) (Alsmadi and Kahya, 2002; Kahya et al., 
1999) and Empirical Mode Decomposition (EMD) 
(Charleston-Villalobos et al., 2007; Lozano et al., 2013) 
are widely used among others. A more detailed and 
specific method is used by (Ayari et al., 2012) where 
Crackle is recognized using the crackle parameters 
consisting of Initial Deflection Width (IDW), Largest 
Deflection Width (LDW). In the classification stage, the 
method that has been commonly used are Back-
Propagation Neural Network (BP NN), K-mean 
clustering and others, several studies using empirical 
methods to show the difference between the two types of 
lung sounds (Lozano et al., 2013; Castañeda-Villa et al., 
2013). The differences between the data classes are 
shown only through the graph or plot, to see signal 
processing results visually. List of lung sound study uses 
time domain signal processing is presented in Table 2. 

Frequency Domain Signal Processing 

Lung sound signal processing in the frequency 
domain is the most rarely used by researchers. Lung 
sounds have non-stationary nature so that frequency 
analysis cannot show that lung sound frequency 
components change at any time (Mondal et al., 2014). 
Some methods of signal processing based on the 
frequency domain are proposed by some researchers. 
Mayorga et al. (2012) using quantile vector to produce 
the features of lung sounds. Quantile vector is calculated 
from the FFT signals along 400 ms. Then calculated the 
frequency with octile coefficient 0125, 0250,..., 0875. 
Distribution of vector quantile calculation results on all 
these frames is used to form a codebook using Gaussian 
Mixture Models (GMM). Another method based on 
Fourier transform is used by (Xu et al., 1998) also 
(Wang et al., 2012). Both groups of researchers used 
cepstral analysis to analyze lung sounds. Analysis of the 
frequency spectrum to use as Welch spectra, spectra DT 
or PSD calculation using the method of autoregressive 
modeling (AR-modeling) (Jané et al., 2004; Oud et al., 
2000). The results show that the frequency analysis 
produces features that can distinguish normal and 
abnormal lung sounds with high accuracy. Table 3 
shows a resume of research on lung sound using 
frequency domain signal processing. 
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Table 2. Lung sound signal processing in time domain 

References Sensor Data set Method Features Classifier Acc Se Sp 

Charleston-Villalobos et al. Electrets   Simulated crackles, Empirical IMF Empiric N.A N.A N.A 

(2007) Microphone, Real abnormal mode 

 Pneumotachometer respiratory sound Decomposition 

(Rizal et al., 2006a) None (database) 4 class normal LPC LPC BP-NN 98.33% N.A N.A 

    coefficient 

(Mondal et al., 2014) N.A 10 normal, PDF of signal Skewness, ELM, 92.86% 86.30% 86.90% 
  20 abnormal  kurtosis,  SVM 

    lacunarity, 

    sample  

    entropy 

(Gnitecki and Moussavi, Accelerometer 5 normal fractal Variance Empiric N.A N.A N.A 

2005)    Fractal  

    Dimension  

    (VFD), Katz  
    FD, Katz 

    -Sevcik FD 

(Ayari et al., 2012) Electronic 15 pulmonary Crackle Initial Deflection Fuzzy N.A 98.34% 97.88% 

 stethoscope fibrosis, 10 chronic  parameter Width (IDW), clustering 

  bronchitis  Largest Deflection 

    Width (LDW) 

(Alsmadi and Kahya, Electrets N.A AR modeling AR coefficient K-NN N.A N.A N.A 
2002) microphone   order 6 

(Hadjileontiadis, 2009) Electrets 136 fine crackle, Gliding box Lacunarity Discri 99-100% N.A N.A 

 microphone 94 coarse crackle,    minant 

  133 squack   analysis 

(Kahya et al., 1999) N.A 18 COPD, AR modeling AR coefficient Multinomial, 67-88% N.A N.A 

  20 normal,  of each segment decision  

  19 restrictive   tree, parzen 

  pulmonary diseases   window 
(Castañeda-Villa et al., Pneumotocograph Simulated fine ICA Time variant AR Empiric N.A N.A N.A 

2013)  crackle, 2 patient  

  with fibrosis and 

  emphysema 

(Yamashita et al., piezoelectric   56 normal,  MFCC HMM model Maximum 83% N.A N.A 

2014) microphone 56 patient  of MFCC likelihood 
Acc = accuracy, Se = sensitivity, Sp = specificity 

 
Table 3. Lung sound signal processing in frequency domain 

References Sensor Data set Method Features Classifier Acc Se Sp 

(Palaniappan and None (database) 16 normal, 26 COPD, MFCC MFCC SVM 90.77% N.A N.A 

Sundaraj 2013)  24 pharenchymal  
  pathology 

(Yadollahi and Moussavi, 2009) Electrets 15 tracheal and snore LPC Formant K-NN N.A N.A N.A 

 microphone   frequency 
(Mayorga et al., 2012) None (database) 5 asthma, 4 crackle, FFT, GMM Quantile LS automatic 100 N.A N.A 

  5 stridor, 7 wheeze,  vector  verification  

  44 normal  frequency (LSAV) 
(Jané et al., 2004) Pneumotacho 8 normal, 15 asthma PSD Mean Empiric N.A N.A N.A 

 -graph   value of peak 

    frequency 
(Oud et al., 2000) Electrets 10 asthma DFT, Welch DFT spectra, Empiric 60-90% N.A N.A 

 microphone  method Welch spectra 

(Xu et al., 1998) Condenser 10 normal, Cepstral Power spectral, Empiric N.A N.A N.A 
 microphone 20 pathology analysis cepstrum 

(Wang et al., 2012) Piezo-film 4 patient, normal Cepstrum   Cepstrum of Empiric N.A N.A N.A 

 microphone and stridor analysis lung sound 

Acc = accuracy, Se = sensitivity, Sp = specificity 
 
Time-Frequency Domain Signal Processing 

Considering the non-stationary nature of lung sound 
and then time-frequency domain (TF domain) analysis 
become a more appropriate choice for the analysis of 
lung sounds. One of the most widely used methods is the 
Short-Time Fourier Transform (STFT). STFT is Fourier 
transform that is performed on one segment of data and 
formulated as in Equation 1: 

2( , ) ( ) ( ) j mfX t f x w t e dπ τ

τ τ τ

∞
−

∞

= −∫  (1) 

 
With is w(t-τ) window function and e-j2πmfτ is complex 

sinusoid form that will change signal into frequency 
domain. From STFT result, signal features will be 
extracted such as peak frequency (Rizal and Suryani, 
2008), local maxima, peak coexistence, discontinuity 
(Taplidou and Hadjileontiadis, 2007), mean, amplitude 
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deviation, local maximum, discontinuity criteria 
(Taplidou et al., 2003), mean and median frequency, 
spectral crest factor, entropy, relative power factor, high 
order frequency moment (Morillo et al., 2013) and so on. 
Another approach used is to change the STFT as an image 
and then to perform processing such as image processing 
(Lin et al., 2006; Rizal et al., 2009). The advantages of 
STFT are computationally simple and easy in observing 
the frequency of the signal in each time. The drawbacks of 
this method are relatively low resolution and the 
uncertainty of the time when the frequency occurs because 
the frequencies are calculated at specified intervals. 

Other TF domain method used is Wigner-Ville 
Distribution (WVD). WVD regarded as a special case of 
Cohen's class distribution. WVD mathematically 
formulated as follows (Maciuk et al., 2012): 
 

* 2( , ) ( ) ( )
2 2

WV j mf

x
S t f x t x t e dπ ττ τ

τ

∞
−

−∞

= + −∫  (2) 

Variable τ indicates time-lag in the autocorrelation, 
while * shows complex-conjugate of signal x. WVD 
used by (Maciuk et al., 2012; Ponte et al., 2013) to show 
the differences between normal lung sounds and 
pathological lung sounds. Even WVD has a high TF 
resolution, but it requires a massive computation and the 
emergence of cross-product that is frequency shadow 
that appears even though nothing in the original signal 
(Boashash, 2003). 

Another method often used is the Hilbert-Huang 
Transform (HHT), which consists of Empirical Mode 
Decomposition (EMD) and Huang Spectra for 
calculating the Instantaneous Frequency (IF) of the 
lung sounds. Several studies only use EMD, which is a 
time domain (Charleston-Villalobos et al., 2007) and 
some to calculate the IF of lung sounds (Lozano et al., 
2013). Table 4 show previous lung sound analysis 
study using TF domain. 

 
Table 4. Lung sound signal processing in time-frequency domain 

References Sensor Data set Method Features Classifier Acc Se Sp 

(Maciuk et al., 2012) Electronic N.A STFT, Wigner- Data plot Empiric N.A N.A N.A 
 stethoscope  Ville Distribution 
(Taplidou and Electrets 13 patient STFT Local maxima, peak Empiric 96.7-100% 99.5±4.8% 93.7±9.3% 

Hadjileontiadis, 2007) microphone with wheeze  coexistence, continuity 
(Jin et al., 2008) Electrets 7 normal, STFT Sampling entropy, Euclidean 85.3-97.9% 80.4-95.7% 90.-100% 
 microphone 7 asthma  histogram distortion distance 
(Jin et al., 2014) Electrets 7 normal, STFT averaged instantaneous SVM 97.7-98.8% 96.8-100% 98.9-100% 

 microphone 14 pathology, 
  plus data from  kurtosis, Discriminating  
  database 5 normal,  function, sample entropy,  

  19 pathology  histogram distortion, 
(Jin et al., 2011) Electrets Data set 1: 7 healthy, Spectrogram Temporal–Spectral K-NN 92.4±2.9% N.A N.A 
 microphone 14 pathology,  Dominance-Based  
  real data  Features: Mean SD 

  Data set 2: 3 healthy,  Temporal Spread 
  12 pathology,  Spectral position 
  data from internet 

(Morillo et al., Electrets 53 COPD patients STFT Mean and  median Fuzzy- 77.60% 63.16% 88.23% 
2013) microphone   frequency, spectral C-mean 
    crest factor, entropy, 
    relative power factor, 

    high order frequency 
    moment 
(Lin et al., 2006) Electronic 15 normal, 1 asthma STFT Area of wheeze Empiric N.A 96.70% 90.90% 

 stethoscope 
(Lozano et al., 2013) Piezoelectric 21 asthma patient EMD Instantaneous frequency Empiric N.A N.A N.A 
 microphone 
(Ponte et al., 2013) Electrets 10 patient with Discrete pseudo Max frequency, modified N.A N.A N.A 

 microphone,  pulmonary  fibrosis  Wigner-Ville geometric method empiric 
 pneumotocograph and congestive Dist 
  heart failure 

(Homs-corbera et al., Pneumotocograph,  15 patient normal STFT, The Local Wheeze parameters: Empiric N.A 71-100% 88.2-100% 
2000) phonopneuomgraph 16 patient asthma Adaptive Wheezes Number of wheeze,  
   Detection Algorithm peak freq, average  
   (LAWDA) peak freq, 

(Reyes et al., 2008)  Coupled Simulated crackle, Spectrogram, T-F plot Empiric  N.A N.A N.A 
 microphone real LS  from Hilbert-Huang  
  pneumonia patient Spectrum 

(Rizal and Suryani,  None (database) 6 class patology STFT Peak frequency ART-2 98.57% N.A N.A 
2008) 
(Taplidou et al., 2003)  Electrets 14 asthma STFT Mean, amplitude deviation, Empiric 93.45% N.A N.A 
 microphone   local maximum, 

    discontinuity criteria 
(Rizal et al., 2009)  None (database) 6 class patology STFT Energy sub-band of K-mean 100% N.A N.A 
    STFT image clustering 

(Jain and Vepa, 2008)  None (database) N.A STFT Location and duration Empiric  N.A 84% 86% 
    of peak frequency 
(Chen et al., 2014)  Electronics 69 ILD, 15 CHF, Hilbert-Huang Sum of 3 IMF,  SVM 92.2% N.A N.A 
 stethoscope 14 COPD,  transform Energy weight of HHT  

  6 bronchiectasis,  marginal spectrum 
  4 acute bronchitis, 
  3 pneumonia 

Acc = accuracy, Se = sensitivity, Sp = specificity 
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Wavelet Domain Signal Processing 

The wavelet transform is a signal processing 
techniques that provides ease of setting the resolution 
of the signal so also called by Multiresolution 
Analysis (MRA) (Semmlow and Griffel, 2014). Lung 
sound research uses wavelet that often becomes the 
reference is research done by (Kandaswamy et al., 
2004). Wavelet decomposes lung sounds up to level 7 
using some mother wavelet. Sub-band D1, D2 and A7 
are not used because their values are close to zero. 
The mean, the average power, the standard deviation 
and the mean ratio of absolute values of adjacent sub-
bands are taken as signal features. ANN is used as a 
classifier. Hashemi et al. (2011) added skewness and 

kurtosis calculations on each sub-band of 
Kandaswamy’s method. Abbasi et al. (2013) only 
change ANN with SVM to test Kandaswamy’s 
method. SVM has better performance compared with 
ANN on daubechies8 wavelet decomposition. 

Different wavelet decomposition strategies are shown 
in other studies (Rizal et al., 2006a; 2006b). In the lung 
sounds, wavelet packet decomposition is done to level 5 
and is taken in a certain sub-band with different bandwidths 
at frequencies between 0-1000, 1000-2000, 2000-3000 and 
3000-4000 Hz. The energy of each selected sub-band is 
used as features and produce more than 85% of accuracy. 
Some research on lung sound classification using 
wavelet method can be seen in Table 5. 

 
Table 5. Lung sound signal processing in wavelet domain 

References Sensor Data set Method Features Classifier Acc Se Sp 

(Hashemi et al., 2011)  Electronic 140 COPD and DWT Mean, average power, SD,  MLP-NN 89.28% N.A N.A 

 stethoscope asthma patient (77    ratio of absolute mean  

  polyphonic,  values of adjacent subband, 

  63 monophonic)  skewness, kurtosis 

(Emmanouilidou et al., Electronic 10 normal, Choclear filter bank  Joint R-S-F representation SVM 92.19% 90.22% 73/5% 

2012) stethoscope 10 wheeze, 8 crackle 

(Rizal et al., 2006)  None (database) 150 data with 24 wavelet packet Sub-band energy ART2 83.02% N.A N.A 

  class decomposition 

(Kandaswamy et al., Electrets inspiratory wheezes, DWT mean, average power, BP-NN 94.56% N.A N.A 

2004) microphone, fine crackles, stridor,  standard deviation, ratio 

  squawk and rhonchus  of absolute mean values 

    of adjacent sub-band. 

(Abbasi et al., 2013)  None (database) 6 class, wheeze, DWT Mean, average power, SD, FF-NN, 93.51-100% N.A N.A 

  normal, ronchi,     ratio of absolute mean  PNN, 

  crackle, squawk,  values of adjacen SVM 

  stridor  subband 

(Uysal et al., 2014)  None (database) 14 normal, DWT Power, variance, SD, mean MLP, 100% N.A N.A 

  20 pathology  absolute adjacent subband SVM 

(Du et al., 1997) None (database) Crackle sound Matched wavelet Optimal scale of Empiric 99.8-100% N.A N.A 

   transform wavelet transform 

Acc = accuracy, Se = sensitivity, Sp = specificity 

 
Table 6. Lung sound signal processing in multi-domain 

References  Domain Sensor Data set Method Features Classifier Acc Se Sp 

(İçer and Gengeç, Time, Frequency Electronic 20 normal, Welch method, Fmin/Fmax, SVM 82.6-100% N.A N.A 
2014)  stethoscope 40 COPD HHT, SVD Instantaneous 
     frequency, 
     eigen values 
(Aydore et al., Time, Frequency Electrets 7 COPD Welch method Kurtosis, renyi Discriminant 93.5-95.1% N.A N.A 
2009)  microphone   entropy, mean analysis 
  pneumotachograph   crossing irregularity 
 (Kahya et al., 2006a) Time, wavelet Electrets 20 normal, AR modeling, AR coefficient orde K-NN, 92.50% 95% 90% 
  microphone, 20 pathology DWT 6,initial deflection FF-NN 
  flowmeter   width (IDW), largest 
     deflection width 
     (LDW), AR order 4 
(Emrani and Krim, T-F, wavelet None (database) Patient asthma STFT, WPD Local maximum and Empiric N.A N.A N.A 
2013)     duration of each 
     frequency region, 
     energy subband 
(Yilmas and Kahya, Time, frequency Electrets 24 normal, 21 obstructive AR modeling, AR coefficient, K-NN 77.80% 75% 80% 
2006)  microphone pulmonary disorder  quantile frequency  f25, f50, 
   and restrictive pulmonary  f75, f90 
   disorder 
(Mazic et al., 2003) Frequency, T-F Electrets 28 infant with Welch methods,  Visual 70% N.A N.A 
  microphone pulmonary disease STFT PSD plot, STFT plot 
(Bouzakine et al., Time, frequency Electrets N.A Event duration, Asthma score, Empiric N.A N.A N.A 
2005)  microphone  PSD pneumonia score 
(Guler et al., 2005) Time, frequency Electrets 20 normal, 18 chronic AR modeling, AR coefficient  MLP, 80-90% N.A N.A 
  microphone obstructive, 19 restrictive cepstral order 6, cepstral multinomial, 
   lung disease   parzen window,  
      decision tree, voting 
(Serbes et al., 2013) T-F, wavelet Electrets 13 pathology, 13 normal, Windowed FT, TFAUT, TFAUF, SVM, MLP, K-NN 97.50% N.A N.A 
  microphone, totally 3000- crackle, WT TSAUT, TSAUF  
  flowmeter 3000 normal  with various window 
     or mother wavelet 

Acc = accuracy, Se = sensitivity, Sp = specificity 
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Multi Domain Signal Processing 

Some researchers combine the method of signal 
processing from the two or more signal processing 
domain. For example, time domain method is combined 
with frequency domain methods such as AR modeling in 
the time domain and the quantile frequency in the 
frequency domain (Yilmas and Kahya, 2006). AR 
modeling and Discrete Wavelet Transform (DWT) is 
used by (Kahya et al., 2006). The combination of T-F 
domain method and wavelet using STFT and WPD for 
feature extraction is presented in (Emrani and Krim, 
2013). Meanwhile, Welch’s method for the Power 
Spectral Density (PSD) calculation and STFT is used to 
characterize lung sounds on research conducted by 
(Mazic et al., 2003). Therefore, this combined method 
has advantages in providing a complete characteristic of 
the lung sounds. The drawback of this combined method 
is the requirement of a longer computation time. For 
real-time detection purposes, combined method is not 
appropriate because of computational time. Some multi-
domain signal processing for lung sound analysis is 
shown in Table 6. 

Future Potential Applications of Lung 

Sound Analysis 

Clinical Application 

One of the main objectives of research on lung 
sounds is to build a system that can detect lung 
abnormalities based on lung sounds. In fact, the results 
obtained from studies conducted recently only 
distinguish lung sounds, for example normal, crackle and 
wheezing. Some researchers tried to distinguish the 
disease from lung sounds, but they usually limited to a 
few cases, for instance in pulmonary tuberculosis 
(Becker et al., 2013) or in asthma and pneumonia 
(Bouzakine et al., 2005). Therefore, it is still needed 
quite a long way to come to the direct detection of 
diseases from lung sound only. 

Even so, with the advancement of electronic 
technology several commercial electronic stethoscopes 
have been developed to facilitate physicians in analyzing 
lung sounds. These features are available, e.g., volume 
adjustment, reduction of heart sounds, recording and 
transmitting wirelessly to a computer. With the signal is 
displayed on the computer screen, the doctor will get 
more information from observed lung sounds. 

The electronic stethoscope is also possible to build a 
telemonitoring system to monitor lung sound of patients 
remotely. For transmission media can use either wired or 
wireless, to a short distance (between the rooms in the 
hospital) and long distance (between home/small clinics 
to large hospitals). Lung sound analysis can be done 
automatically by a computer or manually by a physician. 

Education Application 

Benefits can be obtained directly from CORSA is for 
education purposes. Various kinds of recorded lung 
sound avaliable as learning materials for medical 
students. If in the past to listen to a particular type of 
lung sounds must be listened directly from the patient's 
lungs, now lung sound recording can be heard anytime 
and anywhere. Some sources in both commercial and 
free on the internet can be accessed easily with various 
cases (Ward, 2005). 

Conclusion 

Intuitively, lung sound processing method is good 
enough if the method used is quite straightforward, less 
computing time but can distinguish more lung sounds 
classes. In general, we could not conclude what method 
or on what domain is the best signal processing 
technique for lung sounds. The final goal of the lung 
sound signal processing is getting the highest accuracy. 
However, in reality all the methods used are not directly 
comparable due to several reasons such as different lung 
sound databases (lung sound types, the number of data, 
location of recording, sensors used, sampling frequency) 
and the various classification methods. 

In many cases, lung disease cannot be detected using 
only lung sounds. Examination of other modalities such 
as X-ray, laboratory tests and others may be required in 
establishing the diagnosis. In the future development, we 
need a method that can combine data from lung sounds 
and data of other modalities such as examination results 
of X-ray. Lung sounds are retained as the main data 
diagnosis because of practicality. 

Even there is still a large enough gap for a clinical 
application, CORSA still can be used for telemonitoring 
of lung disease. For telemonitoring, the system ability to 
determine the types of sounds that occurs is considered 
sufficient to monitor the health condition of the patient. 
The usefulness of this system can be used to reduce the 
gap between the availability of lung disease specialists at 
a remote area. Significant support for the development 
telemonitoring system is the availability of electronic 
stethoscope that makes it easy to the data acquisition, 
transmission and record of lung sounds. Another thing 
that could be developed is the use of mobile devices for 
lung health monitoring. Additional applications on 
mobile devices today have been able to add a function to 
record lung sounds, send and to analyze it. 

The availability of internet technology supports 
medical education in particular that is related to 
auscultation capabilities. The availability of lung sound 
database on the Internet makes it easy for students to 
listen to and to analyze lung sounds. Next, augmented 
reality-based interactive applications might appear for 
auscultation learning. 



Achmad Rizal et al. / Journal of Computer Sciences 2015, 11 (10): 1005.1016 

DOI: 10.3844/jcssp.2015.1005.1016 

 

1013 

Funding Information 

The authors have no support or funding to report. 

Author’s Contributions 

All authors equally contributed in this work. 

Ethics 

This article is original and contains unpublished 
material. The corresponding author confirms that all of 
the other authors have read and approved the manuscript 
and no ethical issues involved. 

References 

Abbasi, S., R. Derakhshanfar, A. Abbasi and Y. Sarbaz, 
2013. Classification of normal and abnormal lung 
sounds using neural network and support vector 
machines. Proceedings of the 21st Iranian 
Conference on Electrical Engineering, May 14-16, 
IEEE Xplore Press, Mashhad, pp: 1-4. 

 DOI: 10.1109/IranianCEE.2013.6599555 
Aboofazeli, M. and Z. Moussavi, 2004. Automated 

classification of swallowing and breadth sounds. 
Proceedings of the 26th Annual International 
Conference of the IEEE Engineering in Medicine 
and Biology Society, Sept. 1-5, IEEE Xplore Press, 
pp: 3816-3819. 

 DOI: 10.1109/IEMBS.2004. 1404069 
Aboofazeli, M. and Z. Moussavi, 2005. Analysis and 

classification of swallowing sounds using 
reconstructed phase space features. Proceedings of 
the International Conference on Acoustics, Speech 
and Signal Processing, Mar. 18-23, IEEE Xplore 
Press, pp: 421-424. 

 DOI: 10.1109/ICASSP .2005.1416330 
Ahlstrom, C., O. Liljefeldt, P. Hult and P. Ask, 2005. 

Heart sound cancellation from lung sound 
recordings using recurrence time statistics and 
nonlinear prediction. IEEE Signal Process. Lett., 12: 
812-815. DOI: 10.1109/LSP.2005.859528 

Al-Naggar, N.Q., 2013. A new method of lung sounds 
filtering using modulated least mean square-
adaptive noise cancellation. J. Biomed. Sci. Eng. 
DOI: 10.4236/jbise.2013.69106 

Alsmadi, S.S. and Y.P. Kahya, 2002. Online 
classification of lung sounds using DSP. 
Proceedings of the 2nd Joint Engineering in 
Medicine and Biology, Oct. 23-26, IEEE Xplore 
Press, pp: 1771-1772. 

 DOI: 10.1109/IEMBS. 2002.1106645 
Ayari, F., M. Ksouri and A. Alouani, 2012. A new 

scheme for automatic classification of pathologic 
lung sounds. Int. J. Comput. Sci., 9: 448-458. 

Aydore, S., I. Sen, Y.P. Kahya and M.K. Mihcak, 2009. 
Classification of respiratory signals by linear 
analysis. Proceedings of the Annual International 
Conference of the IEEE Engineering in Medicine 
and Biology Society, Sept. 3-6, IEEE Xplore Press, 
Minneapolis, MN, pp: 2617-20. 

 DOI: 10.1109/ IEMBS.2009.5335395 
Becker, K.W., C. Scheffer, M.M. Blanckenberg and 

A.H. Diacon, 2013. Analysis of adventitious lung 
sounds originating from pulmonary tuberculosis. 
Proceedings of the 35th Annual International 
Conference of the IEEE Engineering in Medicine 
and Biology Society, Jul. 3-7, IEEE Xplore Press, 
Osaka, pp: 4334-4337. 

 DOI: 10.1109/ EMBC.2013.6610505 
Boashash, B., 2003. Time Frequency Signal Analysis 

and Processing: A Comprehensive Reference. 1st 
Edn., Elsevier, Amsterdam, ISBN-10: 0080443354, 
pp: 743. 

Bohadana, A., G. Izbicki and S.S. Kraman, 2014. 
Fundamentals of lung auscultation. New England J. 
Med., 370: 744-751. 

 DOI: 10.1056/NEJMra 1302901 
Bouzakine, T.A., R.M. Carey, G.N. Taranhike and T.J. 

Eder, 2005. Distinguishing between asthma and 
pneumonia through automated lung sound analysis. 
Proceedings of the IEEE 31st Annual Northeast 
Bioengineering Conference, Apr. 2-3, IEEE Xplore 
Press, pp: 241-243. 

 DOI: 10.1109/NEBC. 2005.1432010 
Buist, A.S., M.A. McBurnie, W.M. Vollmer, S. Gillespie 

and P. Burney et al., 2007. International variation in 
the prevalence of COPD (The BOLD Study): A 
population-based prevalence study. Lancet, 370: 
741-750. DOI: 10.1016/S0140-6736(07)61377-4 

Castañeda-Villa, S., N. Castaneda-Villa, R. Gonzalez-
Camarena and M. Mejia-Avila et al., 2013. 
Adventitious lung sounds imaging by ICA-TVAR 
scheme. Proceedings of the 35th Annual 
International Conference of the IEEE Engineering in 
Medicine and Biology Society, Jul. 3-7, IEEE 
Xplore Press, Osaka, pp: 1354-1357. 

 DOI: 10.1109/EMBC.2013.6609760 
Charleston-Villalobos, S., R. Gonzalez-Camarena, G. 

Chi-Lem and T. Aljama-Corrales, 2007. Crackle 
sounds analysis by eprcl mode decomposition. Eng. 
Med. Biology Magazine, 26: 40-47. 

 DOI: 10.1109/MEMB.2007.289120 
Chen, X., J. Shao, Y. Long, C. Que and J. Zhang et al., 

2014. Identification of Velcro rales based on 
Hilbert–Huang transform. Physica A: Statist. 
Mechanics Applic., 401: 34-44. 

 DOI: 10.1016/j.physa.2014.01.018 



Achmad Rizal et al. / Journal of Computer Sciences 2015, 11 (10): 1005.1016 

DOI: 10.3844/jcssp.2015.1005.1016 

 

1014 

Chien, J.C., M.C. Huang, Y.D. Lin and F.C. Chong, 
2006. A study of heart sound and lung sound 
separation by independent component analysis 
technique. Proceedings of the 28th Annual 
International Conference of the IEEE Engineering in 
Medicine and Biology Society, Aug. 30 -Sept. 3, 
IEEE Xplore Press, New York, pp: 5708-5711. 

 DOI: 10.1109/IEMBS.2006.260223 
Du, M., F.H.Y. Chan and F.K. Lam, 1997. Crackle 

detection and classification based on matched 
wavelet analysis. Proceedings of the 19th Annual 
International Conference of the IEEE Engineering in 
Medicine and Biology Society, 30 Oct-2 Nov, IEEE 
Xplore Press, Chicago, IL, pp: 1638-1641. 

 DOI: 10.1109/IEMBS.1997.757031 
Earis, J.E. and B.M.G. Cheetam, 2000. Current methods 

used for computerized respiratory sound analysis. 
Eur. Respir Rev., 10: 589-590. 

Emmanouilidou, D. and M. Elhilali, 2013. 
Characterization of noise contaminations in lung 
sound recordings. Proceedings of the 35th Annual 
International Conference of the IEEE Engineering in 
Medicine and Biology Society, Jul. 3-7, IEEE 
Xplore Press, Osaka, pp: 2551-2554. 

 DOI: 10.1109/EMBC.2013.6610060 
Emmanouilidou, D., K. Patil, J. West and M. Elhilali, 

2012. A multiresolution analysis for detection of 
abnormal lung sounds. Proceedings of the Annual 
International Conference of the IEEE Engineering in 
Medicine and Biology Society. Aug. 28 -Sept. 1, 
IEEE Xplore Press, San Diego, CA, pp: 3139-3142. 
DOI: 10.1109/EMBC.2012.6346630 

Emrani, S. and H. Krim, 2013. Wheeze detection and 
location using spectro-temporal analysis of lung 
sounds. Proceedings of the 29th Southern 
Biomedical Engineering Conference, May 3-5, 
IEEE Xplore Press, Miami, FL, pp: 37-38. 

 DOI: 10.1109/SBEC.2013.27 
Gnitecki, J. and Z. Moussavi, 2003. Variance fractal 

dimension trajectory as a tool for hear sound 
localization in lung sounds recordings. Proceedings of 
the 25th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, 
Sept. 17-21, IEEE Xplore Press, Cancun, Mexico, 
pp: 2420-2423. DOI: 10.1109/IEMBS.2003. 1280404 

Gnitecki, J. and Z. Moussavi, 2005. The fractality of lung 
sounds: A comparison of three waveform fractal 
dimension algorithms. Chaos, Solitons Fractals, 26: 
1065-1072. DOI: 10.1016/j.chaos. 2005.02.018 

Gross, V., L.J. Hadjileontiadis, T. Penzel and U. Koehler, 
2003. Multimedia database “Marburg Respiratory 
Sounds (MARS). Proceedings of the 25th Annual 
International Conference of the IEEE Engineering in 
Medicine and Biology Society, Sept. 17-21, IEEE 
Xplore Press, pp: 456-457. 

 DOI: 10.1109/IEMBS. 2003.1279717 

Guler, E.C., B. Sankur, Y.P. Kahya and S. Raudys, 2005. 
Two-stage classification of respiratory sound 
patterns. Comput. Biol. Med., 35: 67-83. 

 DOI: 10.1016/j.compbiomed.2003.11.001 
Hadjileontiadis, L.J. and S.M. Panas, 1997. Adaptive 

reduction of heart sounds from lung sounds using 
fourth-order statistics. IEEE Trans. Biomed. Eng., 
44: 642-648. DOI: 10.1109/10.594906 

Hadjileontiadis, L.J., 2009. A texture-based classification 
of crackles and squawks using lacunarity. IEEE 
Trans. Bio-Med. Eng., 56: 718-732. 

 DOI: 10.1109/TBME.2008.2011747 
Hashemi, A., H. Arabalibiek and K. Agin, 2011. 

Classification of wheeze sounds using wavelets and 
neural networks. Proceedings of the International 
Conference on Biomedical Engineering and 
Technology, (BET’ 11), pp: 127-131. 

Homs-Corbera, A., R. Jane, J.A. Fiz and J. Morera, 
2000. Algorithm for time-frequency detection and 
analysis of wheezes. Proceedings of the 22nd 
Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, IEEE 
Xplore Press, Chicago, IL, pp: 2977-2980. 

 DOI: 10.1109/IEMBS.2000.901504 
İçer, S. and Ş. Gengeç, 2014. Classification and analysis 

of non-stationary characteristics of crackle and 
rhonchus lung adventitious sounds. Digital Signal 
Process., 28: 18-27. DOI: 10.1016/j.dsp.2014. 02.001 

Jain, A. and J. Vepa, 2008. Lung sound analysis for 
wheeze episode detection. Proceedings of the 30th 
Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, IEEE 
Xplore Press, Vancouver, BC, pp: 2582-2585. 

 DOI: 10.1109/IEMBS.2008.4649728 
Jané, R., S. Cortes, J.A. Fiz and J. Morera, 2004. 

Analysis of wheezes in asthmatic patients during 
spontaneous respiration. Proceedings of the 26th 
Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, IEEE 
Xplore Press, pp: 3836-3839. 

 DOI: 10.1109/ IEMBS.2004.1404074 
Jin, F.,  S. Krishnan and F. Sattar, 2011. Adventitious 

sounds identification and extraction using temporal-
spectral dominance-based features. IEEE Trans. 
Biomed. Eng., 58: 3078-3087. 

 DOI: 10.1109/TBME.2011.2160721 
Jin, F., F. Sattar and D.Y.T. Goh, 2008. Automatic 

wheeze detection using histograms of sample 
entropy. Proceedings of the 30th Annual 
International Conference of the IEEE Engineering in 
Medicine and Biology Society, Aug. 20-25, IEEE 
Xplore Press, Vancouver, BC, pp: 1890-1893. 

 DOI: 10.1109/IEMBS.2008.4649555 
Jin, F., F. Sattar and D.Y.T. Goh, 2014. New approaches for 

spectro-temporal feature extraction with applications to 
respiratory sound classification. Neurocomputing, 123: 
362-371. DOI: 10.1016/j.neucom.2013.07.033 



Achmad Rizal et al. / Journal of Computer Sciences 2015, 11 (10): 1005.1016 

DOI: 10.3844/jcssp.2015.1005.1016 

 

1015 

Kahya, Y.P., E.C. Guler and B. Sankur, 1999. Statistical 
analysis of lung sound data. Proceedings of the 21st 
Annual Conference and the 1999 Annual Fall 
Metering of the Biomedical Engineering Society, 
Oct. 13-16, Atlanta, GA, pp: 1015-1015. 

 DOI: 10.1109/IEMBS.1999.804168 
Kahya, Y.P., M. Yeginer and B. Bilgic, 2006. 

Classifying respiratory sounds with different feature 
sets. Proceedings of the 28th Annual International 
Conference of the IEEE Engineering in Medicine 
and Biology Society, Aug. 30-Sept. 3, IEEE Xplore 
Press, New York, pp: 2856-2859. 

 DOI: 10.1109/IEMBS.2006.259946 
Kandaswamy, A., C.S. Kumar R.P. Ramanathan, S. 

Jayaraman and N. Malmurugan, 2004. Neural 
classification of lung sounds using wavelet 
coefficients. Comput. Biol. Med., 34: 523-537. 

 DOI: 10.1016/S0010-4825(03)00092-1 
Lazareck, L.J. and Z.K. Moussavi, 2002. Smart algorithm 

for automated detection of swallowing sounds. 
Proceedings of the European Medicine and Biology 
Engineering Conference, (BEC’ 02), pp: 1-4. 

Lin, B.S., H.D. Wu, F.C. Chong and S.J. Chen, 2006. 
Wheeze recognition based on 2D bilateral filtering of 
spectrogram. Biomed. Eng. Applic., Basis Commun., 
18: 29-38. DOI: 10.4015/ S1016237206000221 

Loudon, R. and R.L.H. Murphy, 1984. State of the art 
lung sounds. Am. Rev. Respiratory Disease, 130: 
663-673. DOI: 10.4015/S1016237206000221 

Lozano, M., J.A. Fiz and R. Jané, 2013. Estimation of 
instantaneous frequency from empirical mode 
decomposition on respiratory sounds analysis. 
Proceedings of the 35th Annual International 
Conference of the IEEE Engineering in Medicine 
and Biology Society, Jul. 3-7, IEEE Xplore Press, 
Osaka, pp: 981-984. 

 DOI: 10.1109/EMBC. 2013.6609667 
Lu, B., L.C. Huang, L.M. Hsu, S.H. Tang and         

H.D. Wu et al., 2013. Statistical perspective on 
noise cancellations of wheeze recordings by 
adjusting the sampling rates of sound card. 
Proceedings of the 8th International Conference on 
Information Technology and Applications (ITA’ 
13), Sydney, pp: 192-195. 

Maciuk, M., W. Kuniszyk-Jóźkowiak, A. Doboszyńska 
and M. Maciuk, 2012. Analysis of lung auscultatory 
phenomena using the wigner-ville distribution. 
Annales UMCS, Inform., 12: 7-16. 

 DOI: 10.2478/v10065-012-0016-0 
Mayorga, P., C. Druzgalski, O.H. Gonzalez and H.S. 

Lopez, 2012. Modified classification of normal lung 
sounds applying Quantile vectors. Proceedings of 
the Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, Aug. 
28-Sept. 1, IEEE Xplore Press, San Diego, CA, pp: 
4262-4265. DOI: 10.1109/EMBC.2012.6346908 

Mazic, I., S. Sovilj and R. Magjarevic, 2003. Analysis of 
respiratory sounds in asthmatic infants. Measure. 
Sci. Rev., 3: 9-12. 

McKusick, V.A., J.T. Jenkins and G.N. Webb, 1955. The 

acoustic basis of the chest examination; studies by 

means of sound spectrography. Am. Rev. Tuberc., 

72: 12-34. PMID: 14388206 

Melbye, H., 2001. Auscultation of the lungs: Still a 
useful examination. Tidsskrift Nor. Laegeforen., 
121: 451-454. PMID: 11255861 

Mondal, A., P. Bhattacharya and G. Saha, 2014. 
Detection of lungs status using morphological 
complexities of respiratory sounds. Sci. World J., 
2014: 1829-1838. DOI: 10.1155/2014/182938 

Oud, M., E.H. Dooijes and J.S. Van Der Zee, 2000. 
Asthmatic airways obstruction assessment based on 
detailed analysis of respiratory sound spectra. IEEE 
Trans. Biomed. Eng., 47: 1450-1455. 

 DOI: 10.1109/10.880096 
Palaniappan, R. and K. Sundaraj, 2013. Respiratory sound 

classification using cepstral features and support 
vector machine. Proceedings of the IEEE Recent 
Advances in Intelligent Computational Systems, Dec. 
19-21, IEEE Xplore Press, Trivandrum, pp: 132-136. 
DOI: 10.1109/RAICS.2013.6745460 

Palaniappan, R., K. Sundaraj and N.U. Ahamed, 2013a. 
Machine learning in lung sound analysis: A 
systematic review. Biocybernetics Biomed. Eng., 
33: 129-135. DOI: 10.1016/j.bbe.2013.07.001 

Palaniappan, R., K. Sundaraj, N.U. Ahamed, A. Arjunan 
and S. Sundaraj, 2013b. Computer-based respiratory 
sound analysis: A systematic review. IETE 
Technical Rev., 30: 248-256. 

 DOI: 10.4103/0256-4602.113524 
Pasterkamp, H., S.S. Kraman and G.R. Wodicka, 1997. 

Respiratory sounds: Advances beyond the 
stethoscope. Am. J. Respiratory Critical Care Med., 
156: 974-987. DOI: 10.1164/ajrccm.156.3.9701115 

Ponte, D.F., R. Moraes, D.C. Hizume and A.M. Alencar, 
2013. Characterization of crackles from patients 
with fibrosis, heart failure and pneumonia. Med. 
Eng. Phys., 35: 448-456. 

 DOI: 10.1016/j.medengphy.2012.06.009 
Reichert, S., R. Gass, C. Brandt and E. Andrès, 2008. 

Analysis of respiratory sounds: State of the art. Clin. 
Med. Circulatory, Respiratory Pulmonary Med., 2: 
45-58. PMID: 21157521 

Reyes, B.A., S. Charleston-Villalobos, R. Gonzalez-
Camarena and T. Aljama-Corrales, 2008. Analysis 
of discontinuous adventitious lung sounds by 
Hilbert-Huang spectrum. Proceedings of the 30th 
Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, Aug. 
20-25, IEEE Xplore Press, Vancouver, BC, pp: 
3620-3623. DOI: 10.1109/IEMBS.2008.4649990 



Achmad Rizal et al. / Journal of Computer Sciences 2015, 11 (10): 1005.1016 

DOI: 10.3844/jcssp.2015.1005.1016 

 

1016 

Rizal, A. and V. Suryani, 2008. Lung sound recognition 
using spectrogram and adaptive resonance theory 2 
neural network (ART2). Surabaya, Indonesia. 

Rizal, A., 2009. Lung sound classification using 
spectrogram and k-mean clustering. Surabaya, 
Indonesia. 

Rizal, A., L. Anggraeni and V. Suryani, 2006a. Normal 
lung sound classification using LPC and back 
propagation neural network. Proceedings 
International Seminar on Electrical Power, 
Electronics Communication, Control and 
Informatics, (CIS’ 06), pp: 6-10. 

Rizal, A., T.L.R. Mengko and A.B. Suksmono, 2006b. 
Lung sound recognition using wavelet packet 
decomposition and Adaptive Resonance Theory 2 
(ART2) neural network. Proceedings of the 
Biomedical Engineering Day, (BED’ 06), Bandung, 
Indonesia, pp: 2-6. 

Morillo, D.S., S.A. Morenoemail, M.Á.F. Graneroemail 
and A.L. Jiménezemail, 2013. Computerized 
analysis of respiratory sounds during COPD 
exacerbations. Comput. Biol. Med., 43: 914-921. 
DOI: 10.1016/j.compbiomed.2013.03.011 

Semmlow, J.L. and B. Griffel, 2014. Biosignal and 
Medical Image Processing. 3rd Edn., Taylor and 
Francis, Crc Press, ISBN-10: 1466567368, pp: 630. 

Serbes, G., C.O. Sakar, Y.P. Kahya and N. Aydin, 2013. 
Pulmonary crackle detection using time-frequency 
and time-scale analysis. Digital Signal Process. A 
Rev. J., 23: 1012-1021. 

 DOI: 10.1016/j.dsp.2012.12.009 
Shaharum, S.M., K. Sundaraj and R. Palaniappan, 2012. 

A survey on automated wheeze detection systems 
for asthmatic patients. Bosn J. Basic Med. Sci., 12: 
249-255. PMID: 23198941 

Sovijärvi, A.R.A., J. Vanderschoot and J.E. Earis, 2000. 
Standardization of computerized respiratory sound 
analysis Current methods used for computerized 
respiratory sound analysis. Eur. Respir. Rev., 10: 
974-987. 

Taplidou, S.A. and L.J. Hadjileontiadis, 2007. Wheeze 
detection based on time-frequency analysis of breath 
sounds. Comput. Biol. Med., 37: 1073-1083. 

 DOI: 10.1016/j.compbiomed.2006.09.007 
Taplidou, S.A., L.J. Hadjileontiadis, T. Penzel and V. 

Gross, 2003. WED: An efficient wheezing-episode 
detector based on breath sounds spectrogram analysis. 
Proceedings of the 25th Annual International 
Conference of the IEEE Date of Conference 
Engineering in Medicine and Biology Society, IEEE 
Xplore Press, Sept. 17-21, pp: 2531-2534. 

 DOI: 10.1109/IEMBS.2003.1280431 
 
 
 

Uysal, S., H. Uysal, B. Bolat and T. Yildirim, 2014. 
Classification of normal and abnormal lung sounds 
using wavelet coefficients. Proceedings of the 22nd 
Signal Processing and Communications 
Applications Conference, Apr. 23-25, IEEE Xplore 
Press, Trabzon, pp: 2138-2141. 

 DOI: 10.1109/SIU.2014.6830685 
Wang, B., L. Miao, H. Dong and Z. Zheng, 2012. The 

research of lung sound signals based on cepstrum 
analysis. Proceedings of the International 
Conference on Biomedical Engineering and 
Biotechnology, May 28-30, IEEE Xplore Press, 
Macau, Macao, pp: 934-938. 

 DOI: 10.1109/iCBEB.2012.439 
Ward, J.J., 2005. R.A.L.E lung sounds 3.1 profesional 

edition. Respiratory Care, 50: 1385-1388. 
Xu, J., J. Cheng and Y. Wu, 1998. A cepstral method for 

analysis of acoustic transmission characteristics of 
respiratory system. IEEE Trans. Bio-Med. Eng., 45: 
660-664. DOI: 10.1109/10.668757 

Yadollahi, A. and Z. Moussavi, 2009. Formant analysis 
of breath and snore sounds. Proceedings of the 
Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, Sept. 
3-6, IEEE Xplore Press, Minneapolis, MN, pp: 
2563-2566. DOI: 10.1109/IEMBS.2009.5335292 

Yamashita, M., M. Himeshima and S. Matsunaga, 2014. 
Robust classification between normal and abnormal 
lung sounds using adventitious-sound and heart-
sound models. Proceedings of the IEEE 
International Conference on Acoustics, Speech and 
Signal Processing, May 4-9, IEEE Xplore Press, 
Florence, pp: 4451-4455. 

 DOI: 10.1109/ICASSP.2014.6854437 
Yilmas, C.A. and Y.P. Kahya, 2006. Multi-channel 

classification of respiratory sounds. Proceedings of 
the 28th Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society, 
Aug. 30-Sept. 3, New York, pp: 2864-2867. 

 DOI: 10.1109/IEMBS.2006.259385 


