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Abstract: Software Networking (SDN) is growing in popularity due to its 

benefits, which include portability, mobility, analytics, and ease of creation. 

But it needs to be adequately shielded from security risks. One of the main 

vulnerabilities to the SDN network is the Distributed Denial-of-Service 

(DDoS) attack. To fulfill the demands of the complex and demanding 

security concerns of today, a new network philosophy is needed. Because 

SDN relies on a central controller, it has a single point of attack and failure. 

The present research monitors and analyses network traffic coming from 

switches, host computers, emulators, and wireless access points using a 

multi-vendor packet sampling technique using sFlow. In the process, we have 

clarified the usefulness and efficiency of the recommended strategy, which 

makes use of SDN controllers for the detection and mitigation of DDoS 

flooding attacks. The outcomes also demonstrate that the ODL controller 

outperforms the other remaining controllers in terms of load-shedding 

efficiency and flow setup latency. According to TCP bandwidth 

measurements, the ODL controller performs better in terms of processing 

power and jitter than the remaining controllers due to its higher 

computational complexity. These test results indicate that the jitter 

performance of all controllers is comparable. Overall analysis indicates that 

ODL is more reliable than other controllers in our scenario.  

 

Keywords: SDN, DDoS Attacks, sFlow, Controllers, Jitter, Latency, 

Throughput 
 

Introduction 

The new SDN architecture separates the core 

networks' control logic from the fundamental routing 

and switching components, which act as packet 

forwarders (specified by the controller). Due to its 

advantages in terms of capacity, versatility, surveillance, 

and simplicity of innovation, SDN (Ali et al., 2023) has 

become more and more popular recently. Network 

control logic is no longer embedded in logically 

centralized controllers, making it easier for organizations 

to deploy and manage their own networks. This separation 

turns network switches into straightforward packet 

forwarding devices, adding flexibility, speed, and 

programmability, in Fig. 1. Approximately 64% of people 

on the planet utilize the internet at least once a day this 

is because they are connected to the internet via their 

smartphones or computers. Since there have always been 

security threats on the internet, there has been a 

noticeable growth in concern over internet security over 

the past few years.  

 
 
Fig. 1: SDN architecture 

 

Trojans, worms, port scanning, and denial-of-service 

assaults are just some of the cyber-security concerns that 

have come to the researcher's attention. In a DDoS attack, 

the attacker (Anyanwu et al., 2023) probes the network 

for holes and inserts the Trojan horse virus into the 

software applications without the victims' knowledge. By 

copying this malicious malware onto other network-

connected devices, the intrusive party builds a force of 

hacked computer systems that they may command to 

launch attacks. The increased use of communications 

(Rozam and Riasetiawan, 2023) networks, which enable 
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users to connect at any time and almost anywhere, has led 

to an increase in traffic demand. Unprecedented amounts 

of data traffic are being produced by the spread of 

numerous smart devices and apps as well as the 

development of numerous network technologies. DDoS 

attacks cannot be stopped by using conventional security 

methods such as intrusion detection systems, firewalls, and 

router access control lists. Due to reasons including 

decentralization, a lack of collaboration among ISPs, 

structural changes, collateral damage, outmoded tactics, and 

deployment challenges, there is presently no appropriate 

solution for identifying these attacks. Unlike earlier research 

that uses sniff, machine learning, etc., this research presents 

a sFlow tool based on information theory for distributed 

detection and mitigation of DDoS attack types. The goal of 

this strategy is to enhance these threats' detection and 

mitigation. A further benefit of the study is that, unlike most 

currently available research solutions, it has not made 

extensive use of real-time detection methodologies or 

worked with SDN controllers as extensively. 

Both researchers and organizations have recently 

shifted their attention toward creating networks that are 

more reliable, scalable, and secure. In contrast to the 

stable and decentralized ecosystem of traditional 

networks (Tao et al., 2023), SDN developments aim to 

create a more dynamic and centralized nature of the 

network. IP-based networks make it difficult to enforce 

necessary regulations and reconfigure network devices. A 

new network design called SDN offers hope for effective 

network infrastructure. With centralized controllers, 

worldwide network monitoring, and on-demand traffic 

forwarding rule development, it can improve a network's 

security. Vertical integration is another feature of these 

networks' rigidity. SDN still faces issues with data 

security, manageability, and maintainability, among other 

issues. Security is the most pressing of all these issues. In 

this research, Gupta et al. (2023), add an effective and 

scalable mechanism to these features for executing 

anomaly detection and mitigation in SDN infrastructures. 

Anomaly detection techniques are renowned for finding 

both harmful and benign network patterns. Using sFlow 

data gathering capabilities on edge switches, we want to 

both enforce mitigation policies and detect network attack 

trends in real-time. Flow-based anomaly detection 

techniques have been used in numerous studies. 

SDN controllers are not fully or completely compared 

in the numerous research publications that describe them. 

Many earlier studies have examined centralized 

OpenFlow controllers or contemplated developing a new 

controller. Very little research has been done on the ODL, 

ONOS, POX, NOX, Floodlight, and Ryu's performance in 

terms of burst rate, latency, throughput, Round Trip Time 

(RTT), jitter, and bandwidth. The authors expressly 

ignore the numerous other factors that would be of interest 

to an industrialist in favor of concentrating on the 

controllers' path restoration and software dependability. 

However, the experiment design deviates from the 

methods used in this publication and the research only 

takes a few topologies into account. All SDN controllers 

(Gupta et al., 2022a) work in ICMP DDoS attack 

situations (topologies in attacks using sFlow). It is crucial 

to assess new releases of these controllers to better 

comprehend the performance enhancements. We are 

expecting that this study will shed light on how these 

controllers work. All above these open-source SDN 

controllers are the most popular in terms of performance 

and acceptance. Due to the significance of the controllers 

in SDN, the performance of each controller is assessed in 

this study in terms of latency, initial and average ping 

delay, jitter, and throughput. sFlow is used to measure 

both controllers' latency, initial and average ping delays, 

jitter, and throughput while taking into account topologies 

for the network. After all the controllers (Gupta et al., 

2022b) were evaluated, it was found that ODL provided 

the best responses across the board. When all of them 

were evaluated individually, it was discovered that the 

trial's findings demonstrated that ODL outperformed 

other remaining controllers based on certain criteria. 

This has the effect of making the ODL controller the best 

of all the controllers. This research can assist many 

academics and businesspeople in deciding which of the 

two controllers to use in various application settings. 

The research is on DDoS flood attacks that target 

hosts with controllers and the architectural layout of a 

modular mechanism for SDN systems that enables 

anomaly detection and mitigation. We compared the 

outcomes of all the controllers using the sFlow tool. 

Additionally, we examine the performance and 

applicability of our suggested mechanism in relation to 

other well-known anomaly detection and mitigation 

algorithms described in the below section. Performance 

evaluations utilizing actual traffic traces confirm the 

scalability and efficiency of the suggested sFlow. It is 

used to measure both controllers' latency, initial and 

average ping delays, jitter, and throughput while taking 

into account topologies for the network. 

Materials 

The latency, ping delays, jitter, and throughput of the 

networks were assessed during all trials for the various 

controllers evaluated in two standalone test 

configurations, have been briefly discussed in this section. 

We discussed the effectiveness and efficiency of the 

proposed approach using ODL and Ryu controllers in 

detecting and mitigating of DDoS flooding attacks. 

Methods 

We used a 1.70 GHz Intel(R) Core (TM) i3-4005U 

CPU with two cores, four logical processors, and eight 
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gigabytes of RAM. The VirtualBox program generated 

various virtual machines with different names such as 

controllers, sFlow, Kali Linux, and Emulation. Using the 

Layer's switch, these devices are directly linked to the 

emulation device. All virtual machines (Yungaicela-

Naula et al., 2022) were configured using the VMware 

Workstation VirtualBox software. The most popular 

testing tool for SDN controllers is Emulator, which allows 

for the creation of a virtual network. The emulator was 

utilized to establish network topologies, which were then 

launched by the primary SDN controller responsible for 

the entire network. The hardware specs of each machine 

used for the trials. For all controllers, we used OpenFlow 

protocol in various versions such as 1.3, 1.1, and 1.0, 

respectively for various controllers. An attack detection 

tool is one of the components of the Kali Linux (Mehra and 

Badotra, 2022) operating system for efficient DDoS 

operations. Twenty-five switches, thirty hosts, and one 

SDN controller organized with sFlow, running a Linux 

OS instance, make up the simulation tool. Each switch 

generates synthetic network traffic by randomly 

distributing both genuine clients and attackers. In order to 

detect infrastructure layer attacks, this testbed has been 

used to replay traffic traces, simulate user behavior 

quantify the impact of DDoS attacks on controllers using 

sFlow, and generate rule sets that are nearly identical to 

real ones for validation purposes. 

Kali Linux is installed to generate DDoS attack traffic, 

as botnets are the primary method for modern DDoS 

attacks. The traffic generators were used to provide 

authentic background and typical network traffic profiles. 

After the topology was established, the connectivity was 

checked (Alhijawi et al., 2022) by running the ping 

command first. These OVS support OpenFlow, the most 

widely used communication protocol. All controllers 

underwent performance tests in the simulation to compare 

their results. The values are obtained by detecting and 

mitigating DDoS attacks on the host, followed by an 

analysis of the data using the sFlow tool. It serves as a user 

interface for changing the numerous flow table entries that 

these OVS possess. SDN controllers are being bombarded 

with data packets by the penetration tool, which is sending 

8,000 extra data packets per second. It is necessary to take 

into account both the type of DDoS attack and the date of 

the controllers’ failure when evaluating this metric. 

Further, we connected each switch module to the sFlow 

agent in order to compute real-time detection and 

effectiveness metrics using the network-based software 

tool, sFlow. 
ICMP DDoS flood attacks are created using the 

Hping3 program. You can send packets that have been 

altered in terms of volume, amount, and segmentation to 

overwhelm the target and evade attacks. Using the hping3 

program, you can test security or capabilities amount and 

segmentation to overwhelm the target and evade attacks. 

Using the hping3 program, you can test security or 

capabilities. Hping3 may be helpful for security or 

capability testing, as it allows you to send large numbers 

of packets over a secure network. We use sFlow, an SDN 

technology, to enhance the effectiveness of DDOS 

mitigation. The sFlow methodology for detecting 

attackers involves capturing and adding up the 

incremental flow from each client for analysis by the 

sFlow collector. Firewalls and intrusion detection systems 

are two techniques for protecting systems from attackers. 

They are not well suited to counteract DDoS attacks. 

When the sFlow collector (Prasad et al., 2022) identifies 

certain traffic as an attacker, the OpenFlow controller 

modifies the rule in the OpenFlow table. Therefore, we 

can immediately detect and prevent flooding attacks by 

combining aggregate flow using sFlow and blocking traffic 

using OpenFlow. To prevent attacks by restricting attack 

traffic, the OpenFlow controller muddles the rules a bit. 

After the controllers had established communication, 

simulated performance tests were run on each of them to 

compare the results. After generating the topology by 

integrating the emulator with sFlow, the connection was 

confirmed by first executing the ping command. For 

controllers, it should be started first, followed by the 

sFlow script in a separate terminal. Following the creation 

of the controller-based topologies, the connectivity will 

then be checked, and using the pingall command, all hosts 

will be connected. The DDoS attack (Kumar et al., 2022) 

will then be launched by first creating normal traffic and 

data transmission under the topology and when it appears 

that the topology is functioning appropriately, use the 

sFlow tool to detect and mitigate the flood attack. The 

graph shows how data is sent while a host is under a DDoS 

attack from malicious packets. The data flow is evidently 

occurring both before and after the attack. 

The sFlow-RT controller uses set flow and set 

thresholds to mitigate DDoS attacks. Since the objective 

is to filter flows, the set flow filter defines egress flows 

and the set threshold filter shows the specific access ports 

that only have thresholds applied to them.  

A malicious node coupled with regular traffic arrived 

at the edge switch in the flowchart, in Fig. 2; the switch 

continuously sends information to the sFlow RT 

controller. An example of how a switch is protected from 

attacks shows that traffic on the protected hosts is blocked 

while normal traffic continues. An OpenFlow rule is sent 

to the switch to block the traffic when an attack is 

discovered. Attack traffic is quickly identified and 

eliminated with the aid of the controller using sFlow-RT 

(Udhaya Prasath et al., 2022). Normal traffic is shown to 

be unaffected. SDN applications for traffic engineering 

are developed and implemented in existing networks 

using the open-source sFlow-RT software platform. 
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Based on the popular sFlow and OpenFlow protocols, it is 

a fabric controller with an open, standards-based 

JavaScript development environment. Mitigation script 

logs (Batool et al., 2022) are once the attack has been 

stopped. When the attack is stopped and the mitigation 

block is activated, it resumes its normal course. Normal 

data flow resumes after that point without any issues. 

However, the mitigation rules are now blocking the attack 

host every 8 sec to thwart any potential future attacks on 

this architecture. 

The Proposed Algorithm 

The flow buffer searches for rules matching incoming 

packets, initiated by the flow table. If a rule is found, the 

packet can be sent to the OpenFlow controller or routed to 

an output port, with the controller overseeing the flow 

table. The OpenFlow protocol (Jiang et al., 2022) is 

utilized by controllers and switches to interact, offering an 

interface for configuration, monitoring, and data plane 

flow tables for packet forwarding. It provides an interface 

for managing packets, with received packets indicating 

the number of packets matching a flow. The OpenFlow 

controller provides network resource management data by 

automatically collecting metrics at predefined intervals. It 

allows the categorization of traffic as regular or intrusive 

based on the collected data. The effectiveness of 

mitigation depends on the length of the collection process. 

A long time interval may miss the initial stages of an 

attack, limiting mitigation time, while a short time interval 

increases the detection mechanism’s overhead. 

Selection of Parameters 

Threshold: Compute the threshold (𝑎 = 2𝑘) of each 

flow on each switch using the formula: 

 

𝑎(𝑠_𝑖, 𝑗)  =  −𝑝_𝑖, 𝑗 ∗  𝑙𝑜𝑔(𝑝_𝑖, 𝑗 / 𝑏_𝑖)  (1) 

 

Average threshold: Compute the average threshold for 

each switch: 

 
𝐴𝑣𝑔𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑠_𝑖)  =  (1 / |𝑆_𝑖|)  ∗  ∑ (𝑗 =
1 𝑡𝑜 |𝑆_𝑖|) 𝑎(𝑠_𝑖, 𝑗)  (2) 
 

The standard deviation of the threshold: Compute the 

standard deviation of the threshold for each switch: 
 
𝑆𝑡𝑑𝐷𝑒𝑣𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑠_𝑖)  =  𝑠𝑞𝑟𝑡((1 / |𝑆_𝑖|)  ∗  ∑(𝑗 =
1 𝑡𝑜 |𝑆_𝑖|) (𝑎(𝑠_𝑖, 𝑗)  −  𝐴𝑣𝑔𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑠_𝑖))^2)  (3) 
 

Total threshold: Identify a threshold value: 

 
𝑇𝑜𝑡𝑎𝑙 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝐴𝑣𝑔𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑠)  +  𝑘 ∗
 𝑆𝑡𝑑𝐷𝑒𝑣𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑠)  (4) 

 
 
Fig. 2: Flowchart of SDN controller performance modeling 

and analysis 

 

The constant value k is chosen based on the expected 

sensitivity of the DDoS detection system and network 

setup. Switches are continuously monitored for their 

threshold levels (Mishra and Gupta, 2022) and if their 

value exceeds the threshold, they are considered a 

potential DDoS attack target. An alert is raised if a 

specific number or percentage of switches are identified 

as potential targets within a specified time frame. 

Algorithm 1 is a The DDoS detection method 

functions on the basis that each attack node inside a botnet 

uses standard programming logic that has been pre-

established to route network traffic to the target. Thus, 

attack traffic flows frequently resemble the much more 

dynamic and varied patterns of real network traffic 

(Valizadeh and Taghinezhad-Niar, 2022). As a result, 

attack traffic flows have distinct packet header properties 

compared to regular traffic flows. The first step in 

calculating traffic is calculating the actual number of 

packets arriving and comparing it to the threshold a. 

Alternatively, comparing the current rate of traffic 

arriving in each time frame 𝑇𝑤 can help detect attacks 

when there is a noticeable divergence from the data 

distance value. 

If the 𝑃_𝑖, 𝑗/𝑆_𝑖, 𝑗 value is more than the threshold 

value, we classify it as attack traffic; if not, we classify 

it as valid traffic. Although high-rate traffic may be 

categorized as legitimate traffic, it may also be the 

consequence of an unanticipated increase in network 

traffic. We will first establish the threshold value using 

the recommended detection approach, after which we 

will utilize algorithm 1 to recognize the attack, algorithm 

2 to carry out mitigation, and algorithm 1 to safeguard 

our data flow. 

 

Algorithm 1: A DDoS attack detection Algorithm 

1. Set  

a. 𝑀: number of switch ports in SDN network 

b. 𝑠_𝑖 flow statistics for switch 𝑖 
c. 𝑝_𝑖, 𝑗 packet count for flow 𝑗 on switch 𝑖 
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d. 𝑏_𝑖 𝑏𝑦𝑡𝑒 count for all flows on switch 𝑖 
e. 𝑇 sampling period 

f. 𝑇𝑤 Time window 𝑠𝑖𝑧𝑒 = 1 𝑠𝑒𝑐. 
g. 𝑎 threshold at each switch 𝑠_𝑖 

2. For each switch port 𝑖 
3. While 𝑇 >=  𝑇𝑤, examine the network traffic arising 

from the switches 

4. Features that extract packet headers: 

𝐹 – (𝑠𝑟𝑐𝐼𝑃;  𝑑𝑠𝑡𝐼𝑃;  𝑝𝑘𝑡𝑠𝑖𝑧𝑒;  𝑛𝑜. 𝑜𝑓𝑝𝑘𝑡𝑠(𝑠_𝑖)) 

classify current 𝑇𝑤 into distinct network flows at 

each 𝑠_𝑖. 
5. Determine the threshold for each network flow on 

each switch based on the current 𝑇𝑤 at each 𝑠_𝑖. using 

Eq. (1).  

6. Compute the average and standard deviation of the 

threshold for each switch network flow using Eqs. (2-3) 

respectively at each 𝑠_𝑖. 
7. Identify threshold value using Eq. (4) 

8. For 𝑗 = 1: 𝑀 

9. if 𝑠_𝑖, 𝑗 >  𝑎 then 

10. Declare the traffic as DDoS 

11. else 

12. end if 

13. Traffic may be legitimate or LR-DDoS 

14. else 

15. Declare the traffic as Legitimate. 

16. end if 

17. increment 𝑇𝑤 and go to step 2. 

 

Algorithm 2: DDoS attack Mitigation 

1. Function Mitigation 

2. Compile the switches and ports for the current flow 

3. Verify that the attack is taking place 

4. Collect Port and Switches of attack 

5. If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 –  𝑙𝑜𝑤 =  𝑎𝑡𝑡𝑎𝑐𝑘 –  𝑓𝑙𝑜𝑤, then 

6. Create and modify a new flow entry using attack 

parameters 

7. Send Switch a new flow entry. 

8. else 

9. avoid action 

10. end if  

11. end function 

 

The simulations were conducted in phases, with each 

packet sampled by sFlow for analysis. All floods were 

passed from host to host, with no defined mitigation 

threshold. Despite receiving all floods, the mitigation 

script from other hosts was activated to identify and stop 

the attack using the mitigation port algorithm. 

Results and Discussion 

This section covers utilizing the sFlow instrument for 

identifying and reducing attacks on all controllers. After 

that, the results of latency, throughput, and jitter are 

assessed and a comparison graph is displayed. 

The normal traffic flow rate was 2000 packets per 

second (Anyanwu et al., 2023; Rozam and Riasetiawan, 

2023) until DDoS attacks began to penetrate the system. The 

controllers are inundated with a massive amount of ICMP 

traffic. The network is inundated with up to 8,000 packets 

per second; the rate has since grown to 10,000 packets per 

second. The departure from typical traffic and the ICMP 

faults are readily visible. Figures 3 show typical traffic as 

red lines, while ICMP errors are blue bars. 

The orange line graph represents the threshold line for 

a rising graph attack, while the blue line shows the tool's 

ability to detect and secure data flow through mitigation 

and upgrade. The bandwidth usage in the first 5 sec 

remains consistent for both scenarios, but a DDoS attack 

is launched on the 9th sec. The two scenarios showed 

similar results until the 33 sec mark. The unprotected 

scenario's bandwidth consumption increased due to 

lower hard and idle timeout parameters, resulting in 38% 

more entries in the flow table (Anyanwu et al., 2022). 

The recommended system rejected all attacker machines' 

packets, preventing the flow table's entries from 

increasing. This is because, although legitimate hosts 

also produce traffic, up until that moment, all of it was 

produced by the attacking servers. We can also observe 

how the sFlow tool is used through the graphic. After 

identifying the attack, it employs a mitigation port to 

limit data flow and safeguard the attacker's host's 

remaining data. 

The sFlow analyzer (h8) observed that traffic volume 

increased to 10,000 packets per second during a flood 

attack from attacking sites directed toward the host, 

indicating the rapid exhaustion of network resources 

(Sheibani et al., 2022). Switches' limited memory leads to 

the flow table filling up quickly, necessitating that the 

entire packet be delivered to the controller. A protective 

mechanism is crucial to prevent network failure without 

overloading the controller. The sFlow detection and 

mitigation technique (Swami et al., 2023) demonstrated 

success by setting a polling threshold of 1 sec forwarding 

one packet per twelve for processing. After setting a 

handling rule and updating the flow table, traffic crossed 

the threshold line, mitigating the attack in 3 sec. Dropped 

packets originated from infected ports. 

Table 1 shows that the DDoS detection time grows 

with the rate of network traffic for the various situations 

and parameters employed. We have also taken care of 

other crucial aspects while the DDoS attempts were 

being detected. The most crucial information is that, in 

the initial situation, where just 10,000 packets were 

flooded and a variety of hosts, switches, and topologies 

were utilized, each attack resulted in a different degree 

of packet loss. The linear topology had fewer hosts, 

resulting in higher packet loss. 
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Table 1: The outcomes of various scenarios with tree topology   

  No. of packets Time to identify a DDoS Round Trip Time Packet 

Type of attack Controller /second attack (in seconds)  (RTT) (in seconds) Loss (%) 

ICMP ODL 10,000 1.78 77.40 86.50 

ICMP ONOS 10,000 4.12 108.45 99.05 

ICMP RYU 10,000 2.40 119.02 100.00 

ICMP POX 10,000 5.01 142.25 97.00 

ICMP NOX 10,000 6.70 286.11 99.00 

ICMP Floodlight 10,000 9.30 178.20 100.00 

 
Table 2: Comparison of jitter, throughput, and latency value in 

sequence for SDN controllers 

  Throughput 

Controllers Jitter (ms) (rates/Gbits/s) Latency (ms) 

ODL 0.14 5.39 2.204 

ONOS 0.94 8.57 4.968 

RYU 0.53 7.96 7.307 

POX 0.43 3.02 13.790 

NOX 0.89 4.87 109.149 

Floodlight 0.87 11.01 19.550 

 

 
 
Fig. 3: After a flood of attacks on the host and the detection of 

the attack by sFlow 
 

 
 
Fig. 4: Comparison of jitter, throughput, and latency value for 

controllers 
 

The latency, ping delays, jitter, and throughput of the 

networks were assessed during all trials for all controllers 

evaluated in various standalone test configurations, in 

Table 2. Given that a controller needs some time to run 

tests for different traffic types and packet sizes, we 

employed IP traffic with ICMP messages of various sizes 

to measure performance (Sai et al., 2022). The 

performance parameters throughput, jitter, and latency 

were recorded for each run. The first ping delay was 

utilized to analyze the flow of data between the hosts that are 

conceptually distinct in each topology. The throughput is 

determined by executing the iperf statement (Sritharan et al., 

2022) in the emulation Command Line Interface (CLI) 

console, which gives the bandwidth. The final batch of ten 

ICMP messages was collected in order to calculate jitter. 

When the controller implements our recommended 

procedure, there are frequent instances of a sudden 

increase in CPU utilization. This is because, when the 

table is huge, our approach tries to get the mean value of 

the table, which causes the CPU to utilize 100% of its 

resources. Having said that, this is only immediate. 

The table above shows that the ODL controller 

consistently has slower average ping times than the 

remaining controllers. In the event of an ICMP DDoS 

attack, the range for the actual ping time is significantly less. 

In comparison to the ODL controller, other controller latency 

performance indicates that it is a less effective controller. As 

a result, the average RTT of the ONOS, POX, NOX, 

Floodlight, and Ryu controllers is lower than that of the ODL 

controller. These observations were made primarily because 

the remaining controllers employed hybrid commercial 

tactics, while ODL placed a stronger emphasis on data 

centers. Based on the test findings, it can be concluded that 

some controllers perform well in terms of jitter.  
According to Fig. 4, the ODL-connected topologies 

have significantly higher ICMP throughput than the other 
controllers-connected networks. This is probably due to 
the fact that it already supports very large-scale networks. 
The measurements in the virtual test environment are 
totally reliant on the capability of the controller. This 
enables us to confirm that ODL offers greater 
performance in terms of throughput. 

The research assessed the performance of SDN-based 

networks (Shah et al., 2022) using IP traffic with ICMP 

packets. According to the selected criteria, it was discovered 

that ODL performs better and logs off before ONOS, POX, 

NOX, Floodlight, and Ryu controllers. The DDoS attacks 

were launched between hosts, each with its own independent 

variable. The study used an emulator-ODL, ONOS, POX, 

NOX, Floodlight, and Ryu controller and sFlow testbed to 

assess SDN functionality. It compared attack types and 

access points with the latency, jitter, and throughput 

(dependent variables) of SDN network controllers in a large 

scenario. The effect was the dependent variable and 

changes in the independent variable affected its value. 

Conclusion 

The research assessed the performance of SDN-

based networks using IP traffic with ICMP packets. A 
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DDoS attack was launched between hosts using 

emulation analysis and sFlow tools. A virtual traffic 

flow was generated during the experiment setup to 

simplify performance measurements. The study 

evaluated SDN functionality using an emulator- ODL, 

ONOS, POX, NOX, Floodlight, and Ryu controller and 

sFlow testbed. An ODL controller-based SDN network 

was used to imitate a monitoring system that operates 

in real-time and is capable of detecting DDoS flood 

attacks. This study evaluates SDN network (Shakil et al., 

2022) controllers' latency, jitter, and throughput in a 

large scenario, paired with attack type and access 

points. ODL outperforms ONOS, POX, NOX, 

Floodlight, and Ryu controllers in performance but 

requires specific memory, making it the better choice 

due to Python-based controllers. This study can help 

different academics and industrialists choose between 

these controllers in a variety of application scenarios, 

such as servers and the Web of things. This research 

effort opens a lot of other research possibilities. To have 

a complete image showing these controllers’ 

performance evaluation, we intend to continue 

expanding this study with more southbound and 

northbound APIs and clustering many controllers. 
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