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Abstract: The space of new  Generalized functions ))(( R∏ζ  has been constructed. The operation of 
associative multiplication Θ has been defined on ))(( R∏ζ .The embedding J : (S(R)) ( (R))π ζ → ζ ∏  
has been constructed. 
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INTRODUCTION 

 
 One of the first problems in distributions theory is 
how to define the associative multiplication in 
distribution spaces /S  and /D . Schwartz(1) 
demonstrated the impossibility to define Associative 
Multiplication in such spaces. If we suppose that the 
operation is defined, then it leads the following 
contrariety: 

( ) 1 1x (x) p( ) 0 and (x) x p( ) (x),
x x

where (x) is the Dirac distribution.

 δ = δ = δ 
 

δ
 

So in Schwart's theory, the expressions 
2 3 n, ,...............,δ δ δ  are undefined. 

 To solve this problem, Colomboea J.E.[2] and his 
contemporaries studied the algebra of the objects 
referred to as "New Generalized Functions". After that 
Egorov[3] developed a simpler theory compared to" 
Colombo's" theory of generalized functions and defined 
it's applicability to nonlinear differential equations with 
partial derivatives. 
 The works of Antonevitch and Radyno[4] give a 
general construction method for the alegebras of new 
generalized functions and provide examples of its 
applications. Based on the Antonevitch -Radyno,s 
approach, we  published important results in this 
direction which have found applications in various 
fields of pure and applied mathematics[5-9].  
 In such algebras constructed[5-9], all the operations 
of multiplication, convolution, differentiation and the 
Fourier transformation are defined.  
There arises a natural question : How is to define the 
Laplace transform in those algebras ? 
The algebra of New Generalized functions ( (R))ξ ∏ has 
been constructed; 
so that  

/ /(R) S (R) (S(R)) ( (R))∏ ⊂ ⊂ ξ ⊂ ξ ∏  

 
where (S(R))ξ  - the space of New Generalized 
functions constructed in[5] 
 
Preliminaries  
We use the conventional notations  
S - the space of test functions of rapid decay ; 
L - the Laplace transform; 
F - the Fourier transform; 
*- the convolution; 
S'- the space of tempered distributions. 
 We also use the definitions and some results[5]. Let 
us repeat some of them which are used throughout this 
study. 
 By T(E) we denote the set of all possible 
sequences in E , where E  be separated locally -convex 
algebra with topology defined by family of semi norms 

A(P )α α∈ such that for Aα∈ , there exist Aβ∈  a 
constant C oα >  for which  

( . ) C P ( ) P ( ) , Eα α β βρ λ γ ≤ λ γ ∀ λ γ ∈  (1) 

Let *T (E)  be the set of all sequences ( )k k n E∞
=λ ∈  

satisfy the following conditions there is a number m  
such that for each Aα∈ , there is a nonnegative 

0αχ >  such that m
kP ( ) kα αλ ≤ χ  for each k . And 

*I (E)  be the set of all sequences ( )k k n E∞
=λ ∈  satisfy 

the following conditions for each number m  and for 
each Aα∈ , there is a nonnegative 0αχ >  such that 

m
kP ( ) k−

α αλ ≤ χ for each k . The following results are 
true[5]: 
 
Theorem 1 
a. Let E  be an algebra satisfies (1) then *T (E)  is a 

sub algebra of algebra T(E)  and *I (E)  is an Ideal 
in *T (E) .  
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b.  All Spaces S(R) , D(R) , and (R)ξ  with their 
natural topology satisfy the inequality(1). 

In 1993 we defined the space (E)ζ  as a factor space 
)(/)( ** EIET [5] and we proved many Important results 

for the space (S(R))ζ . Also[8] we have defined the 

extended Fourier Transform F  : (S(R))ζ →  (S(R))ζ . 
 
The space ( (R))ζ ∏  
Define the space 1 3(R) (R) (R)∏ = ∏ ∪∏  where  

{ }n (k)
1 t

(t) C (R) : lim t (t) 0 , n , k Z∞

→∞
∏ = η ∈ η = ∀ ∈  

[ ){ }n (k)
2 t

(t) C 0 , : lim t (t) 0 , n , k Z∞

→∞
∏ = η ∈ ∞ η = ∀ ∈   

{ }3 2g(t) ( t ) : (t) (R)∏ = = η η ∈∏ . 

We define topology on (R)∏  by the following semi- 
norms  

n,l k ,m
k n , m l

k (m)
k,m

t (0, )

P ( (t)) P ( (t)) sup q ( (t))

where q ( (t)) sup t (t)

α
≤ ≤

∈ ∞

η = η = η

η = η
 

The space ( (R) , P )α∏ satisfies (1). So we conclude 
that *T ( (R) )∏  is a sub algebra of T( (R) )∏  and 

*I ( (R) )∏  be an Ideal in *T ( (R) )∏ . 
Moreover it easy to check the following results: 

.))(())((,))(())((.3
;))(()(,)()(.2
;))(())((,)()(.1

****

///

RIRSIRTRST
RSRRSR
RTRSTRRS

∏⊂∏⊂

⊂∏⊂∏

∏⊂∏⊂

ζ  

The embedding of algebra (S(R))ζ  in to the algebra 
( (R))ζ ∏  is defined by the following mapping: 

))(()())(()(: ** RIRSIJ kk ∏+→+ λλπ  

since if , (S(R))λ γ ∈ζ  and )()( γλ ππ JJ = , then 
*

k( ) I (S(R))λ = λ +  and *
k( ) I (S(R))γ = γ + , and 

*
k k( ) I ( (R))λ − γ ∈ ∏ , but. 

)))(()(,)( RSTkk ∈γλ  
So we get the following results: 

/ /(R) S (R) (S(R)) ( (R)) .∏ ⊂ ⊂ζ ⊂ ζ ∏  
In algebra ( (R))ζ ∏  we define the associative 
multiplication for *

k( ) I (S(R)) ,λ = λ +  

*
k( ) I (S(R))γ = γ +  by *

k k( ) I ( (R)) .λΘ γ = λ γ + ∏  
 
Theorem: The operation of multiplication Θ  is 
independent of a representative. 
 
Proof: Let /

k( )λ  and /
k( )γ  are any two other 

representative for λ  and γ  (respectively). Consider 
/ / / / / /

k k k k k k k k k k k kp ( ) p ( ) p ( )α α αλ γ − λ γ ≤ λ γ −λ γ + λ γ −λ γ ≤   

/ / / m
1 1 k 2 k k 2 3 k 4 k kC P ( ) P ( ) C P ( )P ( ) C k−

α β β α β β αλ γ − γ + γ γ − γ ≤
. 
Which means / /

k k k kλ γ ≅ λ γ . 
So In algebra ( (R))ζ ∏  we can define the associative 
multiplication of distributions from / (R)∏  and /S (R) .  
 
Example: Let /(x) S (R)δ ∈ , then 

2 2 1 2
k(4 ) F ( ) I(S(R))−

ϕδ = π ϕ + . 
For each S(R)ψ∈  we have 

2 2 2 2
k

R R

F , k F ( (kx)) (x)dx k F ( ( )) ( )d
k
τ

ϕ ψ = ϕ ϕ = ϕ τ ψ τ =∫ ∫

  
/ // (n)

0 1 2 nn 1

1 1k C , C , C , ........ C , ......
k kϕ ϕ ϕ ϕ−= δ ψ + δ ψ + δ ψ + + δ ψ +  

That is 
(n)

2
n2 n 1

1 C
4 kϕ −

δ
δ =

π ∑ , where 

2
n

R

C F ( ( ))dϕ = ϕ τ τ∫ . 
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