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Abstract: Parallel computations are essential tool in solving large-scale 

computationally demanding problems. Due to large diversity and 

heterogeneity of the currently available parallel processing techniques and 

paradigms it is usually difficult to find the right solution that will perform 

well according to every performance metric. As one of the recent 

developments in parallel computing Apache Spark framework allows to 

process petabyte-scale data and possesses properties such as fault tolerance, 

scalability, load balancing and mechanisms of in memory computations 

across nodes of the cluster. All of these features are attractive for high 

performance scientific computing. It has been shown that Apache Spark 

outperforms Hadoop implementation of some machine learning algorithms 

by orders of magnitude. Since Hadoop platform is not well suited for 

iterative computing, typical for many computational problems, in this study 

we investigate performance characteristics of Apache Spark on scientific 

computing problems, particularly for solving Dirichlet problem for 

Poisson’s equation. An algorithm for solving Dirichlet problem for 

Poisson’s equation is described and analyzed and compared to optimized 

Hadoop-based implementations. Apache Spark uses new distributed data 

structure called RDD. Presented algorithm consists of operations on RDD 

such as mapping, grouping and partitioning. The benefits and drawbacks of 

the algorithm as well as applicability for stencil type computations are 

discussed and analyzed. 
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Introduction  

In a modern world there are a lot of large-scale and 

computationally intensive problems that require highly 

efficient and well designed approaches to solve them. 

Historically, large-scale computational problems have been 

solved by means of HPC clusters using MPI paradigm 

where the main complexity was to design computational 

domain, perform the most efficient domain decomposition 

schemes and algorithms and find cost-effective and feasible 

hardware solutions. MPI has some drawbacks such as idle 

CPU usage while exchanging data between nodes, 

reliability and data loss due to node failures or network 

collapses. Hadoop is a distributed computing platform that 

uses MapReduce paradigm applied to data stored in 

Hadoop Distributed File System (HDFS). Hadoop 

possesses some advantages such as fault tolerance, 

scalability and load balancing. Node failures in Hadoop do 

not necessarily lead to termination of the program and in 

cases when data on the failed nodes had been previously 

properly replicated computation can be continued without 

any complications. Hadoop, on the other hand, is not 

designed to solve iterative problems efficiently and in 

general lacks data exchange mechanisms between nodes.  

We, therefore, designed and implemented our novel 

approach using Apache Spark with the aim to resolve 

some of the above mentioned drawbacks of using MPI 

only or Hadoop only approaches for large-scale scientific 

computational problems.  
Apache Spark is a framework for large-scale data 

processing with the following main features     

(Zaharia et al., 2010): 

Data abstractions called Resilient Distributed Datasets 

(RDD), which allow to perform bulk operations on the 

data in parallel and cache intermediate results in memory. 

Each RDD consists of several data blocks that are divided 
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across cluster nodes (Fig. 1). Operations on RDD can be 

of two types: Transformations and actions (Fig. 2). 

Transformations in Spark are performed lazily, i.e., 

application of transformations is delayed until some 

action on RDD is performed. Whereby, Spark can 

optimize execution of transformations, for example, by 

rearranging the order in which they are applied. 

In memory caching of RDD data is performed in 

order to optimize the speed of data access operations 

later in computation process. Caching is performed on 

each partition of RDD. Since partitions may reside on 

different nodes of the cluster caching is performed 

separately on each node.  

RDD offers the following set of main 

transformations: Map, filter, flatMap, groupByKey, 

union, join, crossProduct. The following are the main 

actions performed on RDD: Count, collect, reduce, save. 

From Fig. 1 it can be seen that the data blocks from 

the same RDD might be placed on different cluster 

nodes. To forcefully put data from one partition of RDD 

to single physical node there exist special partitioning 

tools provided by Spark. Consequently, by using 

partitioning tools data placement in a cluster can be 

controlled according to specific purposes of the problem.  

Besides the ability to persist data in memory such 

that later operations could be performed sufficiently fast 

RDD also exploits data locality property. Data locality 

property implies that each task should perform 

operations on those partitions of RDD which are located 

on its own local memory or which can be fetched from 

other nodes with minimal network workload and 

computational resources used. 

Hadoop has poor performance on iterative tasks since 

each iteration results in the loss of the job`s execution 

context and consequently necessary data for the next 

iteration should be loaded again in memory from HDFS. 

Contrary to that RDD keeps as much necessary data in 

memory as possible. 

 

 
 

Fig. 1. Apache spark RDD design 
 

 
 

Fig. 2. Spark workflow for single operation list 
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Figure 2 shows the general scheme how Spark 

performs operations on RDD. There is some set of 

transformations followed by actions. Actions result 

either in creating new RDD or dumping data into 

HDFS file system. 

Fault-tolerance in RDDs is achieved through keeping 

lineage i.e. set of particular transformations that have led 

to the current state of RDD. If some data is lost due to 

node failure, transformations can be performed again in 

that particular set of nodes that kept replica of the data 

stored in the failed node and after that RDD will be 

restored back to its current state. 

We present in our work an iterative Apache Spark 

solution to the Dirichlet problem for Poisson’s equation 

on three-dimensional computational domain which 

allows efficient iterative execution and additionally 

provides caching of locally kept chunks of data. 

Related Work 

There is large scope of problems in different areas of 

science that have already been successfully solved by 

using Apache Spark (Freeman, 2014; Horlacher et al., 

2014; Zhao et al., 2015). Apache Spark development 

initially was motivated by low performance of machine 

learning tools for large-scale data processing available at 

the time. Now Spark offers much broader range of 

techniques to tackle different kinds of problems. 

There are currently not so many alternatives to 

choose from to replace or augment MPI computational 

paradigm for large-scale scientific problems with 

iterative schemes and research is ongoing with varied 

success in this important field. 

The obvious advantage of MPI over Apache Spark is 

that MPI potentially could be broadened to wide range of 

applications in HPC and still be sufficiently fast. 

However, the main issue with MPI is its lack of built-in 

failure resistance. Failures could be problematic for 

long-running jobs in setting of large number of 

computing nodes. There are different approaches to 

avoid failures in MPI environment but they are tedious 

and error-prone to implement. Thorough treatment of 

these approaches are given in (Gropp and Lusk, 2004). 

Apache Spark design essentially can be treated as a 
generalization of Mapreduce programming paradigm in 

the context of distributed programming models. 

Mapreduce can be viewed as a series of parallel map 
tasks followed by series of parallel reduce tasks. 

Functionality of the map is to derive key/value pairs 
from raw input according to some criteria. Reduce on the 

other hand takes list of values with specified key as an 

input and outputs different set of key/value pairs 
generated from the input list. Spark offers aside from 

map and reduce several other operations mentioned 
earlier and in general abstracts away these operations 

into transformation concept.  

Many works are devoted to improving speed of 

running Mapreduce based programs. In (Li et al., 2016) 

authors describe several avenues for improvement in 

Hadoop Mapreduce framework: 

 

• Developing more efficient job scheduling 

mechanism that takes into account non 

homogeneous distribution of resources in a 

distributed system 

• Improving programming model by developing 

advanced iterative processing routines that would 

allow more efficient job execution 

• Developing more convenient real-time processing 

by improving streaming functionality 

• Extending the capabilities of the system by allowing 

parallel execution of map and reduce tasks 

 

Apache Spark is believed to show better performance 

according to second and third items shown above.  

Apache Spark is based on RDD distributed data 

structure storage. In (Zaharia et al., 2012) authors 

described RDD internal design and properties and 

demonstrated its ability to perform in-memory 

computations on large clusters in a fault-tolerant way. In 

the paper authors also reported large speed-up on 

iterative graph and machine learning algorithms by using 

Apache Spark over PGAS and Hadoop. Considering 

conceptual differences of global-memory access 

languages such as PGAS and other parallel programming 

languages with different memory abstractions there is a 

trade-off between maintaining granularity of elements in 

memory and performing bulk operations on these 

elements. The main advantage over PGAS model is that 

RDD operations are coarse-grained therefore reducing 

overhead of storing states of each element in a 

distributed environment. 

In (Lu et al., 2014; Lu and Liang, 2016) authors 

presented a new high-performance communication library 

based on MPI communication primitives called DataMPI. 

As a result they showed that using DataMPI 

communication primitives one could achieve performance 

gain of up to 32% compared to Hadoop communication 

primitives. Authors also generalize communication 

patterns into 4D bipartite communication model and key-

value communication model, which fits into the 

requirements of Hadoop-like system specifications and 

could potentially lead to better design of communication 

sub-systems in Big Data frameworks. 

In (Reyes-Ortiz et al., 2015) authors compare Apache 

Spark performance with MPI/OpenMP based on KNN 

and Pegasos SVM machine learning algorithms. The 

results showed that MPI/OpenMP approach is still more 

than 10 times faster in terms of running time, however, 

one should note that Spark has an advantage of caching 

and authors did not mention this in their paper.  



Shomanov Aday and Mansurova Madina / Journal of Computer Sciences 2016, 12 (10): 502.509 

DOI: 10.3844/jcssp.2016.502.509 

 

505 

In (Lu et al., 2011) authors describe hybrid framework 

of using MPI as a pipeline to exchange an intermediate 

data between concurrently running reduce and map 

processes. The resulting solution outperforms some of the 

Hadoop or MPI-Mapreduce implementations on three 

applications: WordCount, Distributed Inverted Indexing 

and Distributed Approximate Similarity Search. 

Parallel Algorithm for Solving the Dirichlet 

Problem for Poisson’s Equation using 

Hadoop Spark 

Dirichlet problem arises in many areas of physics 

such as fluid dynamics, electromagnetism and gravity 

due to its ability to describe the behavior of fluid, 

electric, gravitational potentials. Exact analytical 

solutions for Dirichlet problem is only limited by 

specific cases in appropriate domains therefore in 

majority of situations numerical approaches to find 

solution to the problem is applied.  

3D model of Dirichlet problem for Poisson’s 

equation in a hypercube domain D = {(x,y,z): 

0≤x≤l1,0≤y≤l2,0≤z≤l3} can be described by the following 

set of equations: 
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Performing discretization using finite-difference 

method we obtain the following explicit iterative 

scheme: 
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where, ui,j,k and fi,j,k -values of u and f functions in (i,j,k) 

point of computational mesh. 

Here we briefly overview the general idea behind 

Hadoop-based algorithm for solving Dirichlet problem 

for Poisson equation proposed by the authors in different 

paper (Mansurova et al., 2014).  

Hadoop based implementation for solving Dirichlet 

problem has the following general structure: 

 

Step 1. In Map phase algorithm maps each point in 

computational domain to certain reducer that 

will perform computations in its own sub-

domain. 

Step 2. In Reducer phase each point is mapped inside 

three-dimensional array to perform stencil 

computations according to Poisson`s equation 

difference scheme. The computed new internal 

points in current iteration are stored to local 

file system to avoid redistribution of them 

across the nodes of the cluster during the next 

iteration and new boundary points are reduced 

and written to output HDFS directory. 

Step 3. If iteration count is reached the limit program 

will terminate, otherwise algorithm will continue 

with step 1. 

 

Apache Spark algorithm for solving Dirichlet 

problem for Poisson equation uses object based 

representation of points in the computational domain. 

Point class is used for storing single point in 

computational mesh. Every point consists of the 

following properties: Integer partition_id, integer 

number x for x coordinate, integer number y for y 

coordinate, integer number z for z coordinate, 

floating-point number value for value in specific point 

(x,y,z) of the discrete mesh. Partition property is 

responsible for storing partition number of the point 

that is sub-domain identifier.  

Algorithm general scheme is depicted in the Fig. 3. 

Algorithm consists of several steps each step performs 

certain operations on RDDs. For the algorithm we have 

chosen 1D domain decomposition method. 

1D decomposition method tells that domain should 

be divided by x coordinate into contiguous sub-arrays. 

Number of sub-arrays should be specified beforehand 

in a driver program. Since we need to perform stencil 

computations for every point in computational domain 

we have to specify procedure by which to perform 

exchange of boundary values between neighboring sub-

domains in the end of the each iteration. 

Stepwise description of the algorithm is described by 

the following scheme: 

 

Step 1. Generate initial computational domain and store 

points in RDD<Point>  

Step 2. Map each entry of RDD<Point> to 

PairRDD<key,Point>, where key represent 

partition number and the value is a Point. 

Step 3. Perform grouping operation such that points are 

divided into several partitions where operations 

on each partition are performed in parallel  
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Step 4. Perform mapping transformation on each 

partition in a following way: 

 

• Create 3-dimensional array for every partition and 

map values of points of that partition to 

corresponding elements of that array 

• Perform computation on partitions based on 

obtained Poisson’s equation’s difference scheme 

• Map back elements of 3-dimensional array to list of 

points 

• Return as a result of map operation list of newly 

computed values of points stored in RDD<Point> 

 

Step 5. Check for termination condition: 

 

• If termination condition is met go to step 6 

• If termination condition is not met go to step 2 

 

Step 6. Store resulting values of points in HDFS 

(Hadoop distributed file system) 

 

Important to note that before performing any actions 

or transformations on PairRDD<key,Point> we have 

done additional partitioning in order to specify that each 

partition should be located on separate cluster node. This 

is necessary optimization in order to avoid huge network 

resources utilization and therefore very poor 

performance of the program.  

The slowest part of the algorithm is generating initial 

computational domain since it cannot be performed in 

parallel due to design of Spark`s RDD storage 

abstractions. This operation is performed in 3 steps: 

 

• Generate points sequentially on master node  

• Write points to HDFS 

• Extract points from HDFS to RDD 

 

Since each partition of RDD is defined to store only 

points with only one certain key, according to algorithm 

there must exist mechanism to exchange boundary points 

between different partitions. The main bottleneck in this 

algorithm is additional overhead associated with 

performing that exchange. In order to perform exchange 

operation we need to apply mapping, grouping and 

partitioning transformations in each iteration of the 

algorithm. Mapping transformation will map Point 

elements into tuple of Point and partition number. 

Partition number is identified by Point coordinates. After 

that Points are grouped together by applying groupByKey 

transformation and finally every partition is separated into 

locations by applying partitionBy transformation. Such 

operations slightly degrade performance of the program 

leading to moderate speed-up. 

The major difference between Hadoop based 

implementation and Spark implementation is that Spark 

solution uses in-memory computations and thus is suited 

better for iterative tasks such as Dirichlet problem.

 

 
 

Fig. 3. Algorithm for computing Dirichlet problem for Poisson’s equation 
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Experimental Results 

The cluster setup consisted of the following hardware 

and software settings: 8 Core i-5 processor PC each 

equipped with 16 Gb memory cards, 2 HP Blade servers 

each equipped with 4 Core Intel Xeon Processors and 

Gigabit Ethernet switch for network connection and for all 

computing nodes 64-bit Ubuntu 12.10 operating system 

and Hadoop 2.7.2 and Spark 1.6.1 software installed. 

After testing the program on cluster environment 

Spark implementation has been compared to Hadoop 

combined with MPI (Fig. 4) and Hadoop only (Fig. 5) 

implementations (described in (Mansurova et al., 

2014)) in terms of running time for different sizes of 

computational domain and different number of cores 

and cluster nodes. Computational domain represents a 

cube with fixed and equal number of discrete points 

along every dimension. The results of the computation 

were verified for correctness compared to sequential 

code for the same problem with equal settings of the 

domain size and initial conditions. Graph below (Fig. 

4) summarizes results of execution of hybrid approach 

that combines Hadoop and MPI for solving Dirichlet 

problem on single iteration of the algorithm. 

Figure 5 presents the running time comparison of the 

Hadoop and Spark solutions for Dirichlet problem on 

fixed size computational domain for different number of 

iterations. From the figure it is clear that for higher 

number of iterations Spark based solution shows better 

running time with speed-up of up to 1.5 compared to 

Hadoop solution. 

 

 
 

Fig. 4. Running time of Mapreduce + MPI based solution 

 

 
 

Fig. 5. Running time of Spark/Hadoop with different number of iterations on 360*360*360 points computational domain 
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Fig. 6. Running time of Spark based solution 

 

 
 

Fig. 7. Spark/Hadoop running time on 360*360*360 points computational domain 

 

From the Fig. 6 it is easy to see that optimal running 

time is achieved at 30 cores setup in most cases. 

Increasing number of cores leads to additional overhead 

associated with greater network workload in exchanging 

boundary values from neighboring partitions in case 

when they located in different nodes of the cluster. 

Therefore results seem to reveal that Spark algorithm has 

some minor scalability issues in this particular use case. 

Comparison of running time of Spark and Hadoop-

based implementations depicted in Fig. 7 shows that 

Spark approach performs slightly worse in terms of 

running time than Hadoop-based approach on single 

iteration cycle. Increasing number of iterations results 

in performance improvement of Spark implementation 

compared to Hadoop-based implementation. The 

reason for such a performance difference is that 

although Spark perform more operations it perform most 

of the operations in memory leading to higher 

performance in case of large number of iterations. 

Hadoop, on the other hand, performs better on single 

iteration cycle, but in the end of the each iteration writes 

data back to HDFS or to local file system leading to poor 

performance due to accumulation of I/O latencies over 

the course of the computation. 

Conclusion 

We have designed and tested an algorithm for solving 

Dirichlet problem for Poisson`s equation using Apache 

Spark framework and compared it with Hadoop-based 

implementations. As a result Spark based 

implementation proved to be more suitable for solving 

Dirichlet problem due to improved performance 

compared to Hadoop-based implementation.  
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