Journal of Mathematics and Statistics 3 (1): 21-23, 2007 ISSN 1549-3644 © 2007 Science Publications

Generalized Cauchy's Models and Generalized Integrals

Sabra Ramadan

Department of Mathematics, Jazan Teachers College, Ministry of Higher Education The Kingdom of Saudi Arabia, Jazan- Abu Areesh, P.O. Box 203

Abstract: The space of generalized complex numbers C^* has been constructed. The Cachy's model in the space of new generalized functions is well defined. The generalized integral of new generalized function over the compact *K* has been defined.

Key words: Cauchy's models, generalized complex numbers, generalized integral, ideal, algebra, topology

INTRODUCTION

Antonevich and Radyno^[1] gave the following general method of constructing algebras of new generalized functions:

Let *E*- be some generalized function space and there is a some algebra *A* of infinitely many differentiable functions such that $A \subset E$.

The multiplication of generalized functions η , $\mu \in E$ will be defined by constructing a new algebra ζ and embedding (linear and injective mapping $j: E \rightarrow \zeta$, such that j(uv)=j(u)j(v) for each $u, v \in A$).

If we have the following objects:

- 1. *E* separated topological vector space;
- 2. Topological algebra $A \subset E$;
- Some method of regularization define by a set of linear operators R_{ψ,ε}: E → A, ψ∈ φ, ε∈ ς (where φ fixed set, ς set with filter) so that ∀ ψ∈ φ, u∈ E

 $R_{w_{E}}(u) \rightarrow u$ in since of topology of *E*.

Define $G(\phi, A) = \{f : \phi x \varsigma \rightarrow A\}$ and R_u the embedding of *E* into $G(\phi, A)$:

 $E \ni u \rightarrow R_u(\phi, A)$, $R_u(\psi, \varepsilon) \equiv R_{\psi \varepsilon}(u)$

The elements f_1 , $f_2 \in G(\phi, A)$ are called weakly equivalent if $\forall \psi \in \phi$, $f_1(\psi, \varepsilon) - f_2(\psi, \varepsilon) \rightarrow 0$ in since of the topology of *E*.

In algebra $G(\phi, A)$ define a sub algebra $G^*(\phi, A)$ and some ideal $N(\phi, A)$ and define the algebra $\zeta(\phi, A) = G^*(\phi, A) / N(\phi, A)$. **Theorem 1:** Let the sub algebra G^* and the ideal N satisfy the following conditions:

- 1. $\forall u \in E, R_u \in G^*;$
- 2. The elements of *N* are weakly equivalent of zero;
- 3. $R_{uv} R_u R_v \in N$, $\forall u, v \in A$.

Then *E* included in algebra ζ as a vector sub space and *A* included in ζ as a sub algebra and if the operator of differentiation *D* defined in *A* so that $D(G^*) \subset G^*$ and $D(N) \subset N$ then the operator *D* is well defined on ζ and *A* embedded in ζ with the operator *D*.

Theorem 2: If there is an algebra ζ and embedding $j: E \to \zeta$, such that *A* included in ζ as a sub algebra. Then for each $R_{\psi,\varepsilon}$, $\psi \in \phi, \varepsilon \in \zeta$, there are a sub algebras G^* and *N* that satisfy the conditions of Theorem 1 and $\zeta = G^* / N$ isometric of the smallest sub algebra containing *E*.

Generalized complex numbers: Following the Antonevich -Radyno general method of constructing algebras of new generalized functions $in^{[2-7]}$ were constructed many algebras of new generalized functions as: $\zeta(\xi(R)), \zeta(D(R)), \zeta(Z(R)), \zeta(S(R)), \zeta(\Pi(R)).$

where the elements of the algebra $\zeta(M)$ are equivalence classes of sequences of elements in *M*.

To define the value of the element $\eta \in \zeta(M)$ at a some point x_0 and to define and study some mathematical models, for example as Cachy's problem:

Corresponding Author: Department of Mathematics, Jazan Teachers College, Ministry of Higher Education, The Kingdom of Saudi Arabia, Jazan- Abu Areesh, P.O. Box 203

 $\begin{cases} Du = au \\ u(0) = c \end{cases}$

We define the generalized complex numbers correspondence to the space of new generalized functions ζ by the following way:

Let G(C) - be the set of all sequences of complex numbers. Define $G^*(C)$ as the set of all sequences $(z_k) \in G(C)$ that is there are a natural number $j \in N$ and a constant $\sigma_1 > 0$, such that $|z_k| < \sigma_1 k^j$ for each k in the domain of sequence (z_k) . Define the set $I^*(C)$ as the set of all sequences $(z_k) \in G(C)$ that is for each natural number $i \in N$, there is a constant $\sigma_2 > 0$, such that $|z_k| < \sigma_2 k^{-i}$ for each k in the domain of sequence (z_k) .

Theorem 3

1. Each of sets G(C), $G^*(C)$ is an algebra;

2. The set $I^*(C)$ be an ideal in the algebra $G^*(C)$.

Proof: We prove 2. Suppose that $\lambda = (\lambda_k)$ be an elements in $I^*(C)$ it implies that is for each a natural number $i \in N$, there is a constant $\sigma_1 > 0$, such that $|\lambda_k| < \sigma_1 k^{-i}$ for each k in the domain of sequence (λ_k) and let $\eta = (\eta_k) \in G^*(C)$ which implies that there are a natural number $j \in N$ and a constant $\sigma_2 > 0$, such that $|\eta_k| < \sigma_2 k^j$ for each k in the domain of sequence (η_k) . The inequality $|\eta_k \lambda_k| \le |\eta_k| |\lambda_k| \le \sigma_2 k^j \sigma_1 k^{-i} = \sigma_2 \sigma_1 k^{j-i}$ implies that $\eta \lambda = (\eta_k \lambda_k) \in I^*(C)$.

The proof of 1 is similar.

Define the algebra of generalized complex numbers as a factor spaces

 $C^* = G^*(C)/I^*(C).$

The following theorem shows the importance of the construction of the algebra C^* :

Theorem 4

- 1. If $h = (h_k) \in G^*(\xi(R))$ and $\mu_0 \in R$, then $h(\mu_0) = (h_k(\mu_0)) \in G^*(C)$
- 2. If $\eta = (\eta_k) \in I^*(\xi(R))$ and $\mu_0 \in R$ then $\eta(\mu_0) = (\eta_k(\mu_0)) \in I^*(C)$.

Proof: It is not difficult to prove this theorem by using the definitions of the space

 $\zeta(\xi(R)) = G^*(\xi(R))/I^*(\xi(R))$ constructed in^[2] and by the definition of the algebra of generalized complex numbers $C^* = G^*(C)/I^*(C)$ defined above.

Now we can define the value of the new generalized function $h \in \zeta(\xi(R))$ at each point $\mu_0 \in R$ as a generalized complex number $h(\mu_0) = (h_k(\mu_0)) \in C^*$, where (h_k) be any representative of the new generalized function $h \in \zeta(\xi(R))$.

We define the embeddings of the set of all real numbers *R* and the set of all complex numbers *C* into the space of complex generalized numbers $C^* = G^*(C)/I^*(C)$ by the following way:

$$k_1 : x \in \mathbf{R} \to (x_k + 0\mathbf{i}) \in \mathbf{C}^*, \text{ where } x_k = x \quad \forall k.$$

$$k_2 : z \in \mathbf{C} \to (z_k) \in \mathbf{C}^* \quad \text{, where } z_k = z \quad \forall k.$$

The space $\zeta(\xi(\mathbf{R}))$ together with the space C^* we will

denote by $(\zeta(\xi(\mathbf{R})), \mathbf{C}^*)$.

So the Cauchy's model in the space of new generalized functions is well defined in $(\zeta(\xi(R)), C^*)$ and has a general form:

$$\begin{cases} Du = vu \\ u(0) = z^* \\ u, v \in \zeta(\xi(R)), z^* \in C^* \end{cases}$$

Moreover there arise many mathematical models in the space $(\zeta(\xi(R)), C^*)$ which have mathematical sense. For example the following models

$$M_{n} = \begin{cases} Dv = \delta^{n}v , \text{ where } \delta - \text{theDirac function} \\ u(a) = b \\ v \in \zeta(\xi(R)), a, b \in C^{*} \end{cases} \qquad n = 2,3,4,\dots.$$

has a mathematical sense in the algebra $(\zeta(\xi(R)), C^*)$.

Generalized integrals: We define the integral in the space $(\zeta(\xi(R)), C^*)$ as the following:

Let $K \subset R$ be any compact set and $\eta \in \zeta(\xi(R))$, define the integral of η over the compact K (which we denote by $\int_{K}^{\rightarrow} \eta(x) dx$) in the following way: $\int_{K}^{\rightarrow} \eta(x) dx = (\int_{K} \eta_{k}(x) dx),$

where (η_k) -be any representative of η

Remark: The integral $\int_{K} \eta(x) dx$ is well defined by virtue the following results:

Theorem 5

- 1. If $(\eta_k) \in G^*(\xi(R))$, then $(\int_K \eta_k(x) dx) \in G^*(C)$;
- 2. The integral $\int_{K} \eta dx$ is independent on a representative (η_k) ;

3. If
$$(\lambda_k) \in I^*(\xi(R))$$
, then $(\int_K \lambda_k(x) dx) \in I^*(C)$.

Proof:

1. Since $(\eta_k) \in G^*(\xi(\mathbb{R}))$, then there are $i \in \mathbb{N}, d > 0$, such that $\sup_{x \in K} |\eta_k(x)| \le dk^i$ for each k in the domain of (η_k) .

Consider
$$\left| \int_{K} \eta_{k}(x) dx \right| \leq \int_{K} |\eta_{k}(x)| dx \leq dk^{i} \int_{K} dx$$
,
that is $\left(\int_{K} \eta_{k}(x) dx \right) \in G^{*}(C)$.

2. Let
$$(\lambda_k - \lambda'_k) \in I^*((\xi(R)))$$
, then
 $\forall i \in N, \exists d > 0 : \sup_{x \in K} |\lambda_k(x) - \lambda'_k(x)| \le dk^{-i}, \forall k$,
consider
 $\left| (\int_{-\lambda_k} \lambda_k(x) dx - \int_{-\lambda'_k} \lambda'_k(x) dx \right) \right| =$

$$\left| \left(\int_{K} \lambda_{k}(x) dx - \int_{K} \lambda_{k}(x) dx \right) \right|^{-1} = \left| \left(\int_{K} (\lambda_{k}(x) - \lambda_{k}'(x)) dx \right) \right| \le dk^{-i} \int_{K} dx \quad \forall k . \quad \text{Which}$$

means that $\left(\int_{K} \eta_{k}(x) dx - \int_{K} \eta_{k}'(x) dx \right) \in I^{*}(C).$

3. The proof of 3 is similar.

Definition: The generalized complex number z^* with representative $(\int_{K} \lambda_k(x) dx)$ is called the generalized integral of new generalized function $\lambda \in \zeta(\xi(\mathbf{R}))$ over the compact *K*, that is:

$$z^* = \int_{K} \stackrel{\rightarrow}{\longrightarrow} \lambda(x) dx = (\int_{K} \lambda_k(x) dx)$$
, where $(\lambda_k(x))$ be any representative of λ .

The generalized integral defined above preserve many properties of usual integral defined in $\xi(R)$, for example the following properties are preserved:

1.
$$\int_{K} \vec{\lambda}(x) \pm \eta(x) dx = \int_{K} \vec{\lambda}(x) dx \pm \int_{K} \vec{\eta}(x) dx ;$$

2.
$$\int_{K} \vec{a} \lambda(x) dx = a \int_{K} \vec{\lambda}(x) dx , a \in C^{*}.$$

REFERENCES

- Antonevish, A.B., 1991. Ya.V. Radyno, Dokl. Acad. Nauk USSR, 318: 267- 270; English Transl. in Soviet Math. Dokl., 43.
- Radyno, Ya.V., N.P. Tkan and S. Ramadan, 1993. Russian Acad. Sci. Dokl., 327: 1. American Mathematical Society. English Transl. in Russian Acad.Sci. Dokl. Math., 46: 414-417.
- 3. Radyno, Ya.V., A.V. Romashevskii and S. Ramadan, 1993. Byelorussian Ac.Sci. Reports.
- Tkan, N.P. and S. Ramadan, 1992. Weak solutions of differential equations in Algebra of new generalized functions. Abstract of the Conference of Belarus Mathematicians, Grodno, 112.
- Ramadan, S. and N.P. Tkan, 1992. Convolution and Fourier transform in algebras of new generalized functions. Abstracts of the Interrepuplican Scientific and practical conference of Young Scientific Workers, Minsk, pp: 209.
- 6. Ramadan, S., 1998. The new generalized function spaces L(D(R)) and L(Z(R)). Dirasat, 25: 20-24.
- 7. Ramadan, S., 2006. One algebra of new generalized functions. J. Math. & Stat., (In Press).