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Abstract: This article proposes two dynamic Huffman based code 

generation algorithms, namely Octanary and Hexanary algorithm, for data 

compression. Faster encoding and decoding process is very important in 

data compression area. We propose tribit-based (Octanary) and quadbit-

based (Hexanary) algorithm and compare the performance with the existing 

widely used single bit (Binary) and recently introduced dibit (Quaternary) 

algorithms. The decoding algorithms for the proposed techniques have also 

been described. After assessing all the results, it is found that the Octanary 

and the Hexanary techniques perform better than the existing techniques in 

terms of encoding and decoding speed.  
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Introduction 

Huffman coding (Huffman, 1952) is very popular in 

data compression area. Nowadays it is used in data 

compression for wireless and sensor networks 

(Săcăleanu et al., 2011; Renugadevi and Darisini, 2013), 

data mining (Oswald and Sivaselvan, 2018; Oswald et al., 

2015). It is also found efficient for data compression in 

low resource systems (Radhakrishnan et al., 2016; Matai 

et al., 2014; Wang and Lin, 2016). The use of Huffman 

code in word-based text compression is also very 

common (Sinaga, 2015). Huffman principle produces 

optimal code using a Binary tree where the most frequent 

codewords are smaller in length. However, Huffman 

principle does not produce a balanced tree (Rajput, 

2018). For this reason, it requires more memory to store 

longer codeword, and thus it also requires more time to 

decode those codewords from the memory. In this paper, 

we first review traditional Huffman algorithm and newly 

introduced Quaternary Huffman algorithm. Then we 

introduce Octanary and Hexanary tree for construction of 

Huffman codes. Octanary and Hexanary structure makes 

the underlying tree more balanced. The tree construction 

and decoding algorithms for both techniques have been 

developed. The codeword efficiency of Binary, 

Quaternary, Octanary and Hexanary structure have been 

compared. The compression ratio and speed are also 

compared for different methods using these coding 

systems. It is found that the compression and 

decompression speed of the proposed techniques are 

better than the others. To summarize, the proposed 

techniques may be suitable for offline data compression 

applications where encoding and decoding speed is more 

important with less constraint on space.  

Related Works 

In 1952, David Huffman introduced an algorithm 

(Huffman, 1952) which produced optimal code for data 

compression system. Huffman code is produced using 

Binary tree technique, where more frequent symbols 

produce shorter codeword length and less frequent 

symbols produce longer codeword. Later on, so many 

popular algorithms and applications have been developed 

based on Binary Huffman coding technique. Saradashri et 

al. (2015) explained in his book that Huffman code could 

also be static or dynamic. Chen et al. (Chen et al., 1999) 

introduced a method to speed up the process and reduced 

memory of Huffman tree. A tree clustering algorithm is 

introduced in (Hashemian, 1995) to avoid high sparsity 

of the tree. In this research, the author reduced the 

header size dramatically. Vitter (1987), the author 

introduced a new method where it required less memory 

than the conventional Huffman technique. Chung (1997) 

also introduced a memory-efficient array structure to 

represent the Huffman tree. In some other researches 

codeword length of Huffman code also investigated. 

Katona and Nemetz (1978) investigated the connection 
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between self-information of a source letter and its 

codeword length. A recursive Huffman algorithm is 

introduced in (Lin et al., 2012), where a tree is 

transformed into a recursive Huffman tree and it decoded 

more than one symbol at a time. The decoding process 

starts by reading a file bit by bit in all of the above 

techniques. Recently, we introduced a code generation 

technique based on Quaternary (dibit) Huffman tree 

(Habib and Rahman, 2017) to produce Huffman codes. 

In this research, better encoding and decoding speed is 

achieved by sacrificing an insignificant amount of space, 

where it is also found that searching two bits at a time 

speed up the overall processing speed than searching a 

single bit. This motivated us to search three or four bits 

at a time. In this connection, the Octanary algorithm is 

introduced to produce three bit based Huffman code, 

whereas the Hexanary algorithm is introduced to 

produce four bit based Huffman code. The proposed 

algorithms improved the Huffman decoding time 

compared with the existing Huffman algorithms.  

We organize the paper as follows. In section “Tree 

Structure”, traditional Binary, Quaternary, Octanary and 

Hexanary tree structures in data management system are 

presented. In section “Implementation”, the proposed 

encoding and decoding algorithm of Octanary and 

Hexanary techniques have been presented. Section “Result 

and Discussion” discusses the experimental results. 

Finally, Section “Conclusion” concludes the paper. 

Tree Structure 

Binary and Quaternary Tree 

A rooted tree T is called an m-ary tree if every 

internal vertex has no more than m children. The tree is 

called a full m-ary tree if every internal vertex has 

exactly m children. An m-ary tree with m = 2 is called 

a Binary tree. In a Binary tree, if an internal vertex has 

two children, the first child is called the LEFT child 

and the second child is called the RIGHT child 

(Adamchik, 2009). The Binary tree structure is 

thoroughly discussed in (Huffman, 1952). A tree with 

m = 4 is called a Quaternary tree, which has at most 

four children, the first child is called LEFT child, the 

second child is called LEFT-MID child, the third child 

is called RIGHT-MID child and the fourth child is 

called RIGHT child. The detail of Quaternary tree 

structures is explained in (Habib and Rahman, 2017). 

The Binary and Quaternary tree structures for luke 5 

(Luke 5, 2018) are shown in Fig. 1 and 2, respectively. 

Luke 5 is the fifth chapter of the Gospel of Luke in the 

New Testament of the Christian Bible. The chapter 

relates the recruitment of Jesus' first disciples and 

continues to describe Jesus' teaching and healing 

ministry (Luke 5, 2018). The frequency distribution of 

Luke 5 is shown in Fig. 3.  

Octanary Tree 

Octanary tree or 8-ary tree is a tree in which each 

node has 0 to 8 children (labeled as LEFT1 child, LEFT2 

child, LEFT3 child, LEFT4 child, RIGHT1 child, 

RIGHT2 child, RIGHT3 child, RIGHT4 child). Here for 

constructing codes for Octanary Huffman tree, we use 

000 for a LEFT1 child, 001 for a LEFT2 child, 010 for a 

LEFT3 child, 011 for a LEFT4 child, 100 for a RIGHT1 

child, 101 for a RIGHT2 child, 110 for a RIGHT3 child 

and 111 for a RIGHT4 child.  

The process of the construction of an Octanary tree is 

described below: 

 

• List all possible symbols with their probabilities; 

• Find the eight symbols with the smallest probabilities 

• Replace these by a single set containing all eight 

symbols, whose probability is the sum of the 

individual probabilities 

• Repeat until the list contains single member 

• The octanry tree structure for Luke 5 data is shown in 

Fig. 4. 
 

Hexanary Tree 

Hexanary tree or 16-ary tree is a tree in which each 

node has 0 to 16 children (labeled as LEFT1 child, LEFT2 

child, LEFT3 child, LEFT4 child, LEFT5 child, LEFT6 

child, LEFT7 child, LEFT8 child, RIGHT1 child, RIGHT2 

child, RIGHT3 child, RIGHT4 child, RIGHT5 child, 

RIGHT6 child, RIGHT7 child, RIGHT8 child). Here for 

constructing codes for Hexanary Huffman tree we use 

0000 for LEFT1 child, 0001 for LEFT2 child, 0010 for 

LEFT3 child, 0011 for LEFT4 child, 0100 for LEFT5 

child, 0101 for LEFT6 child, 0110 for LEFT7 child, 0111 

for LEFT8 child, 1000 for RIGHT1 child, 1001 for 

RIGHT2 child, 1010 for RIGHT3 child, 1011 for RIGHT4 

child, 1100 for RIGHT5 child, 1101 for RIGHT6 child, 

1110 for RIGHT7 child and 1111 for RIGHT8 child. 

The process of the construction of a Hexanary tree is 

described below: 
 

• List all possible symbols with their probabilities 

• Find the sixteen symbols with the smallest 

probabilities 

• Replace these by a single set containing all sixteen 

symbols, whose probability is the sum of the 

individual probabilities 

• Repeat until the list contains single member 
 

The Hexanary tree structure for Luke 5 data is shown 

in Fig. 5



Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610 

DOI: 10.3844/jcssp.2018.1599.1610 

 

1601 

 
 

Fig. 1: Binary tree 

 

 
 

Fig. 2: Quaternary tree  

 

 
 

Fig. 3: Frequency distribution of Luke5 
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Fig. 4: Octanary tree 

 

 

 

Fig. 5: Hexanary tree 
Table 1: Comparison of different tree structures 

Parameter Binary Quaternary Octanry Hexanary 

Level of tree 10 5 3 2 
Number of internal node 25 9 4 4 
Total number of nodes  51 35 30 28 
Weighted path length 784023 497301 327063 236130 

 

Implementation 

Code Generation (Encoding) Algorithm 

To construct Huffman tree, distinct symbols and its 

frequency are necessary. The tree construction algorithm 

for the traditional Binary technique is explained in 

(Cormen et al., 1989). The newly constructed Quaternary 

technique is explained in (Habib and Rahman, 2017). In 

this section, newly constructed Octanary and Hexanary 

tree generation algorithms are illustrated. 

Encoding of Octanry Huffman Tree 

The encoding algorithm for Octanary Huffman tree is 
shown in algorithm 1. In line 1 we assign the un-ordered 
nodes, C in the Queue, Q and later we take the count of 
nodes in Q and assign it to n. We declare a variable i and 
assign the value of n to it. 
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In line 4, we start iterating all the nodes in the 

queue to build the Octanary tree until the count of i is 

greater than 1 which means there are nodes still left to 

be added to the parent. In line 5, a new tree node, z is 

allocated. This node will be the parent node of the 

least frequent nodes. In line 6, we extract the least 

frequent node from the queue Q and assign it as a 

LEFT1 child of the parent node z. The purpose of the 

EXTRACT-MIN (Q) function is to return the least 

frequent node from the queue. It also removes least 

frequent node from the queue. In line 7, we take the 

next least frequent node from the queue and assign it 

as a LEFT2 child of the parent z. 

From line 8 to 43, we check the value of i or the 

number of nodes left in the queue Q. If i is equal to 

exactly 2, the frequency of the parent node z, f[z] will 

be the summation of the frequency of node r, f[r] and 

the frequency of node s, f[s]. For i is equal to 3 we 

extract another least frequent node from the queue and 

add it as LEFT1, LEFT2, LEFT3 child and add its 

frequency to the parent node. Likewise, for i is equal 

to 4 we extract four least frequent node from the 

queue and add it as LEFT1, LEFT2, LEFT3, LEFT4 child 

and add its frequency to the parent node. For i is equal to 5 

we extract five least frequent node from the queue and add 

it as LEFT1, LEFT2, LEFT3, LEFT4, RIGHT1 child and 

add its frequency to the parent node. For i is equal to 6 we 

extract six least frequent node from the queue and add it as 

LEFT1, LEFT2, LEFT3, LEFT4, RIGHT1, RIGHT2 child 

and add its frequency to the parent node. 

Algorithm 1. Encoding of Octanry Huffman Tree 

O- HUFFMAN (C) 
1. Q � C 
2. n � |Q| 
3. i � n 
4. WHILE  i > 1 
5.    allocate a new node z 
6.    left1[z] � r � EXTRACT-MIN(Q) 
7.    left2[z] � s� EXTRACT-MIN(Q) 
8.    IF i = 2 
9.       f [z] � f[r] + f[s] 
10.    ELSE IF i =3 
11.       left3 [z] �  t � EXTRACT-MIN(Q) 
12.       f [z] � f[r] + f[s] + f[t] 
13.    ELSE IF i =4 
14.       left3 [z] �  t � EXTRACT-MIN(Q) 
15.       left4 [z] �  u � EXTRACT-MIN(Q) 
16.       f [z] � f[r] + f[s] + f[t] + f[u] 
17.    ELSE IF i =5 
18.       left3 [z] �  t � EXTRACT-MIN(Q) 
19.       left4 [z] �  u � EXTRACT-MIN(Q) 
20.       right1[z] �  v � EXTRACT-MIN(Q) 
21.       f [z] � f[r] + f[s] + f[t] + f[u] + f[v] 
22.    ELSE IF i =6 
23.       left3 [z] �  t � EXTRACT-MIN(Q) 
24.       left4 [z] �  u � EXTRACT-MIN(Q) 
25.       right1[z] �  v � EXTRACT-MIN(Q) 

26.       right2[z] �  w � EXTRACT-MIN(Q) 
27.       f [z] � f[r] + f[s] + f[t] + f[u] + f[v] + f[w] 
28.    ELSE IF i =7 
29.       left3 [z] �  t � EXTRACT-MIN(Q) 
30.       left4 [z] �  u � EXTRACT-MIN(Q) 
31.       right1[z] �  v � EXTRACT-MIN(Q) 
32.       right2[z] �  w � EXTRACT-MIN(Q) 
33.       right3[z] �  x � EXTRACT-MIN(Q) 
34.   f [z] � f[r] + f[s] + f[t] + f[u] + f[v] + f[w] + f[x] 
35.    ELSE  
36.       left3 [z] �  t � EXTRACT-MIN(Q) 
37.       left4 [z] �  u � EXTRACT-MIN(Q) 
38.       right1[z] �  v � EXTRACT-MIN(Q) 
39.       right2[z] �  w � EXTRACT-MIN(Q) 
40.       right3[z] �  x � EXTRACT-MIN(Q) 
41.       right4[z] �  y � EXTRACT-MIN(Q) 
42.   f [z] � f[r] + f[s] + f[t] + f[u] + f[v] + f[w] + f[x] + f[y] 

43.    END IF 
44.    INSERT(Q, z) 
45.    i � |Q| 
46. END WHILE 
47. RETURN EXTRACT-MIN(Q) 

 

For i is equal to 7 we extract seven least frequent 
node from the queue and add it as LEFT1, LEFT2, 
LEFT3, LEFT4, RIGHT1, RIGHT2, RIGHT3 child and 
add its frequency to the parent node. Likewise, for i is 
equal to 8 we extract eight least frequent node from the 
queue and add it as LEFT1, LEFT2, LEFT3, LEFT4, 

RIGHT1, RIGHT2, RIGHT3, RIGHT4 child and add its 
frequency to the parent node. In line 44, we insert the 
new parent node z into the Queue, Q. In line 45, we take 
the count of the queue, Q and assign it to i again. And, 
the loop continues until a single node left in the queue. 
Finally, the last and single node from the queue Q is 

returned as an Octanary Huffman tree. 

Encoding of Hexanary Huffman Tree 

In line 1 we are assigning the un-ordered nodes, C 

in the Queue, Q and later we are taking the count of 

nodes in Q and assigning it to n. We declare a variable 

i and assign the value of n to it. In line 4, we start 

iterating all the nodes in the queue to build the 

Hexanary tree until the count of i is greater than 1 

which means there are nodes still left to be added to the 

parent. In line 5, a new tree node, z is allocated. This 

node will be the parent node of the least frequent nodes. 

In line 6, we extract the least frequent node from the 

queue Q and assign it as a LEFT1 child of the parent 

node z. The purpose of the EXTRACT-MIN (Q) function is 

to return the least frequent node from the queue. It also 

removes least frequent node from the queue. In line 7, we 

take the next least frequent node from the queue and 

assign it as a LEFT2 child of the parent z. 
From line 8 to 121, we check the value of i or the 

number of nodes left in the queue Q. If i is equal to 
exactly 2, the frequency of the parent node z, f[z] will 



Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610 

DOI: 10.3844/jcssp.2018.1599.1610 

 

1604 

be the summation of the frequency of node j, f[j] and 
the frequency of node k, f[k]. For i is equal to 3 we 
extract another least frequent node from the queue and 
add it as LEFT1, LEFT2, LEFT3 child and add its 
frequency to the parent node. Likewise, for i is equal to 
4 we extract four least frequent node from the queue 
and add it as LEFT1, LEFT2, LEFT3, LEFT4 child and 
add its frequency to the parent node. For i is equal to 5 
we extract five least frequent node from the queue and 
add it as LEFT1, LEFT2, LEFT3, LEFT4, LEFT5 child 
and add its frequency to the parent node. For i is equal 
to 6 we extract six least frequent node from the queue 
and add it as LEFT1, LEFT2, LEFT3, LEFT4, LEFT5, 
LEFT6 child and add its frequency to the parent node. 
For I is equal to 7 we extract seven least frequent node 
from the queue and add it as LEFT1, LEFT2, LEFT3, 
LEFT4, LEFT5, LEFT6, LEFT7 child and add its 
frequency to the parent node. Likewise, for i is equal to 8 
we extract eight least frequent node from the queue and 
add it as LEFT1, LEFT2, LEFT3, LEFT4, LEFT5, LEFT6, 
LEFT7, LEFT8 child and add its frequency to the parent 
node. The process will be continued and for i is equal to 
16 we extract sixteen least frequent node from the queue 
and add it as LEFT1, LEFT2, LEFT3, LEFT4, LEFT5, 
LEFT6, LEFT7, LEFT8, RIGHT1, RIGHT2, RIGHT3, 
RIGHT4, RIGHT5, RIGHT6, RIGHT7, RIGHT8 child and 
add its frequency to the parent node. In line 122, we insert 
the new parent node z into the Queue, Q. In line 123, we 
take the count of the queue, Q and assign it to i again. 
And, the loop continues until a single node left in the 
queue. Finally, we return the last and single node from the 
queue Q as a Hexanary Huffman tree.  

Algorithm 2. Encoding of Hexanary Huffman Tree 

 H- HUFFMAN (C) 

1. Q � C 

2. n � |Q| 

3. i � n 

4. WHILE  I > 1 

5.    allocate a new node z 

6.    left1[z] � j � EXTRACT-MIN(Q) 

7.    left2[z] � k� EXTRACT-MIN(Q) 

8.    IF i = 2 

9.       f [z] � f[j] + f[k] 

10.    ELSE IF i =3 
11.       left3 [z] �  l � EXTRACT-MIN(Q) 
12.       f [z] � f[j] + f[k] + f[l] 
13.    ELSE IF i =4 
14.       left3 [z] �  l � EXTRACT-MIN(Q) 
15.       left4 [z] �  m � EXTRACT-MIN(Q) 
16.       f [z] � f[j] + f[k] + f[l] + f[m] 

17.    ELSE IF i =5 

18.       left3 [z] �  l � EXTRACT-MIN(Q) 
19.       left4 [z] �  m � EXTRACT-MIN(Q) 
20.       left5[z] �  n � EXTRACT-MIN(Q) 
21.       f [z] � f[j] + f[k] + f[l] + f[m] + f[n] 

22.    ELSE IF i =6 

23.       left3 [z] �  l � EXTRACT-MIN(Q) 

24.       left4 [z] �  m � EXTRACT-MIN(Q) 
25.      left5[z] �  n � EXTRACT-MIN(Q) 

26.      left6[z] �  o � EXTRACT-MIN(Q) 

27.      f [z] � f[j] + f[k] + f[l] + f[m] + f[n] + f[o] 

28.    . 

104.    . 

105.    ELSE 

106.         left3 [z] �  j � EXTRACT-MIN(Q) 

107.        left4 [z] �  k � EXTRACT-MIN(Q) 

108.        left5 [z] �  l � EXTRACT-MIN(Q) 

109.         left6 [z] �  m � EXTRACT-MIN(Q) 

110.        left7 [z] �  n � EXTRACT-MIN(Q) 

111.         left8 [z] �  o � EXTRACT-MIN(Q) 

112.         right1 [z] �  p � EXTRACT-MIN(Q) 

113.         right2 [z] �  q � EXTRACT-MIN(Q) 

114.         right3[z] �  r � EXTRACT-MIN(Q) 

115.         right4[z] �  s � EXTRACT-MIN(Q) 

116.         right5[z] �  t � EXTRACT-MIN(Q) 

117.         right6[z] �  u � EXTRACT-MIN(Q) 

118.         right7[z] �  v � EXTRACT-MIN(Q) 

119.         right8[z] �  w � EXTRACT-MIN(Q) 

120.         f [z] � f[j] + f[k] + f[l] + f[m] + f[n] + f[o] + f[p] +..+ f[y] 

121.     END IF 

122.     INSERT(Q, z) 

123.     i � |Q| 

124. END WHILE 

125. RETURN EXTRACT-MIN(Q) 

Decoding Algorithm 

This is a one pass algorithm. First, open the 

encoded file and read the frequency data out of it. 

Create the Octanary or Hexanary Huffman tree base 

on that information. Read data out of the file and search the 

tree to find the correct character to decode (000 bit means 

go LEFT1, 001 bit means go LEFT2, 010 bit means go 

LEFT3, etc in case of the Octanary tree; 0000 bit means go 

LEFT1, 0001 bit means go LEFT2, 0010 bit means go 

LEFT3, etc in case of the Hexanary tree). If we know the 

Octanary or Hexanary Huffman code for some encoded 

data, decoding may be accomplished by reading the 

encoded data three or four bit at a time. Once the bits read 

match a code for a symbol, write out the symbol and start 

collecting bits again. The newly constructed Octanary and 

Hexanary tree decoding techniques are explained below. 

Decoding of Octanry Huffman Tree 

Algorithm 3. Decoding of Octanary Huffman Tree  

OH-DECODE (T, B) 

1. ln  � T 

2. n  � |B| 

3. i  � 0 

4. WHILE    i � n 

5.    b1 � EXTRACT-BIT(B) 

6.    b2 � EXTRACT-BIT(B) 
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7.    b3 � EXTRACT-BIT(B) 

8.    IF  b1 = 0 AND b2 = 0 AND  b3=0 

9.       ln � LEFT1 (ln) 

10.    ELSE b1 = 0 AND b2 = 0 AND  b3=1 
11.       ln � LEFT2 (ln) 
12.    ELSE b1 = 0 AND b2 = 1 AND  b3=0 
13.       ln � LEFT3 (ln) 
14.    ELSE b1 = 0 AND b2 = 1 AND  b3=1 
15.       ln � LEFT4 (ln) 
16.    ELSE b1 = 1 AND b2 = 0 AND  b3=0 
17.       ln � RIGHT1 (ln) 
18.    ELSE b1 = 1 AND b2 = 0 AND  b3=1 
19.       ln � RIGHT2 (ln) 
20.    ELSE b1 = 1 AND b2 = 1 AND  b3=0 
21.       ln � RIGHT3 (ln) 
22.    ELSE  
23.       ln � RIGHT4 (ln) 
24.    END IF 
25.       k � KEY(ln) 
26.    IF � k IS NOT NULL 
27.       Output (k) 
28.       ln � T 
29.    END IF  
30.    i � i + 3 
31. END WHILE 

 

In line 1, we assign the Octanary tree T in the local 

variable ln. After that the total count of bits in n from 
B is taken. In line 3, a local variable i with 0 is 
initialized which will be used as a counter. In line 4, 
we start iterating all the bits in B. As it is an Octanary 
tree, we have at most eight leaves for a parent node: 
LEFT1, LEFT2, LEFT3, LEFT4, RIGHT1, RIGHT2, 

RIGHT3, RIGHT4 and 000, 001, 010, 011, 100, 101, 110, 
111 represent these leaf nodes, respectively. So, we take 
three bits at a time. EXTRACT-BIT(B), returns a bit from 
the bit array B and removes it from B as well. In line 5, 6 
and 7, local variable b1, b2 and b3 are being assigned with 
three extracted bits from the bit array B. 

From line 8 to line 24, we check the extracted bits 
to traverse the tree from the top. If the bits are 000 we 
take the LEFT1 child of the parent ln and assign it to 
ln itself. For 001, we replace the parent ln with its 
LEFT2 child, for 010 we replace it with its LEFT3 
child, for 011 we replace it with the LEFT4 child, for 
100 we replace it with its RIGHT1 child, for 101 we 
replace it with its RIGHT2 child, for 110 we replace it 
with its RIGHT3 child and for 111 we replace it with its 
RIGHT4 child. In line 25, we get the key of the replaced ln 
and assign it in k. Then, we check whether k has any 
value. If the k has any value we write the value of the k in 
the output and update the ln with the Hexanary tree T 
itself. In line 30 we increase the value of i by 3 and the 
loops get continued and read the next three bits. 

Search time for finding the source symbol Octanary 

Huffman Tree is O(log8 n) whereas for Huffman based 

techniques decoding algorithm it is O(log2 n). 

Decoding of Hexanary Huffman Tree 

In line 1, we assign the Hexanary tree T in the local 

variable ln. After that the total count of bits in n from B 

is taken. In line 3, a local variable i with 0 is initialized 

which will be used as a counter. In line 4, we start 

iterating all the bits in B. As it is a Hexanary tree, we 

have at most sixteen leaves for a parent node: LEFT1, 

LEFT2, LEFT3, LEFT4, LEFT5, LEFT6, LEFT7, 

LEFT8, RIGHT1, RIGHT2, RIGHT3, RIGHT4, 

RIGHT5, RIGHT6, RIGHT7, RIGHT8 and 0000, 0001, 

0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 

1011, 1100, 1101, 1110, 1111 represent these leaf 

nodes respectively. So, we take four bits at a time. 

EXTRACT-BIT(B), returns a bit from the bit array B 

and removes it from B as well. In line 5, 6, 7 and 8, 

local variable b1, b2, b3 and b4 is being assigned with 

four extracted bits from the bit array B. 

From line 9 to line 41, we check the extracted bits 

to traverse the tree from the top. If the bits are 0000 

we take the LEFT1 child of the parent ln and assign it 

to ln itself. For 0001, we replace the parent ln with its 

LEFT2 child, for 0010 we replace it with its LEFT3 

child, for 0011 we replace it with the LEFT4 child, for 

0100 we replace the parent ln with its LEFT5 child, 

for 0101 we replace it with its LEFT6 child, for 0110 

we replace it with the LEFT7 child, for 0111 we 

replace it with its LEFT8 child, for 1000 we replace it 

with its RIGHT1 child, for 1001 we replace it with its 

RIGHT2 child, for 1010 we replace it with its RIGHT3 

Algorithm 4. Decoding of Hexanary Huffman Tree 

 HH-DECODE (T, B) 

1. ln  � T 

2. n  � |B| 

3. i  � 0 

4. WHILE    i � n 

5.           b1 � EXTRACT-BIT(B) 

6.           b2 � EXTRACT-BIT(B) 

7.           b3 � EXTRACT-BIT(B) 

8.           b4 � EXTRACT-BIT(B) 

9.           IF  b1 = 0 AND b2 = 0 AND  b3=0 AND b4=0 

10.              ln � LEFT1 (ln) 

11.           ELSE b1 = 0 AND b2 = 0 AND  b3=0 AND b4=1 

12.              ln � LEFT2 (ln) 

13.    . 

23.    . 

25.    IF  b1 = 1 AND b2 = 0 AND  b3=0 AND b4=0 

26.       ln � RIGHT1 (ln) 

27.    ELSE b1 = 1 AND b2 = 0 AND  b3=0 AND b4=1 

28.       ln � RIGHT2 (ln) 

29.    . 

37.    . 

39.    ELSE 

40.       ln � RIGHT8 (ln) 

41.    END IF 

42.    k � KEY(ln)  
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43.    IF � k IS NOT NULL 
44.       Output (k) 

45.       ln � T 

46.    END IF  
47.    i � i + 4 

48. END WHILE 

 

child, for 1011 we replace it with its RIGHT4 child, 

for 1100 we replace it with its RIGHT5 child, for 1101 

we replace it with its RIGHT6 child, for 1110 we 

replace it with its RIGHT7 child and for 1111 we 

replace it with its RIGHT8 child. In line 42, we get the 

key of the replaced ln and assign it in k. Then, we 

check whether k has any value. If the k has any value 

we write the value of the k in the output and update 

the ln with the Hexanary tree T itself. In line 47 we 

increase the value of i by 4 and the loops get 

continued and read the next four bits. 

Encoding and Decoding Techniques of Octanary and 

Hexanary techniques have been thoroughly discussed 

in this section. The search time for finding the source 

symbol using Octanary and Hexanary Huffman Tree 

is O(log8 n) and O(log16 n), respectively, whereas for 

Huffman based techniques decoding algorithm it is 

O(log2 n). The codeword generated by each technique 

are shown in Fig. 6.  

 
Sym- 

bol 

Frequ-

ency 

Bin- 

ary 

Quatern-

ary 

Octan- 

ary 

Hexan-

ary 

q 102 1000001010 0110000100 100010000 10100000 

z 153 1000001011 0110000101 100010001 10100001 

x 204 100000100 0110000110 100010010 10100010 

v 1071 10000011 0110000111 100010011 10100011 

j 1122 1000000 01100000 100010100 10100100 

k 1683 000110 01100010 100010101 10100101 

p 2601 000111 01100011 100010110 10100110 

y 3009 100001 000000 100010111 10100111 

c 3417 111100 000001 011000 10101000 

g 3723 111101 000010 011001 10101001 

f 4233 00010 000011 011010 10101010 

u 4386 01000 010000 011011 10101011 

m 4896 01001 010001 011100 10101100 

w 6120 10001 010010 011101 10101101 

b 6171 10100 010011 011110 10101110 

l 7038 10101 011001 011111 10101111 

d 8109 11111 011010 100000 0000 

r 8262 0000 011011 100001 0001 

i 11067 0101 011100 100011 0010 

s 12393 1001 011101 100100 0011 

h 13209 1011 011110 100101 0100 

n 13464 1100 011111 100110 0101 

a 14484 1101 0001 100111 0110 

o 14484 1110 0010 000 0111 

t 16830 001 0011 001 1000 

e 23970 011 0101 010 1001 

 

Fig. 6: Codeword generated by different algorithms 

Results and Discussion 

The objective of this experiment is to evaluate the 

performance of several Huffman based algorithms. 

We consider Zopfli (Alakuijala and Vandevenne, 

2013; Alakuijala et al., 2016) as a traditional (Binary) 

Huffman algorithm. Zopfli is one of the most successful 

compression algorithm released by Google Inc. Google 

claims that Zopfli has the highest compression ratio. We 

also compare the performance of the dibit based 

Quaternary algorithm and the proposed tribit based 

Octanary and quadbit based Hexanary Huffman 

algorithms. We run all algorithms in the same computer 

with Intel® Core™ i5 – 6500 CPU running at 3.20 

GHz with 2 cores and 4 additional hyper threading 

contexts. We run Ubuntu14.04 LTS Operating system. 

All codecs were compiled using the same compiler, 

GCC 4.8.4. The amunt of primary memory is 4 GiB 

DDR4 type. We exeocute every query five times and 

count average time. The dataset used in this 

experiment to verify the performance of different 

algorithms are described in Table 2. 

As shown in Table 3, it is observed that compression 

ratio is highest for Zopfli but the respective compression 

and decompression speed is very slow. The Zopfli 

requires over 400 sec whereas all other proposed 

techniques require less than 200 sec. 

For the Canterbury corpus, Zopfli requires over 13 

sec whereas all other proposed techniques require less 

than 2 sec, which is shown in Table 4.  

The performance of different algorithms is shown in 

Table 3 and 4 for Enwik (Mahoney, 2018) and Canterbury 

(Bell and Powel, 2000) corpora, respectively. From the 

both tables, it is shown that the valuation of two different 

parameter space and time are not same. In some cases 

saving space is more important and in some other 

cases speed (time) is important. To see a time-space 

relation at the same time, we normalize the data. If we 

divide every number by the largest number of the 

range, we will get every number in the range between 

0 and 1. The data before and after normalization for 

Enwik corpus is shown in Table 5 and the time-space 

graph is shown in Fig. 7.  

From Fig. 7, it has been shown that Zopfli requires 

maximum time whereas Quaternary, Octanary or 

Hexanary requires less time. In the Quaternary technique, 

it achieves almost 60% speed improvement with 

sacrificing 17% of space. For Octanary technique, it 

achieves almost 59% more speed with sacrificing 29% of 

space. From Fig. 8 in the performance of Canterbury 

corpus, it is shown that almost 90% speed improvement 

can be achieved by sacrificing 40% of space. 
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Fig. 7: Time-space requirement for Enwik corpus 
 

 

 

Fig. 8: Normalized Time-Space requirement for Canturbury corpus 
 

 
 

Fig. 9: Octanary performance for “Consultation-en” 
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Table 2: Data set 

   File Distinct 
S/L  File name  Description  size symbol 

1 Enwik8.txt It has been developed as a large text compression benchmark, 95.3 MB 156 
  consisting of 100 million bytes of English Wikipedia 
2 Canterbury.txt  A compression corpus designed for lossless data compression, 2.67 MB 72 
  Improved version of Calgary corpus 
3 consultation-document_en.pdf Public Consultation on the review of the EU copyright rules 113 KB 92 

 

Table 3: The compression ratio and compression-decompression speed for the Enwik Corpus 

   Compression enhancement  Time enhancement with 
Algorithm Space (MB) with respect to original file(in %) Time (S) respect to Zopfli(in %) 

Zopfli (Binary) 33.37 64.98 463.26 - 
Quaternary 49.67 47.88 186.88 59.66 
Octanary 61.06 35.93 187.82 59.46 
Hexanary 59.73 37.32 174.58 62.31 

 
Table 4: The compression ratio and compression-decompression speed for the Canterbury corpus 

   Compression enhancement  Time enhancement with 
Algorithm Space (MB) with respect to original file(in %) Time (S)  respect to Zopfli(in %) 

Zopfli (Binary) 0.64 76.07 13.36 - 
Quaternary 1.71 35.85 1.37 89.78 
Octanary 2.27 15.01 1.47 89.00 
Hexanary 1.79 32.97 1.04 92.20 

 
Table 5: Time-space data for Enwik corpus 

Before normalization    After normalization 
--------------------------------------------------------------------- ------------------------------------------------------------------------------- 
Algorithm Space (MB) Time (S) Algorithm Space (MB) Time (S) 

Zopfli (Binary) 33.37 463.26 Zopfli (Binary) 0.55 1.00 
Quaternary 49.67 186.88 Quaternary 0.81 0.40 
Octanary 61.06 187.82 Octanary 1.00 0.41 
Hexanary 59.73 174.58 Hexanary 0.98 0.38 

 
It is not always true that Quaternary technique perform 

better than the other techniques. For Consultation-en (EC, 

2013) documents, it has been observed that Octanary 

perform better than the other techniques. It is found that for 

both time and space Octanary achieved the best 

performance, which is shown in Fig. 9. When the number 

of symbol is approximatly 8
h 

(h is the height of the tree) 

then the Octanary performs better than the other techniques. 

Conclusion 

Two new Huffman based algorithms have been 

introduced in this article. The time-space trade-off for 

different Huffman based algorithms have been 

thoroughly discussed. Binary Huffman algorithm 

performs better for achieving more compression ratio. 

Quaternary Huffman algorithm is useful when a balance 

between time and space is required. However, if the tree 

is balanced, due to less tree-height Octanary and 

Hexanary Huffman algorithms perform superior to Binary 

and Quaternary algorithms. In all cases, optimal codeword 

is produced when the tree is balanced. Binary, Quaternary, 

Octanary and Hexanary algorithms perform best when the 

number of symbols is approximately 2
h
, 4

h
, 8

h
 and 16

h
, 

respectively, where h is the height of the tree. An adaptive 

algorithm on how to find the most suitable encoding 

algorithm for balancing speed and memory requirement 

could be an important topic for future research. 
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