

 © 2018 Ahsan Habib, M. Jahirul Islam and M. Shahidur Rahman. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Huffman Based Code Generation Algorithms: Data

Compression Perspectives

Ahsan Habib, M. Jahirul Islam and M. Shahidur Rahman

Department of Computer Science and Engineering,

Shahjalal University of Science and Technology, Sylhet, Bangladesh

Article history

Received: 18-07-2018
Revised: 07-09-2018
Accepted: 06-12-2018

Corresponding Author:
Ahsan Habib
Department of Computer
Science and Engineering,
Shahjalal University of Science
and Technology, Sylhet,
Bangladesh
Email: ahabib-cse@sust.edu

Abstract: This article proposes two dynamic Huffman based code

generation algorithms, namely Octanary and Hexanary algorithm, for data

compression. Faster encoding and decoding process is very important in

data compression area. We propose tribit-based (Octanary) and quadbit-

based (Hexanary) algorithm and compare the performance with the existing

widely used single bit (Binary) and recently introduced dibit (Quaternary)

algorithms. The decoding algorithms for the proposed techniques have also

been described. After assessing all the results, it is found that the Octanary

and the Hexanary techniques perform better than the existing techniques in

terms of encoding and decoding speed.

Keywords: Binary Tree, Quaternary Tree, Octanary Tree, Hexanary Tree,

Huffman Principle, Decoding Technique, Encoding Technique, Tree Data

Structure, Data Compression

Introduction

Huffman coding (Huffman, 1952) is very popular in

data compression area. Nowadays it is used in data

compression for wireless and sensor networks

(Săcăleanu et al., 2011; Renugadevi and Darisini, 2013),

data mining (Oswald and Sivaselvan, 2018; Oswald et al.,

2015). It is also found efficient for data compression in

low resource systems (Radhakrishnan et al., 2016; Matai

et al., 2014; Wang and Lin, 2016). The use of Huffman

code in word-based text compression is also very

common (Sinaga, 2015). Huffman principle produces

optimal code using a Binary tree where the most frequent

codewords are smaller in length. However, Huffman

principle does not produce a balanced tree (Rajput,

2018). For this reason, it requires more memory to store

longer codeword, and thus it also requires more time to

decode those codewords from the memory. In this paper,

we first review traditional Huffman algorithm and newly

introduced Quaternary Huffman algorithm. Then we

introduce Octanary and Hexanary tree for construction of

Huffman codes. Octanary and Hexanary structure makes

the underlying tree more balanced. The tree construction

and decoding algorithms for both techniques have been

developed. The codeword efficiency of Binary,

Quaternary, Octanary and Hexanary structure have been

compared. The compression ratio and speed are also

compared for different methods using these coding

systems. It is found that the compression and

decompression speed of the proposed techniques are

better than the others. To summarize, the proposed

techniques may be suitable for offline data compression

applications where encoding and decoding speed is more

important with less constraint on space.

Related Works

In 1952, David Huffman introduced an algorithm

(Huffman, 1952) which produced optimal code for data

compression system. Huffman code is produced using

Binary tree technique, where more frequent symbols

produce shorter codeword length and less frequent

symbols produce longer codeword. Later on, so many

popular algorithms and applications have been developed

based on Binary Huffman coding technique. Saradashri et

al. (2015) explained in his book that Huffman code could

also be static or dynamic. Chen et al. (Chen et al., 1999)

introduced a method to speed up the process and reduced

memory of Huffman tree. A tree clustering algorithm is

introduced in (Hashemian, 1995) to avoid high sparsity

of the tree. In this research, the author reduced the

header size dramatically. Vitter (1987), the author

introduced a new method where it required less memory

than the conventional Huffman technique. Chung (1997)

also introduced a memory-efficient array structure to

represent the Huffman tree. In some other researches

codeword length of Huffman code also investigated.

Katona and Nemetz (1978) investigated the connection

Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610

DOI: 10.3844/jcssp.2018.1599.1610

1600

between self-information of a source letter and its

codeword length. A recursive Huffman algorithm is

introduced in (Lin et al., 2012), where a tree is

transformed into a recursive Huffman tree and it decoded

more than one symbol at a time. The decoding process

starts by reading a file bit by bit in all of the above

techniques. Recently, we introduced a code generation

technique based on Quaternary (dibit) Huffman tree

(Habib and Rahman, 2017) to produce Huffman codes.

In this research, better encoding and decoding speed is

achieved by sacrificing an insignificant amount of space,

where it is also found that searching two bits at a time

speed up the overall processing speed than searching a

single bit. This motivated us to search three or four bits

at a time. In this connection, the Octanary algorithm is

introduced to produce three bit based Huffman code,

whereas the Hexanary algorithm is introduced to

produce four bit based Huffman code. The proposed

algorithms improved the Huffman decoding time

compared with the existing Huffman algorithms.

We organize the paper as follows. In section “Tree

Structure”, traditional Binary, Quaternary, Octanary and

Hexanary tree structures in data management system are

presented. In section “Implementation”, the proposed

encoding and decoding algorithm of Octanary and

Hexanary techniques have been presented. Section “Result

and Discussion” discusses the experimental results.

Finally, Section “Conclusion” concludes the paper.

Tree Structure

Binary and Quaternary Tree

A rooted tree T is called an m-ary tree if every

internal vertex has no more than m children. The tree is

called a full m-ary tree if every internal vertex has

exactly m children. An m-ary tree with m = 2 is called

a Binary tree. In a Binary tree, if an internal vertex has

two children, the first child is called the LEFT child

and the second child is called the RIGHT child

(Adamchik, 2009). The Binary tree structure is

thoroughly discussed in (Huffman, 1952). A tree with

m = 4 is called a Quaternary tree, which has at most

four children, the first child is called LEFT child, the

second child is called LEFT-MID child, the third child

is called RIGHT-MID child and the fourth child is

called RIGHT child. The detail of Quaternary tree

structures is explained in (Habib and Rahman, 2017).

The Binary and Quaternary tree structures for luke 5

(Luke 5, 2018) are shown in Fig. 1 and 2, respectively.

Luke 5 is the fifth chapter of the Gospel of Luke in the

New Testament of the Christian Bible. The chapter

relates the recruitment of Jesus' first disciples and

continues to describe Jesus' teaching and healing

ministry (Luke 5, 2018). The frequency distribution of

Luke 5 is shown in Fig. 3.

Octanary Tree

Octanary tree or 8-ary tree is a tree in which each

node has 0 to 8 children (labeled as LEFT1 child, LEFT2

child, LEFT3 child, LEFT4 child, RIGHT1 child,

RIGHT2 child, RIGHT3 child, RIGHT4 child). Here for

constructing codes for Octanary Huffman tree, we use

000 for a LEFT1 child, 001 for a LEFT2 child, 010 for a

LEFT3 child, 011 for a LEFT4 child, 100 for a RIGHT1

child, 101 for a RIGHT2 child, 110 for a RIGHT3 child

and 111 for a RIGHT4 child.

The process of the construction of an Octanary tree is

described below:

• List all possible symbols with their probabilities;

• Find the eight symbols with the smallest probabilities

• Replace these by a single set containing all eight

symbols, whose probability is the sum of the

individual probabilities

• Repeat until the list contains single member

• The octanry tree structure for Luke 5 data is shown in

Fig. 4.

Hexanary Tree

Hexanary tree or 16-ary tree is a tree in which each

node has 0 to 16 children (labeled as LEFT1 child, LEFT2

child, LEFT3 child, LEFT4 child, LEFT5 child, LEFT6

child, LEFT7 child, LEFT8 child, RIGHT1 child, RIGHT2

child, RIGHT3 child, RIGHT4 child, RIGHT5 child,

RIGHT6 child, RIGHT7 child, RIGHT8 child). Here for

constructing codes for Hexanary Huffman tree we use

0000 for LEFT1 child, 0001 for LEFT2 child, 0010 for

LEFT3 child, 0011 for LEFT4 child, 0100 for LEFT5

child, 0101 for LEFT6 child, 0110 for LEFT7 child, 0111

for LEFT8 child, 1000 for RIGHT1 child, 1001 for

RIGHT2 child, 1010 for RIGHT3 child, 1011 for RIGHT4

child, 1100 for RIGHT5 child, 1101 for RIGHT6 child,

1110 for RIGHT7 child and 1111 for RIGHT8 child.

The process of the construction of a Hexanary tree is

described below:

• List all possible symbols with their probabilities

• Find the sixteen symbols with the smallest

probabilities

• Replace these by a single set containing all sixteen

symbols, whose probability is the sum of the

individual probabilities

• Repeat until the list contains single member

The Hexanary tree structure for Luke 5 data is shown

in Fig. 5

Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610

DOI: 10.3844/jcssp.2018.1599.1610

1601

Fig. 1: Binary tree

Fig. 2: Quaternary tree

Fig. 3: Frequency distribution of Luke5

186201

77928

33609 44319

108273

50592 57681

24174 26418
27948 29733

16779

8517

20349

9282

11781

5661

2652

1530

13209
15249

7140

459

225

4284

r

8
2
6

2

f

4
2
3

3

k

1
6
8

3

p

2

6
0

1

t

1
6
8

3
0

e

2
3
9
7
0

1
1
0

6

7

m

4
8
9

6

u

4
3
8

6

j

1
1
2

2
x

2
0

4

q

1
0

2

z

1
5

3

v

1
0
7

1

c

3
4

1

7

y

3
0

0

9

g

3
7
2

3

b

6
1

7

1

7
0
3

8

w

6
1
2

0

s

1
2
3
9
3

n

1
3
4
6
4

a

1
4
4
8
4

o

1
4
4
8
4

h

1
3
2
0
9

186201

1530

60180

21573

126021

30345

50133

6936

14382

7

0

3

8

d

8

1

0

9

r

8

2

6

2 1

1

0

6

7

s

1

2

3

9

3

n

1

3

4

6

4

h

1

3

2

0

9

k

1

6

8

3

p

2

6

0

1

i

1

1

2

2 q

1

0

2

z

1

5

3

x

2

0

4

v

1

0

7

1

y

3

0

0

9

c

3

4

7

1

g

3

7

2

3

f

4

2

3

3

a

1

4

4

8

4

o

1

4

4

8

4

t

1

6

8

3

0

u

4

3

8

6

m

4

8

9

6

w

6

1

2

0

b

6

1

7

1

e

2

3

9

7

0

S
y
m
b
o
l

F
re
q
u
en
cy

q

 z x

 v

 j k

 p

 y

 c g

 f u

 m

 w

 b

 l d

 r i s h

 n

 a o

 t e

1
0
2

 1
5
3

 2
0
4

 1
0
7
1

 1
1
2
2

 1
6
8
3

 2
6
0
1

 3
0
0
9

 3
4
1
7

 3
7
2
3

 4
2
3
3

 4
3
8
6

 4
8
9
6

 6
1
2
0

 6
1
7
1

 7
0
3
8

 8
1
0
9

 8
2
6
2

 1
1
0
6
7

 1
2
3
9
3

 1
3
2
0
9

 1
3
4
6
4

 1
4
4
8
4

 1
4
4
8
4

 1
6
8
3
0

 2
3
9
7
0

l
⌣

 i
⌣

d

8
1
0

9

l
⌣

i
⌣

Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610

DOI: 10.3844/jcssp.2018.1599.1610

1602

Fig. 4: Octanary tree

Fig. 5: Hexanary tree
Table 1: Comparison of different tree structures

Parameter Binary Quaternary Octanry Hexanary

Level of tree 10 5 3 2
Number of internal node 25 9 4 4
Total number of nodes 51 35 30 28
Weighted path length 784023 497301 327063 236130

Implementation

Code Generation (Encoding) Algorithm

To construct Huffman tree, distinct symbols and its

frequency are necessary. The tree construction algorithm

for the traditional Binary technique is explained in

(Cormen et al., 1989). The newly constructed Quaternary

technique is explained in (Habib and Rahman, 2017). In

this section, newly constructed Octanary and Hexanary

tree generation algorithms are illustrated.

Encoding of Octanry Huffman Tree

The encoding algorithm for Octanary Huffman tree is
shown in algorithm 1. In line 1 we assign the un-ordered
nodes, C in the Queue, Q and later we take the count of
nodes in Q and assign it to n. We declare a variable i and
assign the value of n to it.

186201

90933

39984

9945

o

1
4
4
8
4

t

1
6
8
3

0

e

2
3
9
7

0

d

8
1
0

9

1
1
0
6
7

s

1
2
3
9

3

h

1

3
2
0

9

n

1
3
4
6

4

r

8
2
6

2

a

1
4
4
8

4

c

3
4
1

7

g

3
7

2

3

f

4
2
3

3

u

4
3
8

6

m

4
8
9

6

w

6
1
2

0

b

6
1

7

1

7
0
3

8

q

1
0

2

z

1

5

3

x

2
0

4

j

1
1
2

2

k

1
6
8

3

p

2
6
0

1

y

3
0

0

9

v

1
0
7

1

7
0
3

8

b

6
1
7

1

w

6

1
2

0

m

4
8
9

6

u

4
3
8

6

f

4
2
3

3

g

3
7

3

2

c

3
4
1

7

y

3
0
0

9

p

2
6
0

1

k

1
6
8

3

j

1
1
2

2

v

1
0
7

1

x

2
0

4

z

1
5

3

q

1
0

2

d

8
1

0

9

r

8
2
6

2

1
1
0
6
7

s

1
2
3

9

3

h

1
3
2
0

9

n

1
3

4
6

4

a

1
4
4

8

4

o

1
4

4
8

4

t

1
6
8
3

0

e

2
3
9
7

0

49929

186201

l
⌣

i
⌣

i
⌣

l
⌣

Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610

DOI: 10.3844/jcssp.2018.1599.1610

1603

In line 4, we start iterating all the nodes in the

queue to build the Octanary tree until the count of i is

greater than 1 which means there are nodes still left to

be added to the parent. In line 5, a new tree node, z is

allocated. This node will be the parent node of the

least frequent nodes. In line 6, we extract the least

frequent node from the queue Q and assign it as a

LEFT1 child of the parent node z. The purpose of the

EXTRACT-MIN (Q) function is to return the least

frequent node from the queue. It also removes least

frequent node from the queue. In line 7, we take the

next least frequent node from the queue and assign it

as a LEFT2 child of the parent z.

From line 8 to 43, we check the value of i or the

number of nodes left in the queue Q. If i is equal to

exactly 2, the frequency of the parent node z, f[z] will

be the summation of the frequency of node r, f[r] and

the frequency of node s, f[s]. For i is equal to 3 we

extract another least frequent node from the queue and

add it as LEFT1, LEFT2, LEFT3 child and add its

frequency to the parent node. Likewise, for i is equal

to 4 we extract four least frequent node from the

queue and add it as LEFT1, LEFT2, LEFT3, LEFT4 child

and add its frequency to the parent node. For i is equal to 5

we extract five least frequent node from the queue and add

it as LEFT1, LEFT2, LEFT3, LEFT4, RIGHT1 child and

add its frequency to the parent node. For i is equal to 6 we

extract six least frequent node from the queue and add it as

LEFT1, LEFT2, LEFT3, LEFT4, RIGHT1, RIGHT2 child

and add its frequency to the parent node.

Algorithm 1. Encoding of Octanry Huffman Tree

O- HUFFMAN (C)
1. Q � C
2. n � |Q|
3. i � n
4. WHILE i > 1
5. allocate a new node z
6. left1[z] � r � EXTRACT-MIN(Q)
7. left2[z] � s� EXTRACT-MIN(Q)
8. IF i = 2
9. f [z] � f[r] + f[s]
10. ELSE IF i =3
11. left3 [z] � t � EXTRACT-MIN(Q)
12. f [z] � f[r] + f[s] + f[t]
13. ELSE IF i =4
14. left3 [z] � t � EXTRACT-MIN(Q)
15. left4 [z] � u � EXTRACT-MIN(Q)
16. f [z] � f[r] + f[s] + f[t] + f[u]
17. ELSE IF i =5
18. left3 [z] � t � EXTRACT-MIN(Q)
19. left4 [z] � u � EXTRACT-MIN(Q)
20. right1[z] � v � EXTRACT-MIN(Q)
21. f [z] � f[r] + f[s] + f[t] + f[u] + f[v]
22. ELSE IF i =6
23. left3 [z] � t � EXTRACT-MIN(Q)
24. left4 [z] � u � EXTRACT-MIN(Q)
25. right1[z] � v � EXTRACT-MIN(Q)

26. right2[z] � w � EXTRACT-MIN(Q)
27. f [z] � f[r] + f[s] + f[t] + f[u] + f[v] + f[w]
28. ELSE IF i =7
29. left3 [z] � t � EXTRACT-MIN(Q)
30. left4 [z] � u � EXTRACT-MIN(Q)
31. right1[z] � v � EXTRACT-MIN(Q)
32. right2[z] � w � EXTRACT-MIN(Q)
33. right3[z] � x � EXTRACT-MIN(Q)
34. f [z] � f[r] + f[s] + f[t] + f[u] + f[v] + f[w] + f[x]
35. ELSE
36. left3 [z] � t � EXTRACT-MIN(Q)
37. left4 [z] � u � EXTRACT-MIN(Q)
38. right1[z] � v � EXTRACT-MIN(Q)
39. right2[z] � w � EXTRACT-MIN(Q)
40. right3[z] � x � EXTRACT-MIN(Q)
41. right4[z] � y � EXTRACT-MIN(Q)
42. f [z] � f[r] + f[s] + f[t] + f[u] + f[v] + f[w] + f[x] + f[y]

43. END IF
44. INSERT(Q, z)
45. i � |Q|
46. END WHILE
47. RETURN EXTRACT-MIN(Q)

For i is equal to 7 we extract seven least frequent
node from the queue and add it as LEFT1, LEFT2,
LEFT3, LEFT4, RIGHT1, RIGHT2, RIGHT3 child and
add its frequency to the parent node. Likewise, for i is
equal to 8 we extract eight least frequent node from the
queue and add it as LEFT1, LEFT2, LEFT3, LEFT4,

RIGHT1, RIGHT2, RIGHT3, RIGHT4 child and add its
frequency to the parent node. In line 44, we insert the
new parent node z into the Queue, Q. In line 45, we take
the count of the queue, Q and assign it to i again. And,
the loop continues until a single node left in the queue.
Finally, the last and single node from the queue Q is

returned as an Octanary Huffman tree.

Encoding of Hexanary Huffman Tree

In line 1 we are assigning the un-ordered nodes, C

in the Queue, Q and later we are taking the count of

nodes in Q and assigning it to n. We declare a variable

i and assign the value of n to it. In line 4, we start

iterating all the nodes in the queue to build the

Hexanary tree until the count of i is greater than 1

which means there are nodes still left to be added to the

parent. In line 5, a new tree node, z is allocated. This

node will be the parent node of the least frequent nodes.

In line 6, we extract the least frequent node from the

queue Q and assign it as a LEFT1 child of the parent

node z. The purpose of the EXTRACT-MIN (Q) function is

to return the least frequent node from the queue. It also

removes least frequent node from the queue. In line 7, we

take the next least frequent node from the queue and

assign it as a LEFT2 child of the parent z.
From line 8 to 121, we check the value of i or the

number of nodes left in the queue Q. If i is equal to
exactly 2, the frequency of the parent node z, f[z] will

Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610

DOI: 10.3844/jcssp.2018.1599.1610

1604

be the summation of the frequency of node j, f[j] and
the frequency of node k, f[k]. For i is equal to 3 we
extract another least frequent node from the queue and
add it as LEFT1, LEFT2, LEFT3 child and add its
frequency to the parent node. Likewise, for i is equal to
4 we extract four least frequent node from the queue
and add it as LEFT1, LEFT2, LEFT3, LEFT4 child and
add its frequency to the parent node. For i is equal to 5
we extract five least frequent node from the queue and
add it as LEFT1, LEFT2, LEFT3, LEFT4, LEFT5 child
and add its frequency to the parent node. For i is equal
to 6 we extract six least frequent node from the queue
and add it as LEFT1, LEFT2, LEFT3, LEFT4, LEFT5,
LEFT6 child and add its frequency to the parent node.
For I is equal to 7 we extract seven least frequent node
from the queue and add it as LEFT1, LEFT2, LEFT3,
LEFT4, LEFT5, LEFT6, LEFT7 child and add its
frequency to the parent node. Likewise, for i is equal to 8
we extract eight least frequent node from the queue and
add it as LEFT1, LEFT2, LEFT3, LEFT4, LEFT5, LEFT6,
LEFT7, LEFT8 child and add its frequency to the parent
node. The process will be continued and for i is equal to
16 we extract sixteen least frequent node from the queue
and add it as LEFT1, LEFT2, LEFT3, LEFT4, LEFT5,
LEFT6, LEFT7, LEFT8, RIGHT1, RIGHT2, RIGHT3,
RIGHT4, RIGHT5, RIGHT6, RIGHT7, RIGHT8 child and
add its frequency to the parent node. In line 122, we insert
the new parent node z into the Queue, Q. In line 123, we
take the count of the queue, Q and assign it to i again.
And, the loop continues until a single node left in the
queue. Finally, we return the last and single node from the
queue Q as a Hexanary Huffman tree.

Algorithm 2. Encoding of Hexanary Huffman Tree

 H- HUFFMAN (C)

1. Q � C

2. n � |Q|

3. i � n

4. WHILE I > 1

5. allocate a new node z

6. left1[z] � j � EXTRACT-MIN(Q)

7. left2[z] � k� EXTRACT-MIN(Q)

8. IF i = 2

9. f [z] � f[j] + f[k]

10. ELSE IF i =3
11. left3 [z] � l � EXTRACT-MIN(Q)
12. f [z] � f[j] + f[k] + f[l]
13. ELSE IF i =4
14. left3 [z] � l � EXTRACT-MIN(Q)
15. left4 [z] � m � EXTRACT-MIN(Q)
16. f [z] � f[j] + f[k] + f[l] + f[m]

17. ELSE IF i =5

18. left3 [z] � l � EXTRACT-MIN(Q)
19. left4 [z] � m � EXTRACT-MIN(Q)
20. left5[z] � n � EXTRACT-MIN(Q)
21. f [z] � f[j] + f[k] + f[l] + f[m] + f[n]

22. ELSE IF i =6

23. left3 [z] � l � EXTRACT-MIN(Q)

24. left4 [z] � m � EXTRACT-MIN(Q)
25. left5[z] � n � EXTRACT-MIN(Q)

26. left6[z] � o � EXTRACT-MIN(Q)

27. f [z] � f[j] + f[k] + f[l] + f[m] + f[n] + f[o]

28. .

104. .

105. ELSE

106. left3 [z] � j � EXTRACT-MIN(Q)

107. left4 [z] � k � EXTRACT-MIN(Q)

108. left5 [z] � l � EXTRACT-MIN(Q)

109. left6 [z] � m � EXTRACT-MIN(Q)

110. left7 [z] � n � EXTRACT-MIN(Q)

111. left8 [z] � o � EXTRACT-MIN(Q)

112. right1 [z] � p � EXTRACT-MIN(Q)

113. right2 [z] � q � EXTRACT-MIN(Q)

114. right3[z] � r � EXTRACT-MIN(Q)

115. right4[z] � s � EXTRACT-MIN(Q)

116. right5[z] � t � EXTRACT-MIN(Q)

117. right6[z] � u � EXTRACT-MIN(Q)

118. right7[z] � v � EXTRACT-MIN(Q)

119. right8[z] � w � EXTRACT-MIN(Q)

120. f [z] � f[j] + f[k] + f[l] + f[m] + f[n] + f[o] + f[p] +..+ f[y]

121. END IF

122. INSERT(Q, z)

123. i � |Q|

124. END WHILE

125. RETURN EXTRACT-MIN(Q)

Decoding Algorithm

This is a one pass algorithm. First, open the

encoded file and read the frequency data out of it.

Create the Octanary or Hexanary Huffman tree base

on that information. Read data out of the file and search the

tree to find the correct character to decode (000 bit means

go LEFT1, 001 bit means go LEFT2, 010 bit means go

LEFT3, etc in case of the Octanary tree; 0000 bit means go

LEFT1, 0001 bit means go LEFT2, 0010 bit means go

LEFT3, etc in case of the Hexanary tree). If we know the

Octanary or Hexanary Huffman code for some encoded

data, decoding may be accomplished by reading the

encoded data three or four bit at a time. Once the bits read

match a code for a symbol, write out the symbol and start

collecting bits again. The newly constructed Octanary and

Hexanary tree decoding techniques are explained below.

Decoding of Octanry Huffman Tree

Algorithm 3. Decoding of Octanary Huffman Tree

OH-DECODE (T, B)

1. ln � T

2. n � |B|

3. i � 0

4. WHILE i � n

5. b1 � EXTRACT-BIT(B)

6. b2 � EXTRACT-BIT(B)

Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610

DOI: 10.3844/jcssp.2018.1599.1610

1605

7. b3 � EXTRACT-BIT(B)

8. IF b1 = 0 AND b2 = 0 AND b3=0

9. ln � LEFT1 (ln)

10. ELSE b1 = 0 AND b2 = 0 AND b3=1
11. ln � LEFT2 (ln)
12. ELSE b1 = 0 AND b2 = 1 AND b3=0
13. ln � LEFT3 (ln)
14. ELSE b1 = 0 AND b2 = 1 AND b3=1
15. ln � LEFT4 (ln)
16. ELSE b1 = 1 AND b2 = 0 AND b3=0
17. ln � RIGHT1 (ln)
18. ELSE b1 = 1 AND b2 = 0 AND b3=1
19. ln � RIGHT2 (ln)
20. ELSE b1 = 1 AND b2 = 1 AND b3=0
21. ln � RIGHT3 (ln)
22. ELSE
23. ln � RIGHT4 (ln)
24. END IF
25. k � KEY(ln)
26. IF � k IS NOT NULL
27. Output (k)
28. ln � T
29. END IF
30. i � i + 3
31. END WHILE

In line 1, we assign the Octanary tree T in the local

variable ln. After that the total count of bits in n from
B is taken. In line 3, a local variable i with 0 is
initialized which will be used as a counter. In line 4,
we start iterating all the bits in B. As it is an Octanary
tree, we have at most eight leaves for a parent node:
LEFT1, LEFT2, LEFT3, LEFT4, RIGHT1, RIGHT2,

RIGHT3, RIGHT4 and 000, 001, 010, 011, 100, 101, 110,
111 represent these leaf nodes, respectively. So, we take
three bits at a time. EXTRACT-BIT(B), returns a bit from
the bit array B and removes it from B as well. In line 5, 6
and 7, local variable b1, b2 and b3 are being assigned with
three extracted bits from the bit array B.

From line 8 to line 24, we check the extracted bits
to traverse the tree from the top. If the bits are 000 we
take the LEFT1 child of the parent ln and assign it to
ln itself. For 001, we replace the parent ln with its
LEFT2 child, for 010 we replace it with its LEFT3
child, for 011 we replace it with the LEFT4 child, for
100 we replace it with its RIGHT1 child, for 101 we
replace it with its RIGHT2 child, for 110 we replace it
with its RIGHT3 child and for 111 we replace it with its
RIGHT4 child. In line 25, we get the key of the replaced ln
and assign it in k. Then, we check whether k has any
value. If the k has any value we write the value of the k in
the output and update the ln with the Hexanary tree T
itself. In line 30 we increase the value of i by 3 and the
loops get continued and read the next three bits.

Search time for finding the source symbol Octanary

Huffman Tree is O(log8 n) whereas for Huffman based

techniques decoding algorithm it is O(log2 n).

Decoding of Hexanary Huffman Tree

In line 1, we assign the Hexanary tree T in the local

variable ln. After that the total count of bits in n from B

is taken. In line 3, a local variable i with 0 is initialized

which will be used as a counter. In line 4, we start

iterating all the bits in B. As it is a Hexanary tree, we

have at most sixteen leaves for a parent node: LEFT1,

LEFT2, LEFT3, LEFT4, LEFT5, LEFT6, LEFT7,

LEFT8, RIGHT1, RIGHT2, RIGHT3, RIGHT4,

RIGHT5, RIGHT6, RIGHT7, RIGHT8 and 0000, 0001,

0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010,

1011, 1100, 1101, 1110, 1111 represent these leaf

nodes respectively. So, we take four bits at a time.

EXTRACT-BIT(B), returns a bit from the bit array B

and removes it from B as well. In line 5, 6, 7 and 8,

local variable b1, b2, b3 and b4 is being assigned with

four extracted bits from the bit array B.

From line 9 to line 41, we check the extracted bits

to traverse the tree from the top. If the bits are 0000

we take the LEFT1 child of the parent ln and assign it

to ln itself. For 0001, we replace the parent ln with its

LEFT2 child, for 0010 we replace it with its LEFT3

child, for 0011 we replace it with the LEFT4 child, for

0100 we replace the parent ln with its LEFT5 child,

for 0101 we replace it with its LEFT6 child, for 0110

we replace it with the LEFT7 child, for 0111 we

replace it with its LEFT8 child, for 1000 we replace it

with its RIGHT1 child, for 1001 we replace it with its

RIGHT2 child, for 1010 we replace it with its RIGHT3

Algorithm 4. Decoding of Hexanary Huffman Tree

 HH-DECODE (T, B)

1. ln � T

2. n � |B|

3. i � 0

4. WHILE i � n

5. b1 � EXTRACT-BIT(B)

6. b2 � EXTRACT-BIT(B)

7. b3 � EXTRACT-BIT(B)

8. b4 � EXTRACT-BIT(B)

9. IF b1 = 0 AND b2 = 0 AND b3=0 AND b4=0

10. ln � LEFT1 (ln)

11. ELSE b1 = 0 AND b2 = 0 AND b3=0 AND b4=1

12. ln � LEFT2 (ln)

13. .

23. .

25. IF b1 = 1 AND b2 = 0 AND b3=0 AND b4=0

26. ln � RIGHT1 (ln)

27. ELSE b1 = 1 AND b2 = 0 AND b3=0 AND b4=1

28. ln � RIGHT2 (ln)

29. .

37. .

39. ELSE

40. ln � RIGHT8 (ln)

41. END IF

42. k � KEY(ln)

Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610

DOI: 10.3844/jcssp.2018.1599.1610

1606

43. IF � k IS NOT NULL
44. Output (k)

45. ln � T

46. END IF
47. i � i + 4

48. END WHILE

child, for 1011 we replace it with its RIGHT4 child,

for 1100 we replace it with its RIGHT5 child, for 1101

we replace it with its RIGHT6 child, for 1110 we

replace it with its RIGHT7 child and for 1111 we

replace it with its RIGHT8 child. In line 42, we get the

key of the replaced ln and assign it in k. Then, we

check whether k has any value. If the k has any value

we write the value of the k in the output and update

the ln with the Hexanary tree T itself. In line 47 we

increase the value of i by 4 and the loops get

continued and read the next four bits.

Encoding and Decoding Techniques of Octanary and

Hexanary techniques have been thoroughly discussed

in this section. The search time for finding the source

symbol using Octanary and Hexanary Huffman Tree

is O(log8 n) and O(log16 n), respectively, whereas for

Huffman based techniques decoding algorithm it is

O(log2 n). The codeword generated by each technique

are shown in Fig. 6.

Sym-

bol

Frequ-

ency

Bin-

ary

Quatern-

ary

Octan-

ary

Hexan-

ary

q 102 1000001010 0110000100 100010000 10100000

z 153 1000001011 0110000101 100010001 10100001

x 204 100000100 0110000110 100010010 10100010

v 1071 10000011 0110000111 100010011 10100011

j 1122 1000000 01100000 100010100 10100100

k 1683 000110 01100010 100010101 10100101

p 2601 000111 01100011 100010110 10100110

y 3009 100001 000000 100010111 10100111

c 3417 111100 000001 011000 10101000

g 3723 111101 000010 011001 10101001

f 4233 00010 000011 011010 10101010

u 4386 01000 010000 011011 10101011

m 4896 01001 010001 011100 10101100

w 6120 10001 010010 011101 10101101

b 6171 10100 010011 011110 10101110

l 7038 10101 011001 011111 10101111

d 8109 11111 011010 100000 0000

r 8262 0000 011011 100001 0001

i 11067 0101 011100 100011 0010

s 12393 1001 011101 100100 0011

h 13209 1011 011110 100101 0100

n 13464 1100 011111 100110 0101

a 14484 1101 0001 100111 0110

o 14484 1110 0010 000 0111

t 16830 001 0011 001 1000

e 23970 011 0101 010 1001

Fig. 6: Codeword generated by different algorithms

Results and Discussion

The objective of this experiment is to evaluate the

performance of several Huffman based algorithms.

We consider Zopfli (Alakuijala and Vandevenne,

2013; Alakuijala et al., 2016) as a traditional (Binary)

Huffman algorithm. Zopfli is one of the most successful

compression algorithm released by Google Inc. Google

claims that Zopfli has the highest compression ratio. We

also compare the performance of the dibit based

Quaternary algorithm and the proposed tribit based

Octanary and quadbit based Hexanary Huffman

algorithms. We run all algorithms in the same computer

with Intel® Core™ i5 – 6500 CPU running at 3.20

GHz with 2 cores and 4 additional hyper threading

contexts. We run Ubuntu14.04 LTS Operating system.

All codecs were compiled using the same compiler,

GCC 4.8.4. The amunt of primary memory is 4 GiB

DDR4 type. We exeocute every query five times and

count average time. The dataset used in this

experiment to verify the performance of different

algorithms are described in Table 2.

As shown in Table 3, it is observed that compression

ratio is highest for Zopfli but the respective compression

and decompression speed is very slow. The Zopfli

requires over 400 sec whereas all other proposed

techniques require less than 200 sec.

For the Canterbury corpus, Zopfli requires over 13

sec whereas all other proposed techniques require less

than 2 sec, which is shown in Table 4.

The performance of different algorithms is shown in

Table 3 and 4 for Enwik (Mahoney, 2018) and Canterbury

(Bell and Powel, 2000) corpora, respectively. From the

both tables, it is shown that the valuation of two different

parameter space and time are not same. In some cases

saving space is more important and in some other

cases speed (time) is important. To see a time-space

relation at the same time, we normalize the data. If we

divide every number by the largest number of the

range, we will get every number in the range between

0 and 1. The data before and after normalization for

Enwik corpus is shown in Table 5 and the time-space

graph is shown in Fig. 7.

From Fig. 7, it has been shown that Zopfli requires

maximum time whereas Quaternary, Octanary or

Hexanary requires less time. In the Quaternary technique,

it achieves almost 60% speed improvement with

sacrificing 17% of space. For Octanary technique, it

achieves almost 59% more speed with sacrificing 29% of

space. From Fig. 8 in the performance of Canterbury

corpus, it is shown that almost 90% speed improvement

can be achieved by sacrificing 40% of space.

Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610

DOI: 10.3844/jcssp.2018.1599.1610

1607

Fig. 7: Time-space requirement for Enwik corpus

Fig. 8: Normalized Time-Space requirement for Canturbury corpus

Fig. 9: Octanary performance for “Consultation-en”

1.2

1

0.8

0.6

0.4

0.2

0

N
o
rm

a
li

z
e
d
 d

a
ta

Zopfli

(Binary)

Space (MB)

Time (S)

Quaternary Octanary Hexanary

Algorithm

1.2

1

0.8

0.6

0.4

0.2

0

N
o
rm

a
li

z
e
d
 d

a
ta

Zopfli

(Binary)

Space (MB)

Time (S)

Quaternary Octanary Hexanary

Algorithm

1.20

1.00

0.80

0.60

0.40

0.20

0.00

N
o
rm

a
li

z
e
d
 d

a
ta

Zopfli
(Binary)

Space (MB)

Time (S)

Quaternary Octanary Hexanary

Algorithm

Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610

DOI: 10.3844/jcssp.2018.1599.1610

1608

Table 2: Data set

 File Distinct
S/L File name Description size symbol

1 Enwik8.txt It has been developed as a large text compression benchmark, 95.3 MB 156
 consisting of 100 million bytes of English Wikipedia
2 Canterbury.txt A compression corpus designed for lossless data compression, 2.67 MB 72
 Improved version of Calgary corpus
3 consultation-document_en.pdf Public Consultation on the review of the EU copyright rules 113 KB 92

Table 3: The compression ratio and compression-decompression speed for the Enwik Corpus

 Compression enhancement Time enhancement with
Algorithm Space (MB) with respect to original file(in %) Time (S) respect to Zopfli(in %)

Zopfli (Binary) 33.37 64.98 463.26 -
Quaternary 49.67 47.88 186.88 59.66
Octanary 61.06 35.93 187.82 59.46
Hexanary 59.73 37.32 174.58 62.31

Table 4: The compression ratio and compression-decompression speed for the Canterbury corpus

 Compression enhancement Time enhancement with
Algorithm Space (MB) with respect to original file(in %) Time (S) respect to Zopfli(in %)

Zopfli (Binary) 0.64 76.07 13.36 -
Quaternary 1.71 35.85 1.37 89.78
Octanary 2.27 15.01 1.47 89.00
Hexanary 1.79 32.97 1.04 92.20

Table 5: Time-space data for Enwik corpus

Before normalization After normalization
--- ---
Algorithm Space (MB) Time (S) Algorithm Space (MB) Time (S)

Zopfli (Binary) 33.37 463.26 Zopfli (Binary) 0.55 1.00
Quaternary 49.67 186.88 Quaternary 0.81 0.40
Octanary 61.06 187.82 Octanary 1.00 0.41
Hexanary 59.73 174.58 Hexanary 0.98 0.38

It is not always true that Quaternary technique perform

better than the other techniques. For Consultation-en (EC,

2013) documents, it has been observed that Octanary

perform better than the other techniques. It is found that for

both time and space Octanary achieved the best

performance, which is shown in Fig. 9. When the number

of symbol is approximatly 8
h

(h is the height of the tree)

then the Octanary performs better than the other techniques.

Conclusion

Two new Huffman based algorithms have been

introduced in this article. The time-space trade-off for

different Huffman based algorithms have been

thoroughly discussed. Binary Huffman algorithm

performs better for achieving more compression ratio.

Quaternary Huffman algorithm is useful when a balance

between time and space is required. However, if the tree

is balanced, due to less tree-height Octanary and

Hexanary Huffman algorithms perform superior to Binary

and Quaternary algorithms. In all cases, optimal codeword

is produced when the tree is balanced. Binary, Quaternary,

Octanary and Hexanary algorithms perform best when the

number of symbols is approximately 2
h
, 4

h
, 8

h
 and 16

h
,

respectively, where h is the height of the tree. An adaptive

algorithm on how to find the most suitable encoding

algorithm for balancing speed and memory requirement

could be an important topic for future research.

Acknowledgment

We are grateful to ICT Division, Ministry of Posts,

Telecommunications and Information Technology,

People's Republic of Bangladesh for their grant to conduct

this research work.

Funding Information

Fund is provided by the ICT Division, Ministry of

Posts, Telecommunications and Information Technology,

People's Republic of Bangladesh (Order No:

56.00.0000.028.33.007.14 (part-1)-275, date: 11.05.2014).

Author’s Contributions

Ahsan Habib: Contributed in the original conception

and algorithm design of the research work, drafted the

article and produce the figures used in the manuscript.

Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610

DOI: 10.3844/jcssp.2018.1599.1610

1609

M. Jahirul Islam: Contributed in the conception and

design of the research work, reviewed the manuscript and

gave final approval of the final version of the manuscript.

M. Shahidur Rahman: Contributed in the

conception and design of the research work, reviewed

the manuscript critically and gave final approval of the

final version of the manuscript.

Ethics

This research manuscript is original and has not been

published elsewhere. The corresponding author confirms

that all of the other authors have read and approved the

manuscript and there are no ethical issues involved.

References

Adamchik, V.S., 2009. Binary trees.

https://www.cs.cmu.edu/~adamchik/15-

121/lectures/Trees/trees.html

Alakuijala, J., E. Kliuchnikov, Z. Szabadka and L.

Vandevenne, 2016. Comparison of brotli, deflate,

zopfli, LZMA, LZHAM and BZip2 compression

algorithms. Internet Engineering Task Force.

Alakuijala, J. and L. Vandevenne, 2013. Data

compression using zopfli. Google Inc.

Bell, T. and M. Powel, 2000. The Canterbury corpus.

http://corpus.canterbury.ac.nz/resources/cantrbry.zip

Chen, H.C., Y.L. Wang and Y.F. Lan, 1999. A memory-

efficient and fast Huffman decoding algorithm.

Inform. Process. Lett., 69: 119-122.

 DOI: 10.1016/S0020-0190(99)00002-2

Chung, K.L., 1997. Efficient Huffman decoding. Inform.

Process. Lett., 61: 97-99.

 DOI: 10.1016/S0020-0190(96)00204-9

Cormen, T.H., C.E. Leiserson, R.L. Rivest and C. Stein,

1989. Introduction to Algorithms. 2nd Edn., The

MIT Press, ISBN-10: 0-262-03293-7.

EC, 2013. Public consultation on the review of the EU

copyright rules. European Commission.

Habib, A. and M.S. Rahman, 2017. Balancing decoding

speed and memory usage for huffman codes using

quaternary tree. Applied Informat., 4: 1-15.

 DOI: 10.1186/s40535-016-0032-z

Hashemian, R., 1995. Memory efficient and high-speed

search Huffman coding. IEEE Trans. Comm., 43:

2576-2581.

Huffman, D.A., 1952. A method for the construction

of minimum-redundancy codes. Proc. IRE, 40:

1090-1101. DOI: 10.1109/JRPROC.1952.273898

Katona, G.O.H. and T.O.H. Nemetz, 1978. Huffman codes

and self-information. IEEE Trans. Inform. Theory, 22:

337-340. DOI: 10.1109/TIT.1976.1055554

Lin, Y.K., S.C. Huang and C.H. Yang, 2012. A fast

algorithm for Huffman decoding based on a recursion

Huffman tree. J. Syst. Software, 85: 974-980.

 DOI: 10.1016/j.jss.2011.11.1019

Luke 5, 2018. Wikipedia.

https://en.wikipedia.org/wiki/Luke_5

Mahoney, M., 2018. The Enwik8 corpus.

http://mattmahoney.net/dc/text.html

http://mattmahoney.net/dc/enwik8.zip

Matai, J., J.Y. Kim and R. Kastner, 2014. Energy efficient

canonical Huffman encoding. Proceedings of the IEEE

25th International Conference on Application-Specific

Systems, Architectures and Processors, Jun. 8-20,

IEEE Xplore Press, Zurich, Switzerland, pp: 202-209.

DOI: 10.1109/ASAP.2014.6868663

Oswald, C. and B. Sivaselvan, 2018. An optimal text

compression algorithm based on frequent pattern

mining. J. Ambient Intell. Human Comput., 9: 803-

822. DOI: 10.1007/s12652-017-0540-2

Oswald, C., A.I. Ghosh and B. Sivaselvan, 2015. An

efficient text compression algorithm-data mining

perspective. Proceedings of the 3rd International

Conference on Mining Intelligence and Knowledge

Exploration, Dec. 09-11, Springer, Hyderabad, India,

pp: 563-575. DOI: 10.1007/978-3-319-26832-3_53

Radhakrishnan, J., S. Sarayu, K.G. Kurain, D. Alluri, and

R. Gandhiraj, 2016. Huffman coding and decoding

using Android. Proceedings of the International

Conference on Communication and Signal Processing,

Apr. 6-8, IEEE Xplore Press, Melmaruvathur, India,

pp: 0361-0365. DOI: 10.1109/ICCSP.2016.7754156

Rajput, K.K., 2018. Are Huffman trees balanced?

https://www.quora.com/Are-Huffman-trees-

balanced

Renugadevi, S. and P.S.N. Darisini, 2013. Huffman and

Lempel-Ziv based data compression algorithms for

wireless sensor networks. Proceedings of the

International Conference on Pattern Recognition,

Informatics and Mobile Engineering, Feb. 21-22,

IEEE Xplore Press, Salem, India, pp: 461-463.

DOI: 10.1109/ICPRIME.2013.6496521

Săcăleanu, S.I., R. Stoian, D. M. Ofrim, 2011. An

adaptive Huffman algorithm for data compression in

wireless sensor networks. Proceedings of the

International Symposium on Signals, Circuits and

Systems, Jun. 30-Jul. 1, IEEE Xplore Press, Lasi,

Romania, pp: 1-4.

 DOI: 10.1109/ISSCS.2011.5978764

Saradashri, S., A. Arelakis, P. Stenstrom and D.A.

Wood, 2015. A Primer on Compression in the

Memory Hierarchy. 1st Edn., Morgan and Claypool

Publishers, ISBN-10: 1627057048, pp: 86.

Ahsan Habib et al. / Journal of Computer Science 2018, 14 (12): 1599.1610

DOI: 10.3844/jcssp.2018.1599.1610

1610

Sinaga, A., Adiwijaya and H. Nugroho, 2015.
Development of word-based text compression
algorithm for indonesian language document.
Proceedings of the 3rd International Conference
on Information and Communication Technology,
May 27-29, IEEE Xplore Press, Nusa Dua, Bali,
pp: 450-454.

 DOI: 10.1109/ICoICT.2015.7231466

Vitter, J.S., 1987. Design and analysis of dynamic

Huffman code. J. ACM, 34: 825-845.

 DOI: 10.1145/31846.42227

Wang, W.J. and C.H. Lin, 2016. Code compression for

embedded systems using separated dictionaries.

IEEE Trans. Very Large Scale Integrat. Syst.,

24: 266-275. DOI: 10.1109/TVLSI.2015.2394364

