

© 2016 Shomanov Aday and Mansurova Madina. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Novel Apache Spark based Algorithm to Solve Dirichlet

Problem for Poisson Equation in 3D Computational Domain

Shomanov Aday and Mansurova Madina

Department of Computer Science, al-Farabi Kazakh National University, Almaty, Kazakhstan

Article history

Received: 09-08-2016

Revised: 04-10-2016

Accepted: 14-12-2016

Corresponding Author:

Shomanov Aday

Department of Computer

Science, al-Farabi Kazakh

National University, Almaty,

Kazakhstan
Email: adai.shomanov@gmail.com

Abstract: Parallel computations are essential tool in solving large-scale

computationally demanding problems. Due to large diversity and

heterogeneity of the currently available parallel processing techniques and

paradigms it is usually difficult to find the right solution that will perform

well according to every performance metric. As one of the recent

developments in parallel computing Apache Spark framework allows to

process petabyte-scale data and possesses properties such as fault tolerance,

scalability, load balancing and mechanisms of in memory computations

across nodes of the cluster. All of these features are attractive for high

performance scientific computing. It has been shown that Apache Spark

outperforms Hadoop implementation of some machine learning algorithms

by orders of magnitude. Since Hadoop platform is not well suited for

iterative computing, typical for many computational problems, in this study

we investigate performance characteristics of Apache Spark on scientific

computing problems, particularly for solving Dirichlet problem for

Poisson’s equation. An algorithm for solving Dirichlet problem for

Poisson’s equation is described and analyzed and compared to optimized

Hadoop-based implementations. Apache Spark uses new distributed data

structure called RDD. Presented algorithm consists of operations on RDD

such as mapping, grouping and partitioning. The benefits and drawbacks of

the algorithm as well as applicability for stencil type computations are

discussed and analyzed.

Keywords: Hadoop, Spark, RDD, HPC

Introduction

In a modern world there are a lot of large-scale and

computationally intensive problems that require highly

efficient and well designed approaches to solve them.

Historically, large-scale computational problems have been

solved by means of HPC clusters using MPI paradigm

where the main complexity was to design computational

domain, perform the most efficient domain decomposition

schemes and algorithms and find cost-effective and feasible

hardware solutions. MPI has some drawbacks such as idle

CPU usage while exchanging data between nodes,

reliability and data loss due to node failures or network

collapses. Hadoop is a distributed computing platform that

uses MapReduce paradigm applied to data stored in

Hadoop Distributed File System (HDFS). Hadoop

possesses some advantages such as fault tolerance,

scalability and load balancing. Node failures in Hadoop do

not necessarily lead to termination of the program and in

cases when data on the failed nodes had been previously

properly replicated computation can be continued without

any complications. Hadoop, on the other hand, is not

designed to solve iterative problems efficiently and in

general lacks data exchange mechanisms between nodes.

We, therefore, designed and implemented our novel

approach using Apache Spark with the aim to resolve

some of the above mentioned drawbacks of using MPI

only or Hadoop only approaches for large-scale scientific

computational problems.
Apache Spark is a framework for large-scale data

processing with the following main features

(Zaharia et al., 2010):

Data abstractions called Resilient Distributed Datasets

(RDD), which allow to perform bulk operations on the

data in parallel and cache intermediate results in memory.

Each RDD consists of several data blocks that are divided

Shomanov Aday and Mansurova Madina / Journal of Computer Sciences 2016, 12 (10): 502.509

DOI: 10.3844/jcssp.2016.502.509

503

across cluster nodes (Fig. 1). Operations on RDD can be

of two types: Transformations and actions (Fig. 2).

Transformations in Spark are performed lazily, i.e.,

application of transformations is delayed until some

action on RDD is performed. Whereby, Spark can

optimize execution of transformations, for example, by

rearranging the order in which they are applied.

In memory caching of RDD data is performed in

order to optimize the speed of data access operations

later in computation process. Caching is performed on

each partition of RDD. Since partitions may reside on

different nodes of the cluster caching is performed

separately on each node.

RDD offers the following set of main

transformations: Map, filter, flatMap, groupByKey,

union, join, crossProduct. The following are the main

actions performed on RDD: Count, collect, reduce, save.

From Fig. 1 it can be seen that the data blocks from

the same RDD might be placed on different cluster

nodes. To forcefully put data from one partition of RDD

to single physical node there exist special partitioning

tools provided by Spark. Consequently, by using

partitioning tools data placement in a cluster can be

controlled according to specific purposes of the problem.

Besides the ability to persist data in memory such

that later operations could be performed sufficiently fast

RDD also exploits data locality property. Data locality

property implies that each task should perform

operations on those partitions of RDD which are located

on its own local memory or which can be fetched from

other nodes with minimal network workload and

computational resources used.

Hadoop has poor performance on iterative tasks since

each iteration results in the loss of the job`s execution

context and consequently necessary data for the next

iteration should be loaded again in memory from HDFS.

Contrary to that RDD keeps as much necessary data in

memory as possible.

Fig. 1. Apache spark RDD design

Fig. 2. Spark workflow for single operation list

Shomanov Aday and Mansurova Madina / Journal of Computer Sciences 2016, 12 (10): 502.509

DOI: 10.3844/jcssp.2016.502.509

504

Figure 2 shows the general scheme how Spark

performs operations on RDD. There is some set of

transformations followed by actions. Actions result

either in creating new RDD or dumping data into

HDFS file system.

Fault-tolerance in RDDs is achieved through keeping

lineage i.e. set of particular transformations that have led

to the current state of RDD. If some data is lost due to

node failure, transformations can be performed again in

that particular set of nodes that kept replica of the data

stored in the failed node and after that RDD will be

restored back to its current state.

We present in our work an iterative Apache Spark

solution to the Dirichlet problem for Poisson’s equation

on three-dimensional computational domain which

allows efficient iterative execution and additionally

provides caching of locally kept chunks of data.

Related Work

There is large scope of problems in different areas of

science that have already been successfully solved by

using Apache Spark (Freeman, 2014; Horlacher et al.,

2014; Zhao et al., 2015). Apache Spark development

initially was motivated by low performance of machine

learning tools for large-scale data processing available at

the time. Now Spark offers much broader range of

techniques to tackle different kinds of problems.

There are currently not so many alternatives to

choose from to replace or augment MPI computational

paradigm for large-scale scientific problems with

iterative schemes and research is ongoing with varied

success in this important field.

The obvious advantage of MPI over Apache Spark is

that MPI potentially could be broadened to wide range of

applications in HPC and still be sufficiently fast.

However, the main issue with MPI is its lack of built-in

failure resistance. Failures could be problematic for

long-running jobs in setting of large number of

computing nodes. There are different approaches to

avoid failures in MPI environment but they are tedious

and error-prone to implement. Thorough treatment of

these approaches are given in (Gropp and Lusk, 2004).

Apache Spark design essentially can be treated as a
generalization of Mapreduce programming paradigm in

the context of distributed programming models.

Mapreduce can be viewed as a series of parallel map
tasks followed by series of parallel reduce tasks.

Functionality of the map is to derive key/value pairs
from raw input according to some criteria. Reduce on the

other hand takes list of values with specified key as an

input and outputs different set of key/value pairs
generated from the input list. Spark offers aside from

map and reduce several other operations mentioned
earlier and in general abstracts away these operations

into transformation concept.

Many works are devoted to improving speed of

running Mapreduce based programs. In (Li et al., 2016)

authors describe several avenues for improvement in

Hadoop Mapreduce framework:

• Developing more efficient job scheduling

mechanism that takes into account non

homogeneous distribution of resources in a

distributed system

• Improving programming model by developing

advanced iterative processing routines that would

allow more efficient job execution

• Developing more convenient real-time processing

by improving streaming functionality

• Extending the capabilities of the system by allowing

parallel execution of map and reduce tasks

Apache Spark is believed to show better performance

according to second and third items shown above.

Apache Spark is based on RDD distributed data

structure storage. In (Zaharia et al., 2012) authors

described RDD internal design and properties and

demonstrated its ability to perform in-memory

computations on large clusters in a fault-tolerant way. In

the paper authors also reported large speed-up on

iterative graph and machine learning algorithms by using

Apache Spark over PGAS and Hadoop. Considering

conceptual differences of global-memory access

languages such as PGAS and other parallel programming

languages with different memory abstractions there is a

trade-off between maintaining granularity of elements in

memory and performing bulk operations on these

elements. The main advantage over PGAS model is that

RDD operations are coarse-grained therefore reducing

overhead of storing states of each element in a

distributed environment.

In (Lu et al., 2014; Lu and Liang, 2016) authors

presented a new high-performance communication library

based on MPI communication primitives called DataMPI.

As a result they showed that using DataMPI

communication primitives one could achieve performance

gain of up to 32% compared to Hadoop communication

primitives. Authors also generalize communication

patterns into 4D bipartite communication model and key-

value communication model, which fits into the

requirements of Hadoop-like system specifications and

could potentially lead to better design of communication

sub-systems in Big Data frameworks.

In (Reyes-Ortiz et al., 2015) authors compare Apache

Spark performance with MPI/OpenMP based on KNN

and Pegasos SVM machine learning algorithms. The

results showed that MPI/OpenMP approach is still more

than 10 times faster in terms of running time, however,

one should note that Spark has an advantage of caching

and authors did not mention this in their paper.

Shomanov Aday and Mansurova Madina / Journal of Computer Sciences 2016, 12 (10): 502.509

DOI: 10.3844/jcssp.2016.502.509

505

In (Lu et al., 2011) authors describe hybrid framework

of using MPI as a pipeline to exchange an intermediate

data between concurrently running reduce and map

processes. The resulting solution outperforms some of the

Hadoop or MPI-Mapreduce implementations on three

applications: WordCount, Distributed Inverted Indexing

and Distributed Approximate Similarity Search.

Parallel Algorithm for Solving the Dirichlet

Problem for Poisson’s Equation using

Hadoop Spark

Dirichlet problem arises in many areas of physics

such as fluid dynamics, electromagnetism and gravity

due to its ability to describe the behavior of fluid,

electric, gravitational potentials. Exact analytical

solutions for Dirichlet problem is only limited by

specific cases in appropriate domains therefore in

majority of situations numerical approaches to find

solution to the problem is applied.

3D model of Dirichlet problem for Poisson’s

equation in a hypercube domain D = {(x,y,z):

0≤x≤l1,0≤y≤l2,0≤z≤l3} can be described by the following

set of equations:

()

()

2 2 2

2 2 2
, ,

, ,

u u u
f x y z

x y z

u x y zϕΓ

∂ ∂ ∂
+ + =

∂ ∂ ∂

=

Let define number of mesh points in x, y and z

coordinates to be equal to N1, N2 and N3. Then we

could obtain computational mesh with step size

1

1

l
x

N
∆ = in x direction, 2

2

l
y

N
∆ = in y direction and

3

3

l
z

N
∆ = in z direction.

Performing discretization using finite-difference

method we obtain the following explicit iterative

scheme:

1

, ,

1, , 1, , , 1, , 1,

2 2

2 2 2

, , 1 , , 1

, ,2

2 2 2

n

i j k

n n n n

i j k i j k i j k i j k

n n

i j k i j k

i j k

u

u u u u

x y

x y zu u
f

z

+

+ − + −

+ −

 + +
+

 ∆ ∆ = + + ∆ ∆ ∆ + + −
∆

where, ui,j,k and fi,j,k -values of u and f functions in (i,j,k)

point of computational mesh.

Here we briefly overview the general idea behind

Hadoop-based algorithm for solving Dirichlet problem

for Poisson equation proposed by the authors in different

paper (Mansurova et al., 2014).

Hadoop based implementation for solving Dirichlet

problem has the following general structure:

Step 1. In Map phase algorithm maps each point in

computational domain to certain reducer that

will perform computations in its own sub-

domain.

Step 2. In Reducer phase each point is mapped inside

three-dimensional array to perform stencil

computations according to Poisson`s equation

difference scheme. The computed new internal

points in current iteration are stored to local

file system to avoid redistribution of them

across the nodes of the cluster during the next

iteration and new boundary points are reduced

and written to output HDFS directory.

Step 3. If iteration count is reached the limit program

will terminate, otherwise algorithm will continue

with step 1.

Apache Spark algorithm for solving Dirichlet

problem for Poisson equation uses object based

representation of points in the computational domain.

Point class is used for storing single point in

computational mesh. Every point consists of the

following properties: Integer partition_id, integer

number x for x coordinate, integer number y for y

coordinate, integer number z for z coordinate,

floating-point number value for value in specific point

(x,y,z) of the discrete mesh. Partition property is

responsible for storing partition number of the point

that is sub-domain identifier.

Algorithm general scheme is depicted in the Fig. 3.

Algorithm consists of several steps each step performs

certain operations on RDDs. For the algorithm we have

chosen 1D domain decomposition method.

1D decomposition method tells that domain should

be divided by x coordinate into contiguous sub-arrays.

Number of sub-arrays should be specified beforehand

in a driver program. Since we need to perform stencil

computations for every point in computational domain

we have to specify procedure by which to perform

exchange of boundary values between neighboring sub-

domains in the end of the each iteration.

Stepwise description of the algorithm is described by

the following scheme:

Step 1. Generate initial computational domain and store

points in RDD<Point>

Step 2. Map each entry of RDD<Point> to

PairRDD<key,Point>, where key represent

partition number and the value is a Point.

Step 3. Perform grouping operation such that points are

divided into several partitions where operations

on each partition are performed in parallel

Shomanov Aday and Mansurova Madina / Journal of Computer Sciences 2016, 12 (10): 502.509

DOI: 10.3844/jcssp.2016.502.509

506

Step 4. Perform mapping transformation on each

partition in a following way:

• Create 3-dimensional array for every partition and

map values of points of that partition to

corresponding elements of that array

• Perform computation on partitions based on

obtained Poisson’s equation’s difference scheme

• Map back elements of 3-dimensional array to list of

points

• Return as a result of map operation list of newly

computed values of points stored in RDD<Point>

Step 5. Check for termination condition:

• If termination condition is met go to step 6

• If termination condition is not met go to step 2

Step 6. Store resulting values of points in HDFS

(Hadoop distributed file system)

Important to note that before performing any actions

or transformations on PairRDD<key,Point> we have

done additional partitioning in order to specify that each

partition should be located on separate cluster node. This

is necessary optimization in order to avoid huge network

resources utilization and therefore very poor

performance of the program.

The slowest part of the algorithm is generating initial

computational domain since it cannot be performed in

parallel due to design of Spark`s RDD storage

abstractions. This operation is performed in 3 steps:

• Generate points sequentially on master node

• Write points to HDFS

• Extract points from HDFS to RDD

Since each partition of RDD is defined to store only

points with only one certain key, according to algorithm

there must exist mechanism to exchange boundary points

between different partitions. The main bottleneck in this

algorithm is additional overhead associated with

performing that exchange. In order to perform exchange

operation we need to apply mapping, grouping and

partitioning transformations in each iteration of the

algorithm. Mapping transformation will map Point

elements into tuple of Point and partition number.

Partition number is identified by Point coordinates. After

that Points are grouped together by applying groupByKey

transformation and finally every partition is separated into

locations by applying partitionBy transformation. Such

operations slightly degrade performance of the program

leading to moderate speed-up.

The major difference between Hadoop based

implementation and Spark implementation is that Spark

solution uses in-memory computations and thus is suited

better for iterative tasks such as Dirichlet problem.

Fig. 3. Algorithm for computing Dirichlet problem for Poisson’s equation

Shomanov Aday and Mansurova Madina / Journal of Computer Sciences 2016, 12 (10): 502.509

DOI: 10.3844/jcssp.2016.502.509

507

Experimental Results

The cluster setup consisted of the following hardware

and software settings: 8 Core i-5 processor PC each

equipped with 16 Gb memory cards, 2 HP Blade servers

each equipped with 4 Core Intel Xeon Processors and

Gigabit Ethernet switch for network connection and for all

computing nodes 64-bit Ubuntu 12.10 operating system

and Hadoop 2.7.2 and Spark 1.6.1 software installed.

After testing the program on cluster environment

Spark implementation has been compared to Hadoop

combined with MPI (Fig. 4) and Hadoop only (Fig. 5)

implementations (described in (Mansurova et al.,

2014)) in terms of running time for different sizes of

computational domain and different number of cores

and cluster nodes. Computational domain represents a

cube with fixed and equal number of discrete points

along every dimension. The results of the computation

were verified for correctness compared to sequential

code for the same problem with equal settings of the

domain size and initial conditions. Graph below (Fig.

4) summarizes results of execution of hybrid approach

that combines Hadoop and MPI for solving Dirichlet

problem on single iteration of the algorithm.

Figure 5 presents the running time comparison of the

Hadoop and Spark solutions for Dirichlet problem on

fixed size computational domain for different number of

iterations. From the figure it is clear that for higher

number of iterations Spark based solution shows better

running time with speed-up of up to 1.5 compared to

Hadoop solution.

Fig. 4. Running time of Mapreduce + MPI based solution

Fig. 5. Running time of Spark/Hadoop with different number of iterations on 360*360*360 points computational domain

Shomanov Aday and Mansurova Madina / Journal of Computer Sciences 2016, 12 (10): 502.509

DOI: 10.3844/jcssp.2016.502.509

508

Fig. 6. Running time of Spark based solution

Fig. 7. Spark/Hadoop running time on 360*360*360 points computational domain

From the Fig. 6 it is easy to see that optimal running

time is achieved at 30 cores setup in most cases.

Increasing number of cores leads to additional overhead

associated with greater network workload in exchanging

boundary values from neighboring partitions in case

when they located in different nodes of the cluster.

Therefore results seem to reveal that Spark algorithm has

some minor scalability issues in this particular use case.

Comparison of running time of Spark and Hadoop-

based implementations depicted in Fig. 7 shows that

Spark approach performs slightly worse in terms of

running time than Hadoop-based approach on single

iteration cycle. Increasing number of iterations results

in performance improvement of Spark implementation

compared to Hadoop-based implementation. The

reason for such a performance difference is that

although Spark perform more operations it perform most

of the operations in memory leading to higher

performance in case of large number of iterations.

Hadoop, on the other hand, performs better on single

iteration cycle, but in the end of the each iteration writes

data back to HDFS or to local file system leading to poor

performance due to accumulation of I/O latencies over

the course of the computation.

Conclusion

We have designed and tested an algorithm for solving

Dirichlet problem for Poisson`s equation using Apache

Spark framework and compared it with Hadoop-based

implementations. As a result Spark based

implementation proved to be more suitable for solving

Dirichlet problem due to improved performance

compared to Hadoop-based implementation.

Shomanov Aday and Mansurova Madina / Journal of Computer Sciences 2016, 12 (10): 502.509

DOI: 10.3844/jcssp.2016.502.509

509

Acknowledgment

Authors would like to thank al-Farabi Kazakh

National University for giving an opportunity to do

current research by providing computational facilities

and educational support and Ministry of Education of

Kazakhstan Republic for supporting research by

governmental grant.

Author’s Contributions

Shomanov Aday: Author is responsible for devising

and implementing the algorithm and writing the paper.

Mansurova Madina: Contributed by devising the

algorithm and providing useful suggestions and

corrections to the contents of the paper.

Ethics

The article contains an original and unpublished

material. There is no ethical violation regarding

authorship. Corresponding author confirms that all

authors have read and approved the manuscript.

References

Freeman, J., 2014. Mapping brain activity at scale with

cluster computing. Nat. Meth., 11: 941-950.

 DOI: 10.1038/nmeth.3041

Gropp, W. and E. Lusk, 2004. Fault tolerance in message

passing interface programs. Int. J. High Performance

Comput. Applic., 18: 363-372.

 DOI: 10.1177/1094342004046045

Horlacher, O., F. Lisacek and M. Müller, 2014. Mining

large scale tandem mass spectrometry data for

protein modifications using spectral libraries. J.

Proteome Res., 15: 721-731.

 DOI: 10.1021/acs.jproteome.5b00877

Li, R., H. Hu, H. Li, Y. Wu and J. Yang, 2016.

MapReduce parallel programming model: A state-

of-the-art survey. Int. J. Parallel Programm., 44:

832-866. DOI: 10.1007/s10766-015-0395-0

Lu, X. and F. Liang, 2016. Accelerating iterative big data

computing through MPI. Int. J. Comput. Sci. Technol.,

30: 283-294. DOI: 10.1007/s11390-015-1522-5

Lu, X., B. Wang, L. Zha and Z. Xu, 2011. Can MPI

benefit hadoop and mapreduce applications?

Proceedings of 40th International Conference on

Parallel Processing Workshops, Sept. 13-16, IEEE

Xplore Press, pp: 371-379.

 DOI: 10.1109/ICPPW.2011.56

Lu, X., F. Liang, B. Wang, L. Zha and Z. Xu, 2014.

DataMPI: Extending MPI to hadoop-like big data

computing. Proceedings of the IEEE 28th

International Parallel Distributed Processing

Symposium, May 19-23, IEEE Xplore Press, pp:

829-838. DOI: 10.1109/IPDPS.2014.90

Mansurova, M., D. Ahmed-Zaki, A. Shomanov, Y.

Dadykina and S. Ikhsanov et al., 2014. Solving

dirichlet problem for poissons equation using

mapreduce hadoop and MPI. Proceedings of

International Conference New Trends in

Information and Communication Technologies,

(ICT’ 14), pp: 226-234.
Reyes-Ortiz, J.L., L. Oneto and D. Anguita, 2015. Big

data analytics in the cloud: Spark on hadoop Vs

MPI/OpenMP on beowulf. Proc. Comput. Sci., 53:

121-130. DOI: 10.1016/j.procs.2015.07.286

Zaharia, M., M. Chowdhury, M.J. Franklin, S. Shenker

and I. Stoica, 2010. Spark: Cluster computing with

working sets. Proceedings of the 2nd USENIX

Conference on Hot Topics in Cloud Computing, Jun

22-25, ACM, USA, pp: 10-10.

Zaharia, M., M. Chowdhury, T. Das, A. Dave and J. Ma

et al., 2012. Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster

computing. Proceedings of the 9th USENIX

conference on Networked Systems Design and

Implementation, Apr. 25-27, ACM, USA., pp: 2-2.

Zhao, G., C. Ling and D. Sun, 2015. SparkSW: Scalable

distributed computing system for large-scale

biological sequence alignment. Proceedings of the

15th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, May 4-7, IEEE

Xplore Press, pp: 845-852.

 DOI: 10.1109/CCGrid.2015.55

