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Abstract: With the growth in computing power, speech recognition 

carries a strong potential in the near future. It has even become 

increasingly popular with the development of mobile devices. 

Presumably, mobile devices have limited computational power, 

memory size and battery life. In general, speech recognition 

operation requires heavy computation due to large samples per 

window used. Fast Fourier Transfom (FFT) is the most popular 

transform to search for formant frequencies in speech recognition. In 

addition, FFT operates in complex fields with imaginary numbers. 

This paper proposes an approach based on Discrete Tchebichef 

Transform (DTT) as a possible alternative to FFT in searching for the 

formant frequencies. The experimental outputs in terms of the 

frequency formants using FFT and DTT have been compared. 

Interestingly, the experimental results show that both have produced 

relatively identical formant shape output in terms of basic vowels 

and consonants recognition. DTT has the same capability to 

recognize speech formants F1, F2, F3 on real domains. 

 

Keywords: Formant Estimation, Discrete Tchebichef Transform, Spectrum 

Analysis, Fast Fourier Transform, Orthogonal Transform Function 

 

Introduction 

Speech recognition systems have become one of the 

useful applications for pattern recognition, machine 

learning, computer-assisted translation and mobile 

devices. Speech is a natural source of interface for 

human machine communication (Erzin, 2009). Formant 

frequency is a significant parameter to interpret 

linguistic as well as non-linguistic speech word 

(Tomas and Obad, 2009). Formant frequency is an 

important element speech feature and rich source of 

information of the uttered word in speech recognition. 

The formant is associated with the free resonance of 

the vocal-tract system (Fattah et al., 2009). 
A detection of the formant frequencies via Fast 

Fourier Transform (FFT) is one of the fundamental 

operations in speech recognition. The FFT is often used 

to compute numerical approximations to continuous 

Fourier transform. However, a straightforward 

application of the FFT often requires a large window to 

be performed even though most of the input data to the 

FFT may be zero. FFT algorithm is a computationally 

complex which requires operating on an imaginary 

domain. It is a complex exponential function that 

defines a complex sinusoidal function. 

The Discrete Tchebichef Transform (DTT) is another 

transform method based on discrete Tchebichef 

polynomials. DTT has a lower computational 

complexity and it does not require complex transform 

unlike continuous orthonormal transforms (Ernawan et al., 

2011a). At the same time, DTT does not involve any 

numerical approximation on a computationally friendly 

domain. The Tchebichef polynomials have unit weight 

and algebraic recurrence relations involving real 

coefficients. These factors in effect make DTT suitable for 

transforming the speech signal from time domain into 

frequency domain. In the previous work, DTT has been 

applied in audio processing and image processing 

applications. For example, DTT has been used in speech 
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recognition (Ernawan et al., 2012a), image projection, 

image super resolution (Abu et al., 2009), image dithering 

(Ernawan et al., 2012b)  and  image compression 

(Ernawan et al., 2011b; 2013a; Abu et al., 2010). 

Material and Methods 

The input sounds of five vowels and five consonants 

being used here in this paper are coming from male 

voices at a sampling rate of 11 KHz per second from the 

International Phonetic Alphabet. A sample sound of the 

vowel ‘O’ is shown in Fig. 1. This section provides a 

brief overview on the existing of mathematical 

transforms, namely, Fast Fourier Transform (FFT) and 

Discrete Tchebichef Transform (DTT). 

Fast Fourier Transform 

The standard spectrum analysis method for speech 

analysis is the FFT (Saeidi et al., 2010). FFT is a simple 

class of special algorithm that perform Discrete Fourier 

Transform (DFT) with considerable savings in 

computational time. FFT is applied to convert time 

domain signals into frequency domains on the speech 

signals. The FFT takes advantage of the symmetry and 

periodic properties of the Fourier transform to reduce the 

computational time. In this process, the transform is 

partitioned into a sequence of reduced-length transforms 

that are collectively performed with reduced 

computation. FFT is much faster for large values of N, 

where N is the number of samples in the sequence 

(Sukumar et al., 2010). In short, FFT is a complex 

transform which operates on an imaginary number by a 

special algorithm. FFT has not been changed nor being 

upgraded for several decades. 

Discrete Tchebichef Transform 

In previous research, Mukundan found that the 

discrete orthonormal Tchebichef moments appear to 

provide a much better support than continuous 

orthogonal moments (Ernawan et al., 2013b). The 

discrete orthonormal Tchebichef polynomials are more 

stable especially whenever Tchebichef polynomials of 

large degree are required to be evaluated. Speech 

recognition requires large samples of data in speech 

signal processing. To avoid such problems, the 

orthonormal Tchebichef polynomials use the set 

recurrence relation to approximate the speech signals. 

For a given positive integer N (the vector size) and a 

value n in the range [1, N-1], the orthonormal version 

of the one dimensional Tchebichef function is given by 

the following recurrence relations {tk} of moment order 

k in polynomials tk(n) (Jassim and Paramesran, 2009): 

 

1 2 3( ) ( ) ( ) ( ),k k -1 k -1 k -2t n a nt n a t n a t n= + +  (1) 
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The starting values for the above recursion can be 

obtained from the following Equations: 
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The recurrence relation to compute the polynomial 

value for tk(n) recursion is given below (Jassim and 

Paramesran, 2009): 
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The forward discrete Tchebichef transform of order N 

is defined in Equation 12 as follows: 
 

1

0

( ) ( ) ( )k
n

X k x n t n
=
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 (12) 

 

For k = 0,1,…, N-1. The X(k) denotes the 

coefficient of orthonormal Tchebichef polynomials. 
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The inverse discrete Tchebichef transform is given in 

Equation 13 by: 

 
1

0

( ) ( ) ( )
N

k
k

x n X k t n
−

=

=∑  (13) 

For n = 0,1,…,N-1. The Tchebichef transform involves 

only algebraic expressions and it can be computed easily 

using a set of recurrence relations in Equations 1-11 

above. The first five discrete orthonormal Tchebichef 

polynomials are shown in Fig. 2.

 

 

 
Fig. 1. The sample sound of the vowel ‘O’ 

 

 

 
Fig. 2. The first five discrete orthonormal Tchebichef polynomials tk(n) for k = 0,1,2,3 and 4 
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Results 

This section presents a step-by-step process on the 

speech recognition algorithm. This section also explores 

the experimental results on each step of the speech 

recognition. The speech recognition involves silence 

detector, pre-emphasis, speech signal windowed, power 

spetral density and autoregressive model. 

Silence Detector 

Speech signals are highly redundant and typically 

contain a variety of background noise (Dalen and 

Gales, 2011). Unfortunate effect from the background 

noise has a severe impact on the performance of 

speech recognition system. By removing the silence 

part, the speech sound can provide useful information 

of each utterance. Certain level of the background 

noise interfere with the speech. At the same time, 

silence regions have quite a high zero-crossings rate 

as the signal changes from one side of the zero 

amplitude to the other and back again. For this reason, 

the threshold is included in order to remove any zero-

crossings. In this experiment, the threshold is set to be 

0.1. This means that any zero-crossings that start and 

end within the range of tα, where -0.1<tα<0.1, are not 

included in the total number of zero-crossings in that 

window. 

Pre-Emphasis 

Pre-emphasis is a technique used in speech 

processing to enhance high frequency signals. It 

reduces the high spectral dynamic range. The use of 

pre-emphasis is to flatten the spectrum consisting of 

formants of similar heights. Pre-emphasis is 

implemented as a first-order Finite Impulse Response 

(FIR) filter which is defined in Equation 14 as 

follows: 

 

= ( ) - [ -1]nS E n αE n  (14) 

 

where, α is the pre-emphasis coefficient. A value used 

for α is typically around 0.9 to 0.95. E(n) is the 

sample data which represents speech signal with n 

within 0≤n≤ N-1, where N is the sample size which 

represents speech signal. The speech signals after pre-

emphasis of the vowel ‘O’ is shown in Fig. 3. 

Speech Signal Windowed 

Speech recognition consumes a heavy process that 

requires large samples of data which represent speech 

signal for each frame. FFT is calculated on a window 

of speech frame (Mahmood et al., 2012). A 

windowing function is used on each frame to smooth 

the signals and make it more amendable for spectral 

analysis. Hamming window is a window function used 

commonly in speech analysis to reduce the sudden 

changes and undesirable frequencies occurring in the 

framed speech. Hamming window is defined in 

Equation 15 as follows: 

 

2
( ) 0.54 0.46

1

k
w k cos

L

π = −  − 
 (15) 

 

where, L represents the width of Sn and k is an integer, 

with values 0≤k≤L-1. The resulting windowed segment 

is defined in Equation 16 as follows: 

 

( ) ( )nx k S w k= ⋅  (16) 

 

where, Sn is the signal function and w(k) is the 

window function on FFT. Whereas, DTT consists of 

only algebraic expressions and the Tchebichef 

polynomial matrix can be constructed easily using a 

set of recurrence relations. Therefore the window is 

very inefficient when the sample data are multiplied 

by a value that is close to zero. Any transition 

occurring during this part of the window will be lost 

so that the spectrum is no longer true real time. 

Speech recognition using DTT does not use windowing 

function. In this paper, a sample speech signal has been 

windowed into 4 frames as illustrated in Fig. 4. 

Each window consists of 1024 sample data which 

represents speech signal. This blocking assumes that 

the signals are stationary within each frame. The 

windowed signal is then transformed into spectral 

domain, giving good discrimination and energy 

compaction. In this experiment, the third frame for 

2049-3072 sample data is used. The speech signals 

using FFT of the vowel ‘O’ are shown in Fig. 5. The 

speech signals using DTT of the vowel ‘O’ are shown 

in Fig. 6. 

DTT Coefficient 

Consider the discrete orthonormal Tchebichef 

polynomials definition in 1-12 above, the set of 

coefficients on discrete Tchebichef transform is given 

in Equation 17 and 18. A set of kernel matrix 1024 of 

Tchebichef polynomials are computed with speech 

signal on each window. The coefficients of DTT of 

order n = 1024 sample data for each window are given 

using the formula as follows: 

 

TC = S  (17) 
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where, C is the coefficient of discrete Tchebichef 

transform, which represented by c0, c1, c2, ….,cn-1. T is 

a matrix computation of discrete orthonormal 

Tchebichef polynomials tk (n) for k = 0,1,…., N-1. S is 

the sample of speech signal window which is given by 

x0, x1, x2, …, x(n-1). The coefficient of DTT is given in 

Equation 19 as follows: 

 
-1C = T S  (19) 

 

Next, speech signal on frame 3 is computed with 

1024 discrete orthono1rmal Tchebichef polynomials.  

Spectrum Analysis 

The spectrum analysis using FFT can be generated in 
Equation 20 as follows: 

 
2

( ) ( )p k c n=  (20) 

 

The spectrum analysis using FFT of the vowel ‘O’ is 

shown in Fig. 7. The spectrum analysis using DTT can 

be defined in Equation 21 and 22 as follows: 

 
2( ) ( )p k c n=  (21) 

 

( )
( )

( )k

x n
c n

t n
=  (22) 

 

where, c(n) is the coefficient of DTT, x(n) is the sample 

data at time index n and tk(n) is the computation matrix 

of orthonormal Tchebichef polynomials. The spectrum 

analysis using DTT of the vowel ‘O’ is shown in Fig. 8.  

Power Spectral Density 

Power Spectral Density (PSD) shows the strength of 

the variations (energy) as a function of frequency. In 

other words, it shows the frequencies at which variations 

are strong and at which frequency variations are weak. 

The one-sided power spectral density using FFT can be 

computed in Equation 23 as follows: 

 
2

2 1

( )
( ) 2

( )

X k
ps k

t t
=

−
 (23) 

where, X(k) is a vector of N values at frequency index 

k, the factor 2 is called for here in order to include the 

contributions from positive and negative frequencies. 

The result is precisely the average power of spectrum 

in the time range (t1, t2). The power spectral density in 

(23) and (24) are plotted on a decibel (dB) scale of 

20log10. The power spectral density using FFT for 

vowel ‘O’ on frame 3 is shown in Fig. 9. The power 

spectral density using DTT can be generated in Equation 

24 as follows: 

 
2

2 1

( )
( ) 2

( )

c n
pw k

t t
=

−
 (24) 

 

where, c(n) is the coefficient of discrete Tchebichef 

transform. The power spectral density using DTT for 

vowel ‘O’ on frame 3 is shown in Fig. 10. 

Autoregressive Model 

Autoregressive (AR) models are used for linear 

prediction model (Hsu and Liu, 2010) to obtain all pole 

estimate of the signal’s power spectrum. Autoregressive 

model is used to determine the characteristics of the 

vocal and to evaluate the formants. The autoregressive 

process of a series yj using FFT of order v is given in 

Equation 25 as follows: 

 
v

1
j k j -k j

k

y a q e
=

= − ⋅ +∑  (25) 

 

where, ak are real value autoregression coefficients, qj 

represents the inverse FFT from power spectral 

density and v is set to 12. The peaks of frequency 

formants using FFT in autoregressive for vowel ‘O’ 

on frame 3 are shown in Fig. 11. The autoregressive 

process of a series yj using DTT of order v is given in 

Equation 26 as follows: 

 

1

v

j k j -k j
k

y a c + e
=

= − ⋅∑  (26) 

 

where, ak are real value autoregression coefficients, v 

is 12 and cj is the coefficient of DTT at frequency 

index j. ej represents the errors that are term 

independent of past samples. The frequency formants 

using DTT which are autoregressive for vowel ‘O’ on 

frame 3 are shown in Fig. 12.  

Frequency Formants 

The uniqueness of each vowel is measured by 

formants. The resonance frequencies known as 
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formant can be detected as the peaks of the magnitude 

spectrum of speech signals. Formants are defined as the 

resonance frequencies of the vocal tract which are 

formed by the shape of vocal tract (Ozkan et al., 2009). 

A formant is a characteristic resonant region (peak) 

in the power spectral density of a sound. Next, the 

frequency formants shall be detected. The formants of 

the autoregressive curve are found at the peaks using a 

numerical derivative. These vector positions of the 

formants are used to characterize a particular vowel. The 

first two formants (F1, F2) of a vowel utterance cue the 

phonemic identity of the vowel (Patil et al., 2010). The 

third formant F3 is also important for vowel 

categorisation (Kiefte et al., 2010). However, it is 

frequently excluded from vowel plots overshadowed by 

the first two formant. 

The frequency peak formants of the experiment 

result F1, F2 and F3 are compared to referenced 

formants to decide on the output of the vowel. The 

frequency formants of the five vowels and the five 

consonants using FFT and DTT on frame 3 are as 

shown in Table 1 and 2 respectively.

 
Table 1. Frequency formants of five vowels 

 FFT   DTT 

 ---------------------------------------------------------- --------------------------------------------------------- 

Vowel F1 F2 F3 F1 F2 F3 

i 215 2444 3434 226 2411 3466 

e 322 1453 2401 301 1485 2357 

a 667 1055 2637 581 979 2670 

o 462 689 3208 452 710 3219 

u 247 689 3413 301 699 3380 

 
Table 2. Frequency formants of five consonants 

 FFT   DTT 

 ---------------------------------------------------------- --------------------------------------------------------- 

Consonant F1 F2 F3 F1 F2 F3 

k 796 1152 2347 721 1130 2336 

n 764 1324 2519 839 1345 2508 

p 785 1076 2573 753 1065 2562 

r 635 1281 2121 624 1248 2131 

t 829 1152 2519 796 1141 2530 

 

 

  

Fig. 3. Speech signals after pre-emphasis of the vowel ‘O’ 
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 Frame 1  Frame 2  

 

 
 Frame 3 Frame 4 

 
Fig. 4. Speech signal windowed into four frames 

 

 
 
Fig. 5. Imaginary part of FFT for speech signal of vowel 

‘O’ on frame 3 

 

 
Fig. 6. Coefficient of DTT for speech signal of the vowel 

‘O’ on frame 3 
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Fig. 7. Imaginary part of FFT for spectrum analysis of the 

vowel ‘O’ on frame 3 

 

 
 
Fig. 8. Coefficient of DTT for spectrum analysis of the 

vowel ‘O’ on frame 3 

 

 
 
Fig. 9. Power Spectral Density using FFT for vowel ‘O’ on 

frame 3 

 

 
Fig. 10. Power spectral density using DTT for vowel ‘O’ on 

frame 3 

 

 

 
Fig. 11. Autoregressive using FFT for vowel ‘O’ on frame 3 

 

 
 
Fig. 12. Autoregressive using DTT for vowel ‘O’ on frame 3 
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Discussion 

In the sample above, the experimental result are 

presented on how the vowels and consonants are 

recognized. The experimental result on speech 

recognition using FFT and DTT is compared and 

analyzed. Speech signals of the vowel ‘O’ using FFT as 

in Fig. 5 produce a speech signal that is clearer compared 

to the DTT. On the other hand, the speech signals of the 

vowel ‘O’ and consonant ‘RA’ using DTT as presented 

in Fig. 6 produce more noise. 

Next, spectrum analysis of the vowel ‘O’ using 

FFT as in Fig. 7 produces a lower power spectrum 

than DTT. On one hand, spectrum analysis using DTT 

as in Fig. 8 has a higher power spectrum than FFT. It 

is also capable of capturing the fourth formant for 

consonant ‘RA’. Spectrum analysis using DTT 

produces four formants F1, F2, F3 and F4 concurrently 

in spectrum analysis for a consonant. The power 

spectral density of vowel ‘O’ using FFT as in Fig. 9 

shows that the power spectrum is higher than power 

spectral density using DTT. Next, the power spectral 

density using DTT in Fig. 10 produce more noise than 

FFT in frequency spectrum. 

According to the observation as presented in Fig. 11 and 

12, the peaks of first frequency formant (F1), second 

frequency formant (F2) and third frequency formant (F3) 

using FFT and DTT respectively appear to produce 

identically quite similar output. Based on the result of 

the experiment as presented in Table 1 and 2, the result 

of frequency formants of speech recognition using FFT 

and DTT for five vowels and five consonants 

respectively is nearly equally similar. 

The result showed that the peaks of five vowels and 

five consonants using DTT are identically similar to FFT 

in terms of vowel and consonant recognition. DTT is 

able to capture all three formants concurrently, F1, F2 and 

F3. The frequency formants using FFT and DTT are 

compared and it is evident that they have produced 

relatively identical outputs in terms of speech 

recognition. DTT indeed has the potential to perform 

well in terms of basic vowel and consonant recognition. 

Conclusion 

Speech recognition using FFT has been a popular 

form of transform over the last decades. Alternatively, this 

paper introduces DTT on speech recognition. As a discrete 

orthonormal transform, DTT produces a simpler and more 

computationally efficient transform than FFT. On the 

one hand, FFT is computationally more complex dealing 

with imaginary numbers but DTT on the other hand 

consumes simpler computation on real rational 

numbers only. Therefore, DTT operates on friendly 

domain which involves only algebraic expressions and 

it can be computed easily using a set of recurrence 

relations. It is ideal for discrete transform in speech 

recognition to transform from the time domain into the 

frequency domain. The autoregressive model using 

FFT and DTT produces the smoother similar shape. 

DTT has proven to perform better in a smaller frame 

size in the recognition of vowels and consonants. 

Furthermore, speech recognition using DTT can be 

extended in the future in terms of time complexity. On 

one hand, FFT algorithm produces the time 

complexity O (nlog n). Next, the computation time of 

DTT produces time complexity O(n
2
). For future 

research, DTT can be efficiently improved to reduce 

the time complexity from O(n
2
) to be O(nlog n) using 

convolution algorithm. DTT is capable of increasing 

the speech recognition performance and at the same 

time getting the similar frequency formants in terms 

of speech recognition. 
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