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Abstract: The course timetabling problem is not a trivial task as it is an 

NP-hard and NP-complete problem and many solutions have been 

proposed due to its high complexity search landscape. In essence, the 

nature of the course timetabling problem is to assign a lecturer-course 

entity to existing teaching venue and timeslot in an academic institution. 

In this article, the authors propose a Genetic Algorithm-Neighborhood 

Search (GANS) to construct a feasible timetable for courses offered by 

a department in the faculty of a local university in Malaysia. The 

framework of the solution is as follow: The feasible timetable is first 

constructed by Genetic Algorithm, which includes are pair operator 

which attempts to repair infeasible timetables. Upon feasibility, the 

second phase exploits the initial feasible solution using three 

neighborhood structures to search for an improved solution and global 

optimum. The experimental results demonstrate the efficiency and 

effectiveness of the various neighborhood structures in exploiting the 

feasible solutions to yield the global optimum. 
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Introduction 

Problem Background 

The notion of manually generating a workable 

timetable within the context of a higher-learning 

institution is indefinitely a daunting task and the 

complexity increases when there are various unique 

hard constraints that must be satisfied in a feasible 

solution. The course timetabling problem or 

commonly known as CTP has garnered favorable 

response especially in the domain of Operations 

Research (OR) and Artificial Intelligence (AI) 

communities. During the last decade, the CTP 

received great attention partly due to the organization 

of three competitions, entitled International 

Timetabling Competitions (ITC) namely the ITC-2002 

(Paechter et al., 2002), ITC-2007 (Mccollum et al., 

2010) and ITC-2011 (Post et al., 2016). The approaches 

that are commonly undertaken to solve the problems are 

metaheuristic algorithms which can be classified to 

population based algorithms such as Genetic Algorithm 

(Abdelhalim and El Khayat, 2016), Particle Swarm 

Optimization (Kennedy and Eberhart, 1995), Ant Colony 

Optimization (Socha et al., 2003) and local search 

algorithms such as Simulated Annealing (Bellio et al., 

2016), Tabu Search (Lü and Hao, 2010), Great Deluge 

(Dueck, 1993) and Variable Neighborhood Search 

(Hansen and Mladenović, 1997) to name a few. The 

aforementioned algorithms possess their own sets of 

strength and weaknesses and in order to obtain a high 

quality solution, hybrid algorithms are proposed in order 

for the resultant algorithm to exhibit various strength 

derived from the initial algorithms such as hybrid cat 

swarm algorithms (Skoullis et al., 2016), hybrid 

particle swarm optimization (Shiau, 2011), hybrid ant 

colony systems (Ayob and Jaradat, 2009). This paper 

presents a hybrid Genetic Algorithm Neighborhood 

Search which integrates domain-specific exploitative 
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properties of the Neighborhood Search into Genetic 

Algorithm to solve the CTP adopted from a real world 

example from a faculty in Universiti Teknologi 

Malaysia. A formal description of the dataset is 

presented in section 2.1 and 2.2 respectively and section 

3.0 depicts the architecture of the proposed hybrid 

genetic algorithm neighborhood search. Section 4.0 

presents the results obtained from the experiment and 

section 5.0 summarizes the contribution of the paper. 

Model Formulation 

The model and dataset addressed in this article is 

adopted from a faculty department in a local university 

in Malaysia. This section elucidates the background and 

properties of the dataset, the various entities involved in 

the problem formulation, the constraints which govern 

the problem and a formal mathematical formulation of 

the problem model. 

Properties of the Dataset 

Within the context of Malaysia public university’s 

academic system (at the point in which this article is 

written), the intake of fresh undergraduates takes place 

once a year i.e., at any time, students are always in their 

odd (1st, 3rd, 5th) semesters or (2nd, 4th, 6th) 

semesters. In this article, we attempt to schedule the 

courses for students who are in their first, second and 

third year (1st semester, 3rd semester and 5th semester 

respectively) for five departments in a faculty in a local 

university in Malaysia. To present the data in a more 

concise manner, the dataset is categorized into three 

problem instances. The first instance consists of courses 

and the number of lectures for year 1 students, the 

second instance consists of year 1 and year 2 students 

and the third dataset consists of year 1, year 2 and year 3 

students. Refer to Fig. 1. 

Subject (s) 

The total number of subjects offered to all 1st-3rd 

year faculty students. It should be noted that the 

subject contains the information of the instructor-in-

charge as well. 

Work_Day (w) 

In general, the administration of the university 

operates for five (5) working days, from Monday to 

Friday. 

Session (sn) 

Session refers to the duration for a lecture which is 

fifty (50) min. In general, the university allocates nine 

(9) usable sessions for use every day. However, only 

eight (8) sessions are allocated on Friday due to Muslim 

prayers. In summary, there is a total of forty-four usable 

sessions that can be used on a weekly basis. 

Venue (v) 

According to the dataset obtained, there is a total of 

seventeen (17) venues which can be used either for 

lecture or lab (programming) activities. 

Based on the aforementioned entities, a complete 

feasible assignment can be described as E = {s, w, sn, v} 

where E refers to the complete assignment of events 

which consists of a set of subject, day, session and venue. 

 

 
 

Fig. 1. Categories of the problem instances of the university course timetabling problem 

 
Table 1. Stipulated constraints and its descriptions 

Constraint Description 

CH1 All subjects must be scheduled to distinct sessions. A violation occurs if a subject is not scheduled or two 
 subjects are scheduled simultaneously. 
CH2 Subjects cannot be scheduled to a same venue simultaneously. A violation occurs if two subjects are 
 scheduled simultaneously and additional violation constitutes additional violation score. 
CH3 Each session is exactly one period long. A violation occurs if a subject is scheduled over a session. 
CH4 An hour lunch break must be scheduled during 1.00-1.50 pm from Monday until Thursday and no event should 
 be scheduled during this period. A violation occurs if a subject is scheduled during this period. 
CH5 A 2-hour break must be scheduled for lunch and religious purpose during 1.00-1.50 pm on Friday and no event 
 should be scheduled during this period. A violation occurs if a subject is scheduled during this period. 
CS1 Subjects should not be scheduled at the last period of the day and should not take place in the evening. A violation 
 occurs if a subject is scheduled during this period. 
CS2 Timetable for venue should be as compact as possible. A violation occurs if there is a gap in the venue schedule. 
CS3 Venues should be fully occupied whenever possible and its requirement should be taken into account 
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Table 1 describes the constraints of the course 
timetabling problem and comprises five (5) hard 
constraints which must be satisfied (to produce a feasible 
timetable) and three (3) additional soft constraints which 
increases the quality of the timetable without violating 
the fulfilled hard constraints previously. 

Model Formulation 

In order to evaluate the performance of the timetable 

solution, the violation of each constraints is calculated 

based on the mathematical formulation given in Equation 

1. Since producing a feasible timetable solution is of the 

utmost importance, a numerical weight denoted by α of 

value ten (10) is added to increase its significance. A 

feasible timetable solution will not record any CH1-CH5 

violation score (0). On the other hand, increasing the 

quality of the timetable is handled by the satisfaction of 

CS1-CS2 soft constraints multiplied with a numerical weight 

denoted by β with value of one (1): 
 

( ) ( ) ( )
5 3

1 1 1 1

min * *
x y

s s

H S

i x i y

f x g C g Cα β
= = = =

  
= +   
   

∑∑ ∑∑  (1) 

 
• s.t. 
• ∀ (si, vi, wi, sni)Λ (sj, vj, wj, snj) 
• CH1 :(wi = wj) Λ(sni = snj) Λ(vi = vj) 
• CH2 : (wi = wj) Λ(sni = snj) Λ(vi = vj) 
• CH3: ∅* 
• CH4 :[(wi = 1) V (wi = 2) V (wi = 3) V (wi = 4)] Λ 

(sni = 6) 
• CH5 :(wi = 5) Λ [(sni =6) V (sni = 7)] 
• CS1:[(wi = 1) V (wi = 2) V (wi = 3) V (wi = 4) V (wi 

= 5)] Λ (sni = 9) 
• CS2: [vi, snimod sntotal = 1 Λ vi,sni+1 = 0] V [v, snimod 

sntotal = 0 Λ vi, sni-1 = 0] V [v, snimod sntotal = sni Λ vi, 
sni+1 = 0 Λvi,sni-1 = 0] 

• CS3:∅ * 

• ∅ denotes that the constraints are represented by 

the encoding of the candidate solution 

 

Where: 

α = 10 

β = 1  

CHx = The x
th 

hard constraint  

CSy = The y
th

 soft constraint 

si = The i
th

 subject 

vi = The i
th

 venue 

wi = The i
th

 working day 

sni = The i
th

 session 

 

The chromosome of the solution is designed such that 

constraint CH3 and CS3 are satisfied at all times, thus 

recording the value of ∅ in the formulation. 

Hybrid Genetic Algorithm Neighborhood 

Search 

Genetic Algorithm (GA) is a popular multi-

directional population-based metaheuristic algorithm 

that simulates the principles of natural selection. The 

algorithm has received widespread popularity through 

the works of Holland (1975) and is also reported to be 

very successful at solving real-life complex engineering 

problems. In the domain of timetabling, a hybrid 

variant of GA has been applied successfully by 

Kohshori and Abadeh (2012) in generating a timetable. 

In this article, the experiment setup encodes the 

chromosome such that it satisfies constraint CH3 and CS3 

naturally in order to reduce the load on the algorithm. 

The proposed GANS adopts a repair operator featured in 

the works of Pongcharoen et al. (2008) and the 

parameters of the proposed GANS are tabulated 

according to Table 2 and Fig. 2 illustrates the encoding 

of the chromosome used in GANS. 

 

 
 

Fig. 2. Encoding of the GANS chromosome 
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Fig. 3. Pseudocode for the proposed GANS algorithm 

 
Table 2. Parameters employed in the proposed GANS 

Parameter Value/description 

Population Size, PopulationSize 10 
Selection Scheme tournament selection 
Crossover probability, Pcrossover 0.5 
Mutation probability, Pmutation 0.1 
Neighborhood Structure, NSstructure 3 

 
Table 3. Description of the various neighborhood structures  

Neighborhood Structure, NSstructure Description 

NS1-Last Timeslot Move This move selects a course scheduled at the last timeslot of the day and 
 attempts to move it to an earlier timeslot. 
NS2-Room Compactness Move This move selects a course which has empty gaps in between and attempts  
 to move it to an adjacent timeslot of an existing course 
NS3-Room Move This move selects a room and attempts to reassign a new room to the course. 

 

The concept of Variable Neighborhood Search 

which is also referred to as Neighborhood Search 

(NS) was first introduced by Hansen and Mladenović 

(1997) where the algorithm explores the vicinity 

(neighborhood) of a promising solution in hope of 

finding a better solution. Contrasting to population-

based metaheuristic algorithm where a multiple 

solutions are manipulated at a time, the NS algorithm 

only exploits one solution at a time. The ability to 

explore promising region is determined by the 

definition of neighborhood structures and in general, 

well-defined neighborhood structures tend to lead to 

the discovery of high-quality solutions. It has been 

reported that the algorithm performs significantly well 

at solving constraint satisfaction problems (Hoos and 

Stützle, 2005). The key ingredient here is to ensure well-

defined neighborhood structure (Gaspero and Schaerf, 

2006) as poorly defined neighborhood structure will 

hinder the progress of the algorithm (Papadimitriou and 

Steiglitz, 1982). In the domain of CTP, a successful 

implementation of a well-defined neighborhood 

structure is described in the works of Muller (2009), 

who incidentally is also the Track 3 winner in the 

ITC-2007 timetabling competition. In his works, he 

introduced six domain-specific neighborhood 

structures that possess high inter-connectivity to 

exploit the incumbent solution. Figure 3 describes the 

pseudocode of the proposed GANS. 

In the proposed GANS, upon feasibility of the 

candidate solution, the algorithm begins to exploit the 

incumbent best solution, S_best for a feasible solution 

x* by means of neighborhood search such that f(x*) 

≤f(x) for all x in the feasible search space region. 3 

domain-specific neighborhood structures, NSstructure are 

defined in aiding the algorithm to obtain a better 

solution, x* which are defined as in Table 3. The 

proposed GANS is coded entirely using MATLAB
®

 as 

the developing tool. 
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Results and Discussion 

This section describes the results obtained from the 

proposed GANS. The performance measurements which 

are taken into account consists of the hard and soft 

fitness score, ghard and gsoft, iteration time (t) recorded in 

seconds, the number of iteration, iteration, the mean, xM 

and standard deviation, σ for each problem instance. The 

algorithm terminates when the global optimum is 

returned or when the algorithm has elapsed 300 seconds 

(whichever comes first). Table 4 tabulates the results for 

all three problem instances. 

The experiment is repeated for five times and in all 
three problem instances, a global optimum (fitness score 

of zero) is returned within a reasonably short amount of 
time that is 11.34 sec or 71.60 sec on the average for 
problem instance 1; 24.77 sec or 246.10 sec on the 
average for problem instance 2; 108.76 sec or 267.09 
sec on the average for problem instance 3. 
Additionally, the GANS exhibits consistent 
performance as the mean values for gsoft recorded for 
each instance are relatively low. It is worth to note, that 
the neighborhood search mechanism is only invoked 
for the soft constraint evaluation only when the solution 
is feasible (ghard equals zero). This clearly demonstrates 
the efficacy of the proposed GANS. The progression of 
the gsoft fitness scores for each instance are also 
illustrated in Fig. 4-6 respectively.  

 
Table 4. Results for three problem instances solved using the proposed GANS 

 Hard constraint   Soft constraint 
 -------------------------------------------------------------- ------------------------------------------------------- 
Problem Instance ghard t(s) Iteration gsoft t(s) Iteration 

1 0.00 3.80 3.00 0.00 13.66 4837.00 
 0.00 3.50 3.00 0.00 11.34 3825.00 
 0.00 3.56 3.00 0.00 19.01 6992.00 
 0.00 3.53 3.00 3.00 300.72 115445.00 
 0.00 3.51 3.00 0.00 13.25 4656.00 
x@ 0.00 3.58 3.00 0.60 71.60 27151.00 

σ 0.00 0.13 0.00 1.34 128.12 49371.70 

2 0.00 7.50 3.00 3.00 301.47 72573.00 

 0.00 7.46 3.00 3.00 301.45 71883.00 

 0.00 7.53 3.00 2.00 301.41 72805.00 

 0.00 7.54 3.00 1.00 301.38 76577.00 

 0.00 7.50 3.00 0.00 24.77 6439.00 

x@ 0.00 7.51 3.00 1.80 246.10 60055.40 

σ 0.00 0.03 0.00 1.30 123.73 30028.39 

3 0.00 46.87 5.00 7.00 306.69 40838.00 

 0.00 45.90 5.00 5.00 306.53 46199.00 

 0.00 46.03 5.00 0.00 108.76 15867.00 

 0.00 45.97 5.00 13.00 306.85 45888.00 

 0.00 46.67 5.00 9.00 306.64 45630.00 

x@ 0.00 46.29 5.00 6.80 267.09 38884.40 

σ 0.00 0.45 0.00 4.82 88.51 13054.45 

 

 
 

Fig. 4. Progression of soft constraint fitness score, gsoft for Instance 1 
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Fig. 5. Progression of soft constraint fitness score, gsoft for Instance 2 

 

 
 

Fig. 6. Progression of soft constraint fitness score, gsoft for Instance 3 

 

Conclusion 

This article presents a hybridized Genetic 

Algorithm-Neighborhood Search (GANS) and 

integrates a repair operator to solve a real-world 

university course timetabling problem. The algorithm 

first obtains a feasible solution with the assistance of a 

repair operator and attempts to improve on the best 

solution using three various neighborhood structures. 

From the experiment, the proposed algorithm 

demonstrated promising results in terms of 

computational time and fitness score and additionally 

is able to obtain the global optimum for all the tested 

instances. To propose some future works, the authors 

intend to extend the algorithm to solve other 

timetabling problems such as the curriculum-based 

course timetabling problem and examination 

timetabling problem. Additional domain-specific 

neighborhood structures that may reduce the number of 

iterations and shorten the computational time will also be 

looked into as the exploitation ability exhibited by the 

Neighborhood Search algorithm is very promising. 
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