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Abstract: This study shows the use of gamma function to prove the Riemann functional equation. Two 
approaches had been used to solve this problem: first the value of t in the definition of the gamma 
function had been changed to pi nu x if only if sigma is greater than zero in the complex plane. 
Secondly, the Poisson summation formula is used to show that zeta has a simple pole at s = 1 with 
residue 1, we had found that Riemann zeta function depended intimately on properties of gamma 
function, which was a new gate for solving complex problems related to zeta function.  
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INTRODUCTION 

 
 Bernhard Riemann’s paper, Ueber die Anzahl der 
primzahlen unter einer gegebenen Grösse (On the 
number of primes less than a given quantity) was first 
published in Monatsberichte de Berliner AKademie, in 
November 1859. This study, just six manuscript pages 
in length, introduced radically new idea to the study of 
prime numbers, ideas which led, in 1896, to 
independent proofs by Hadamard and de la Valleé 
Poussin of the prime number theorem. This theorem, 
first conjectured by Gauss when he was a young man, 
states that the number of primes less than x is 
asymptotic to x/log(x). Very roughly speaking, this 
means that the probability that a randomly chosen 
number of magnitude x is a prime is 1/log(x). Riemann 
gave a formula for the number of primes less than x in 
terms the integral of 1/log

�
x and the roots (zeros) of the 

zeta function, defined by: 
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 He also formulated a conjecture about the location 
of these zeros, which fall into two classes: the �obvious 
zeros� -2, -4, -6, -8 and those real part lies between 0 
and 1. He checked the first few zeros zeta function by 
hand and they satisfy his hypothesis. By now over 2.5 
billion zeros have been checked by computer. Very 
strong experimental evidence, but in mathematical we 
require a proof. A proof gives certainty, but, just as 
important, it helps us to understand why a result is true. 
It is in this direction that we used the gamma function 

to proof Riemann functional equation, where the 
gamma can be thought of as the natural way to 
generalize the concept of factorial to non-integer 
arguments such as: 
 
• For non-negative integer n, denote n! can be  

defined by: 
 

n

n 1

n ! r
=

= ∏  

 
where, for n = 0 the empty product is taken to be 1 
 
• For every non-integer n we have: 

 
(n 1) n !Γ + =  
 

where, Γ is Euler gamma function who come up with a 
formula for such a generalization in 1729. At around 
the same time, James Stirling independently arrived at a 
different formal but was unable to show that it always 
converged. The process of our proof is compared to 
other studies on the open literature on the functional 
equation. 
 

MATERIALS AND METHODS 
 
Riemann functional equation: The function  (s)ζ  can 
be continued analytically over the whole complex plane 
C and satisfies the functional equation: 
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where, Γ  denotes the gamma function. In particular, 
the function (s)ζ  is analytic everywhere, for a single 
pole at s = 1 with residue 1.  
 
Proof:  First note that the functional Eq. 2 enables 
properties of (s)ζ  for 0σ <  to be inferred from 
properties of (s)ζ  for 1σ > as can be observed from (2) 
the study of Riemann zeta function depends on 
properties of the gamma function: 
 

t s 1

0
(s) e t dt

∞ − −Γ = �  (3) 
 
 In Riemann published paper, he formulated a 
conjecture about the location of zeros of the zeta 
function, which fall into two classes: the �obvious 
zeros� -2,-4,-6,-8 and those whose real part lies 
between 0 and 1. 
 He added also in a conjecture that the real part of 
the non obvious zero is exactly 1/2. That is, they all lie 
on a specific vertical line in the complex plane Fig. 1. 
 If the Riemann conjecture is true,  the value of s 
also lie on that specific vertical line in the complex 
plane, and we need to find the specific vertical line that 
Riemann referred to in his paper as our study is going 
to based on it.  From   Fig. 1   we   found   that: 
 

s
vertical axispecific vertical line

2
=  

 
 That is, from the origin to positive �  axis, thus the 
value of  s can be replaced by S/2. 

Now the specific vertical line in the complex plane 
is known, we can suppose that 0σ > .  
 
Writing   2t n x= π   with 2ddt n x= π      
 
then substituting t and dt in the  definition of the 
gamma function Γ  Eq. 3, we have: 
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Fig. 1: The geometric representation of z and its 

conjugate z in the complex plane. The distance 
along the black line from origin to the point z is 
the modulus or absolute value of z. The angle θ 
is the argument of z 

 
 In the distribution of prime numbers, Riemann 
extended Euler’s zeta function to the entire complex 
plane that: 
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Now by multiplying both the left hand side and 

right hand side of  Eq. 4 by: 
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we have: 
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where, the change of order of summation and 
integration is justified by the convergence of: 
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it follows for   1σ >  Eq. 6 becomes:     
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Due to the location of the non-obvious zeros values 

that lie on the specific vertical line in the complex plane 
according to Riemann Fig1, we can write that:   
 

11 dx
y x and   dy

2x x
−= = = −  

 
Substituting the value of  y  and  dy in the second 

term of the  integral Eq. 8 from  toβ α we have:  
 

s
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Using the integration properties by inversing the 

integration borders from  α  to  β instead from  β  to  α  .   
We have: 
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Substituting Eq.9 into the second term of the right 

hand side of Eq.8 and letting  1α = and  β = ∞ , we 
have: 
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 Now we have to show that for every x > 0, the 
function: 
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 Satisfies the functional equation  
1

1 2(x ) x (x)−θ = θ                             
which can be written: 
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Hence: 
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substituting  1(x )−ω   into Eq.9  where  1α = and  β = ∞  
we have: 
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 We obtain: 
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 It follows on combining Eq. 9 and Eq. 14 that 
for 1σ >  Eq. 8 becomes: 
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 The integral on the right hand side of Eq. 15 
converges absolutely for any s, and uniformly in any 
bounded part of the plane, since 

x(x) O(e ) when x .−πω = → +∞ Hence the integral 
represents an entire function of s, and the formula gives 
the analytic continuation of (s)ζ over the whole plane. 
Note that the right hand side of Eq. 14 remains 
unchanged when s, is replaced by 1-s, so that the 
functional Eq. 2 follows immediately. Finally note that 
the function: 
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is analytic everywhere, since s (s)Γ  has non zeros, the 
only possible pole of (s)ζ  is at s = 1 with residue 1 as 
we have shown in the previous equations.  It remains to 
establish  the functional equation Eq. 12 for every 
x 0> . 
 Which the starting point is the Poisson summation 
formula, that under certain conditions on a function f (t) 
we have: 
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Where, 
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 Letting N → ∞ , we obtain: 
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 This is justified by the fact that: 
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and  that: 
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now writing t ux=  and using (19), we have: 
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 The function  
2z xe− π  is an entire function of the 

complex variable z and from Cauchy’s theorem, we 
have: 
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Where: 
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 The functional Eq. 12 now follows on combining 
Eq.  21-23 and the proof of Eq. 2 is completed. 
 

RESULTS AND DISCUSSION 
 
 For more than two thousand years, mathematics 
has been a part of the human search for understanding. 
Mathematical discoveries have come both from the 
attempt to describe the natural world and from the 
desire to arrive at a form of inescapable truth from 
careful reasoning. These remain fruitful and important 
motivations for mathematical thinking, but in the last 
century mathematics has been successfully applied to 
many other aspects of the human world. Such as, voting 
trends in politics, the dating of ancient artifacts, the 
analysis of automobile traffic patterns, and long-term 
strategies for the sustainable harvest of deciduous 
forests, to mention a few. Today, mathematics as a 
mode of thought and expression is more valuable than 
ever before. Due to the importance or involvement of 
Mathematics in other scientific domains, many papers 
in the open literature have tried to prove the Riemann 
functional equation whose most of these papers have 
encountered difficulties to give a real proof.  
 For example, in page 2 of[1] the author did a great 
effort to prove the Riemann functional equation, but 
unfortunately it was unclear and unfinished. When 
arrived at below step: 
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 The author wrote �we take the natural step of 
splitting the integration at  x 1=  then substituting 1/x 
for x in the integral from 0-1 �, where the integral from 
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0-1 has not been indicated and no reference has been 
also made on the value of dx(dx = -x−2) and furthermore 
no explanation about how the left hand side of Eq. 24 
has been obtained.  Based on the location of non-
obvious zeros on the complex plane the borders of Eq. 
24 should be from 1-� instead of   0-�. In our proof, 
we have focused on the clue given by Riemann in his 
conjecture states that, the zeroes of the Riemann zeta 
function that are inside the Critical Strip. That is, the 
vertical strip of the complex plane where the real part of 
the complex variable is in [0; 1], are actually located on 
the Critical line. That is the specific vertical line of the 
complex plane with real part equal to½. 
 

CONCLUSION 
 
 In this study, the gamma function is used to prove 
the Riemann functional equation, based on the real part 
of the non-obvious zeros that is exactly 1/2; following 
by the use of Poisson summation formula to show that 
zeta has a simple pole at s = 1 with residue 1. From this 
research we have found that the riemann zeta function 
depends on properties of the gamma function when 
sigma is greater than zero in the complex plane and that 
the non-obvious zeros all lie on the specific vertical line 
in the complex plane. This new founding may help to 
solve some complex problems related to zeta function.  
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