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INTRODUCTION 
 
 Antonevich and Radyno[1] gave the following 
general method of constructing algebras of new 
generalized functions: 
 Let E- be some generalized function space and there is 
a some algebra A of infinitely many differentiable 
functions such that A E⊂ . 
The multiplication of generalized functions , Eη µ ∈  
will be defined by constructing a new algebra ζ  and 
embedding (linear and injective mapping j : E →ζ , 
such that j(uv)=j(u)j(v) for each u, v A)∈ . 
If we have the following objects: 
1. E- separated topological vector space; 
2. Topological algebra A E⊂ ; 
3. Some method of regularization define by a set of 

linear operators ,R : E Aψ ε → , ,ψ∈φ ε∈ς  
(where φ - fixed set, ς - set with filter) so that 

, u E∀ ψ∈φ ∈  

,R (u) uψ ε → in since of topology of E. 

Define { }G( , A) f : x Aφ = φ ς →  and uR  the 
embedding of E into G( , A)φ : 

u u ,E u R ( ,A) , R ( , ) R (u)ψ ε∋ → φ ψ ε ≡  
The elements 1 2f , f G ( , A)∈ φ  are called weakly 
equivalent if ∀ψ∈φ , 1 2f ( , ) f ( , ) 0ψ ε − ψ ε →  in since 
of the topology of E. 
 In algebra G( , A)φ  define a sub algebra *G ( ,A)φ  
and some ideal N( , A)φ  and define the algebra 

*( , A) G ( , A) / N( ,A)ζ φ = φ φ . 
 

Theorem 1: Let the sub algebra *G  and the ideal N 
satisfy the following conditions: 
1. *

uu E , R G ;∀ ∈ ∈  
2. The elements of N are weakly equivalent of zero; 
3. u.v u vR R .R N , u , v A.− ∈ ∀ ∈   
 Then E included in algebra ζ  as a vector sub space 
and A included in ζ as a sub algebra and if the operator 
of differentiation D defined in A so that * *D(G ) G⊂  
and D(N) N⊂  then the operator D is well defined on 
ζ  and A embedded in ζ  with the operator D. 
 
Theorem 2: If there is an algebra ζ and embedding 
j : E →ζ , such that A included in ζ  as a sub algebra. 

Then for each ,R , ,ψ ε ψ∈φ ε∈ς , there are a sub 

algebras *G  and N that satisfy the conditions of 
Theorem 1 and *G / Nζ =  isometric of the smallest sub 
algebra containing E. 
 
Generalized complex numbers: Following the 
Antonevich -Radyno general method of constructing 
algebras of new generalized functions in[2-7] were 
constructed many algebras of new generalized functions 
as: ( (R)),ζ ξ (D(R)),ζ (Z(R)) ,ζ (S(R)),ζ  ( (R)).ζ ∏   
where the elements of the algebra (M)ζ  are 
equivalence classes of sequences of elements in M. 
 To define the value of the element (M)η∈ζ  at a 
some point 0x  and to define and study some 
mathematical   models, for  example as Cachy's 
problem: 
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Du au
u(0) c

=
 =

 

 We define the generalized complex numbers 
correspondence to the space of new generalized 
functions ζ  by the following way: 
 Let G(C) - be the set of all sequences of complex 
numbers. Define *G (C) as the set of all sequences 

k(z ) G(C)∈  that is there are a natural number j N∈  
and a constant 1 0σ > , such that j

k 1z k< σ for each k in 

the domain of sequence k(z ) . Define the set *I (C)  as 
the set of all sequences k(z ) G(C)∈ that is for each 
natural number i N∈ , there is a constant 2 0σ > , such 
that i

k 2z k−< σ  for each k in the domain of 
sequence k(z ) . 
 
Theorem 3 
1. Each of sets G(C), G*(C) is an algebra; 
2. The set I*(C) be an ideal in the algebra *G (C). 
 
Proof: We prove 2. Suppose that k( )λ = λ  be an 
elements in *I (C)  it implies that is for each a natural 
number i N∈ , there is a constant 1 0σ > , such that 

i
k 1k

−λ < σ  for each k  in the domain of sequence k( )λ  

and let *
k( ) G (C)η = η ∈  which implies that there are a 

natural number j N∈  and a constant 2 0σ > , such that 
j

k 2kη < σ  for each k in the domain of sequence k( )η . 

The inequality j i j i
k k k k 2 1 2 1k k k− −η λ ≤ η λ ≤ σ σ = σ σ  

implies that *
k k( ) I (C)ηλ = η λ ∈ . 

The proof of  1 is similar.  
Define the algebra of generalized complex numbers as a 
factor spaces  

* * *C G (C) / I (C)= . 
The following theorem shows the importance of the 
construction of the algebra *C : 
 
Theorem 4 
1. If *

kh (h ) G ( (R))= ∈ ξ  and 0 Rµ ∈ , then 
*

0 k 0h( ) (h ( )) G (C)µ = µ ∈  
2. If *

k( ) I ( (R))η = η ∈ ξ  and 0 Rµ ∈  then 
*

0 k 0( ) ( ( )) I (C)η µ = η µ ∈ . 
 
Proof: It is not difficult to prove this theorem by using 
the definitions of the space 

* *( (R)) G ( (R)) / I ( (R))ζ ξ = ξ ξ  constructed in[2] and by 
the definition of the algebra of generalized complex 
numbers * * *C G (C) / I (C)=  defined above. 
 Now we can define the value of the new 
generalized function h ( (R))∈ζ ξ  at each point 0 Rµ ∈  
as a generalized complex number 

*
0 k 0h ( ) (h ( )) Cµ = µ ∈ , where k(h ) be any 

representative of the new generalized function 
h ( (R))∈ζ ξ . 
 We define the embeddings of the set of all real 
numbers R and the set of all complex numbers C into 
the space of complex generalized numbers 

* * *C G (C) / I (C)=  by the following way:  
*

1 k kk : x R (x 0i) C , where x x k.∈ → + ∈ = ∀  

kzzwhereCzCzk kk ∀=∈→∈ ,)(: *
2 . 

The space ( (R))ζ ξ  together with the space *C  we will 
denote by *( ( (R)),C )ζ ξ . 
So the Cauchy's model in the space of new generalized 
functions is well defined in *( ( (R)) ,C )ζ ξ  and has a  
general  form: 
 

*

* *

Du vu
u(0) z
u, v ( (R)), z C

=
 =
 ∈ζ ξ ∈

 

 
 Moreover there arise many mathematical models in 
the space *( ( (R)) ,C )ζ ξ  which have mathematical 
sense. For example the following models  

 

,.....4,3,2
,)),((

)(
,

*

=








∈∈

=
−=

= n
CbaRv

bau
functiontheDiracwherevDv

M

n

n

ξζ

δδ  

 
has a mathematical sense in the algebra *( ( (R)) ,C )ζ ξ . 
 
Generalized integrals: We define the integral in the 
space *( ( (R)) ,C )ζ ξ  as the following: 
Let K R⊂  be any compact set and ( (R))η∈ζ ξ , 
define the integral of η  over the compact K  ( which 

we denote by 
K

(x)dx
→

η∫ ) in the following way: 

k
K K

k

(x)dx ( (x)dx) ,

where ( ) be any representative of

→

η = η

η − η

∫ ∫  
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Remark: The integral 
K

(x)dx
→

η∫  is well defined by 

virtue the following results:  
 
Theorem 5 
1. If *

k( ) G ( (R))η ∈ ξ , then *
k

K

( (x)dx) G (C)η ∈∫ ; 

2. The integral 
K

dx
→

η∫  is independent on a 

representative k( )η ;  

3. If *
k( ) I ( (R))λ ∈ ξ , then *

k
K

( (x)dx) I (C)λ ∈∫ . 

Proof: 
1. Since *

k( ) G ( (R))η ∈ ξ , then there are i N,d 0∈ > , 
such that i

k
x K
sup (x) dk
∈

η ≤ for each k in the 

domain of k( )η . 

 Consider i
k k

K K K

(x)dx (x) dx dk dxη ≤ η ≤∫ ∫ ∫ , 

that is *
k

K

( (x)dx) G (C)η ∈∫ . 

2. Let / *
k k( ) I (( (R))λ −λ ∈ ξ , then 

i N, d 0 :∀ ∈ ∃ > / i
k k

x K
sup (x) (x) dk , k−

∈
λ − λ ≤ ∀ , 

consider 

/
k k

K K

( (x)dx (x)dx )λ − λ =∫ ∫

/
k k

K

( ( (x) (x))dx )λ − λ ≤∫ i

K

dk dx− ∫ k∀ . Which 

means that / *
k k

K K

( (x)dx (x)dx) I (C)η − η ∈∫ ∫ . 

3. The proof of  3 is similar. 
 
Definition: The generalized complex number *z with 
representative k

K

( (x)dx)λ∫  is called the generalized 

integral of new generalized function ( (R))λ∈ζ ξ  over 
the compact K, that is: 
 
 
 
 
 
 
 
 

 
*

k
K K

z (x)dx ( (x)dx)
→

= λ = λ∫ ∫ , where k( (x))λ  be any 

representative of λ . 
 The generalized integral defined above preserve 
many properties of usual integral defined in (R)ξ , for 
example the following properties are preserved: 

1. [ ]
K

(x) (x) dx
→

λ ±η∫
K

(x)dx
→

= λ ±∫
K

(x)dx
→

η∫ ; 

2. 
K

a (x)dx
→

λ =∫  *

K

a (x)dx , a C
→

λ ∈∫ . 
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