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Abstract: Problem Statement: With respect to our observation in the relevant literature, work on 
stability and boundedness of solution for certain third order nonlinear differential equations where the 
nonlinear and the forcing terms depend on certain variables are scare. The objective of this study was 
to get criteria for stability and boundedness of solutions for these classes of differential equations. 
Approach: Using Lyapunov second or direct method, a complete Lyapunov function was constructed 
and used to obtain our results. Results: Conditions were obtained for: (i) Uniform asymptotic stability 
and, (ii) Uniform ultimate boundedness, of solutions for certain third order non-linear non-autonomous 
differential equations. Conclusion: Our results do not only bridge the gap but extend some well known 
results in the literature. 
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INTRODUCTION 
 
 We shall be concerned here, with uniform 
asymptotic stability of the zero solutions (that is when 
p(t, x y, z) = 0) and uniform ultimate boundedness of 
solutions of the third order, non-linear, non-autonomous 
differential equations: 

 
x f(t ,x,x)x q(t)g(x) r(t)h(x) p(t,x,x,x)+ + + =&&& & & & &&  (1) 

 
 On setting x y=& ,  x z=&&  Eq. 1 is equivalent to the 
system of differential equation: 

 
x y=& , y z=& , 
z p(t,x,y,z) f(t,x,y)z q(t)g(y) r(t)h(x)= − − −&  (2) 

 
In which:  
 

3 2p : ;F : ;g,h: ;q,r : ;

( , ); [0, );

+ + +

+

× → × → → →

= −∞ ∞ = ∞

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡
¡ ¡   

 
p, f, g, h, q and r depend only on the arguments 
displayed explicitly 
and

( ) ( ) ( ) ( ) ( ) ( )t x
d

f t,x,y f t , x , y , f t,x,y f t,x,y , h x h ' x
t x dx

∂ ∂
= = =

∂ ∂

( ) ( )d
q t q ' t

dt
=  and ( ) ( )d

r t r ' t
dt

=  exist and are 

continuous for all t, x, and y. The dots here as 
elsewhere, stand for differentiation with respect to the 
independent variable t. Moreover, the exis tence and 
uniqueness of solutions of (1) will be assumed. Stability 
analysis and ultimate boundedness of solutions of 
nonlinear systems are important area of current research 
and many concept of stability boundedness of solutions 
have in the past and also recently been studied, see for 
instance[14], a survey book, Rouche et al.[15] and 
Yoshizawa [21, 22] are background books. The studies of 
qualitative behaviour of solutions have been discussed 
by many authors in a series of research study. See for 
instance[1-13,16-20] and references therein. These study 
were done with the aid of Lyapunov functions except 
in[2, 3] where frequency domain approaches were used. 
With respect to our observation in the relevant 
literature, these authors considered stability, asymptotic 
behaviour, boundedness of solutions of Eq. 1, 2 in the 
case f(t,x,x)& equal any of  f(x,x,x),f(x,x),f(x)& && & and a 
where a is positive constant and q(t) = r(t) = 1.  
 In[17] Swick discussed conditions for uniform 
boundedness of Eq. 1 when p(t,x,x,x) 0≡& && using an 
incomplete Lyapunov functions.  
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MATERIALS AND METHODS 
 
 In this study, conditions for uniform asymptotic 
stability and uniform ultimate boundedness of solutions 
of the nonlinear differential Eq. 1 will be considered 
with the aid of an effective method for studying 
stability and ultimate boundedness of solutions namely 
Lyapunov second or direct method. Here a complete 
Lyapunov function was constructed and used to obtain 
the following results. 
 

RESULTS 
 
 In the case p(t, x, y, z) = 0 (1) and its equivalent 
system(2) become  
                                        
x f(t,x,x)x q(t)g(x) r(t)h(x) 0+ + + =&&& & && &                                   (3)  
  
and 
 

x y,y z
z f(t,x,y)z q(t)g(y) r(t)h(x)

= =
 = − − −

& &
&  (4) 

 
with the following result  
 
Theorem 1: In addition to the basic assumptions on the 
functions f,g,h,q and r, suppose that α,α1,b,b1,c,d,d1, are 
positive constants and for all t = 0 
 

• 0

h(x)
h(0) 0,

x
= ≥ δ  for all x?0;  

• h′(x) = c for all x;  

• 1

g(y)
b b

y
≤ ≤  for all y?0;  

• d1=r(t) = q(t), q’(t) = r’(t) = 0 
 

• a=f(t, x, y) = a1 for all x and y 
 

• yfx(t, x, y) = 0, ft(t, x, y) = 0 for all x and y. 
 

 Then the zero solution of 4 is uniform 
asymptotically stable. 

In the case p(t,x,x,x) p(t) 0= ≠& &&  Eq. (1) and (2) become 
  
x f(t,x,x) q(t)g(x) r(t)h(x) p(t)+ + + =&&& & &       (5)  
 
and  
 

x y,y z
z p(t) f(t,x,y)z q(t)g(y) r(t)h(x)

= =
 = − − −

& &
&     (6)  

with the following statement: 
 
Theorem 2: Suppose that: (i) hypotheses (i)-(iv) of 
Theorem 1 hold; 
• 0 0|p(t) | P ,P 0 t 0≤ < ∞ ≥ ∀ ≥ . 
 
 Then the solution (x(t),y(t),z(t)) of (6) is uniformly 
ultimately bounded. 
 
Theorem 3: Suppose that: (i) hypothesis (i) of Theorem 
2 holds: 
 

• 1 2p(t,x,y,z) p (t) p (t)(x y z)≤ + + +  

 
provided that | x | | y | | z | p,0 p+ + ≥ ≤ < ∞ , where p1(t) 
and p2(t) are non-negative continuous functions 
satisfying:  
 
p1(t) ≤ P1, 0 ≤ P1 < 8, ∀t≥0      (7)  

 
and there is ∈ > 0 such that if :  
 
0≤ p2(t) ≤ ∈   t ≥ 0.        (8) 
 
 Then the solution (x(t),y(t), z(t)) of (2) is uniformly 
ultimately bounded. 
 

DISCUSSION 
  
 The proofs of Theorem 1, 2 and 3 depend on the 
continuously differentiable function V = V(t, x, y, z) 
defined by:  
 
2V = 2(α+a)r(t)H(x)+4q(t)G(y)+4r(t)h(x)y 
 +2z2 + β y2 +b β x2 + 2a β xy+ 2 β xz+2(α+a)yz 

 +2(α+a)
y

0
f ( t , x , )dτ τ τ∫  (9) 

 
where α and β  are positive constants satisfying:  
 

   
c

a
b

< α <                                                                (10a) 

 
and  
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( ) [ ]

12

1 1
1 0 1

121 1 1
0 1

c
o min{b ;

a

g(y)
(ab c) a 1 q(t) b ;

y

a 2 a 1 f(t,x,y) a

−

− −

−
− − −

< β < −

   δ − + + δ δ −  
   

 − α + + δ δ − 

              (10b) 

 
and that:  
 

x

0
H(x) h( )d= ξ ξ∫  and 

y

0
G(y) g( )d= τ τ∫  

 
Lemma 1: Subject to conditions (i)-(iv) of Theorem 1, 
V(t,0,0,0) = 0 and there exist positive constants  
 D0 = D0 (α,b,c, d0,d1 α,β ) and D1=D1(α,α1,b,b1,c,r0,qo, 
α, β  ) such that: 
 
D0(x2(t)+y2(t)+z2(t)) =V(t) = D1(x2 (t)+y2(t)+z2(t)) (11) 
 
Proof: Setting x(t) = y (t) = z (t) = 0 in (9), clearly 
V(t,0,0,0) = 0. Then (9) can be recast in the form:  
 
2V = V1  +V2  + V3                                                 (12a) 
 
Where  
 
V1 = 2(α+a) r (t) H(x) +4q(t) G(y) + 4r(t) h(x)y , (12b) 
 
V2 =b β x2  +(α2+ß)y2+z2 +2αßxy+2ßxz+2ayz,      (12c) 
 
and 
 

( ) y2 2 2
3  0

2 2 2

V = z  2 yz  y   2 a f(t,x, )d

( a )y .

+ α + α + α + τ τ τ

− α +

∫       (12d) 

                    
In view of hypothesis (iv) of the Theorem 1, r(t)≥d1 and 
q(t) ≥ r(t) together imply:  
 

1 1

1
V [( a)H(x) 2G(y) 2h(x)y]

2
≥ δ α + + +                     (13) 

 
By hypothesis (ii) of Theorem 1, we have: 
 
 2G(y)+2h(x) y≥ -b−1h (x)  (14a) 
 
since b>0 and (by+h(x))2≥0 for all x and y . Also from 
hypotheses (i) and (ii) and the fact that: 

x
2

0

h (x) 2 h'( )h( )d= ξ ξ ξ∫  

Since h(0) = 0, we have:  
 

( ) ( ) 1 2 1 2
0

1
  a H x [( )b 2c]b x b h (x)

2
− −α + ≥ α + α − δ +     (14b) 

 
 On gathering (14a) and (14b) into (13), we obtain: 
 
V1≥[(α+a)b -2c]b -1d0 d1 x2      (15a) 
 
Also V2 can be recast in the form XPXT, where: 

 2

b

X (xyz),P ( ) a
a 1

β αβ β 
 

= = αβ α + β 
 β 

  

 
and XT is the transpose of X. The eigenvalues of matrix 
P will all be positive, thus det P = ß2(b- ß) > ß2 since b- 
ß >0 by (10b), so that:  
 
V2≥ ß2(x2+y2+z2)      (15b) 
 
 Finally, by hypothesis (v) of the theorem f(t,x,y) ≥ 
a for all x,y and t ≥ 0 then:  
 
   V3 ≥ αy2,  (15c)  
 
since α-a > 0 by (10a) and (z + αy)2 ≥ 0 for all y and z.  
A combination of estimates (15a), (15b) and (15c) 
yields : 
 

1 2 2
0 1

2 2 2 2

1 1
V [( a)b 2c]b x

2 2
1 1

( )y z .
2 2

− ≥ α + − δ δ + β  

+ α + β + β

 

 
 By (10)  αb – c > 0, ab-c > 0 and a, b, d0, d1, α, ß 
are all positive constants, there exists a positive 
constant: 
 

1 2 2 2
2 0 1

1 1
min [( a)b 2c]b ;( );

2 2
− δ = α+ − δ δ + β α+β β  

 

 
such that: 

  
V ≥ d2(x2+y2+z2)   (16) 
 
 for all x, y, z and t≥0, this established the lower 
inequality in (11). To prove the upper inequality in 
(11), hypotheses (ii) and (iv) of the theorem imply that:  
 
h(x)≤cx for all x ≠ 0  (17a) 
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and  
 
r(t) ≤ r0 and q(t) ≤ q0 for t ≥ 0  (17b) 
 
where r0 and q0 are positive constants. 
From estimates (17a) and (17b), we obtain:  
 

2 2
1 0 1 0 0

1 1V +a+ c r x (b q cr )y
2 2

 ≤ α + +  
     (18a) 

 
where we have used the inequality: 
 

2 22 x y x y≤ +  

 
 Sum of (12c) and (12d) together with the Young’s 
inequality yields: 
 
V2+V3 ≤ (a+b+1)ßx2 +[ß(a+1)+(α+a)(a1+1)]y2 

                    + (α+ß+a+2)z2      (18b)  
 
Substituting (18a) and (18b) into (9) to get: 
 

2
0 1

2 2
1 0 0

1 1 1 1
V (a b 1) a cr x [( a)(a 1)

2 2 2 2

1
(a 1) ( b q cr )]y ( a 2)z

2

  
≤ + + + α + + + α + +  

  

+β + + + + α + β + +

 

 
 Since a,b,c,a,ß,a1,b1,r0 and q0 are positive constants, 
there exists a positive constant: 
 

 

3 0

1 1 0 0

1 1 1
max [(a b 1) a cr ;

2 2 2

[( a)(a 1) (a 1) b q cr )];
( a 2)]

  δ = + + + α + +    
α + + + β + + +

α + β + +
  

 
such that: 
 
V≤ d3(x2+y2+z2)      (19) 
 
 Equation 19 is the upper inequality in (11), and 
hence estimate (16) clearly implies that V(t, x, y, z) ?  
+ 8 as (x2 +y2+z2) ?  8 . From (16) and (19), Lemma 1 
is established. 
 
Lemma 2: Under the hypotheses of Theorem 1, there 
exists a constant D3>0 depending only on a,b,c, d0 ,d1, α 
and β  such that if (x(t), y(t), z(t)) is any solution of (4), 
then:  
 

2 2 2
3

d
V V(t,x(t),y(t),z(t) D (x (t) y (t) z (t))

dt
≡ ≤ − + +&      (20)  

 
Proof: Let (x(t),y(t),z(t)) be any solution of (4), then an 
elementary calculation of (12), and (4) yields:  
 

(4)

y y 2
t x0 0

2

2

V ( a)r'(t)H(x) 2q'(t)G(y) 2r'(t)yh(x) r(t)h(x)x

( a) f (t,x, )d ( a)y f (t,x, )d a y

q(t)g(y)
r(t) ( a) 2h'(x) y [f(t,x,y) a]xz

r(t)y

q(t)g(y)
[2f(t,x,y) ( a)]z b xy 2

y

= α + + + − β

+ α + τ τ τ + α + τ τ τ + β

 
− α + − − β − 

 
 

− − α + − β − + β 
 

∫ ∫

&

yz.

  

In view of hypothesis (vi) of Theorem 1,  

( ) y y

t x
0 0

a f ( t , x , )d y f (t,x, )d 0, α + τ τ τ + τ τ τ ≤  ∫ ∫  

 
for all x, y and  t ≥ 0  since α  and a are positive 
constants and by Young’s inequality, we have:  
 

2 2
(4) 1 2V W W (a 1) y z

q(t)g(y)
[f(t,x,y) a]xz b xy

y

≤ − + + β + β

 
−β − − β − 

 

&
     (21)  

 
Where: 
 
W1 = (α+a)r’(t)H(x) +2q’(t)G(y) + 2r’(t)yh(x) 
 
and 

2
2

2

q(t)g(y)
W r(t)h(x)x r(t) ( a) 2h'(x) y

r(t)y

[2f(t,x,y) ( a)]z

 
= β + α + − 

 
+ − α +

  

 
Now if r′(t)=0 for such t′s we have:  
 
W1=2q′ (t)G(y) 
 
then by condition (ii) G(y)≥ 0 for all y?0, so that W1≤ 0 
since q ′ (t) ≤ 0 for all t ≥ 0.  
 If r′ (t) < 0, since q ′ (t) ≤ r′ (t) it follows that: 
 
W1≤ r′ (t)[(α+ a)H(x)+2G(y)+2yh(x)]. 
 
It is clear, from (14a) and (14b) that: 
 
(α+a)H(x)+2G(y)+2yh(x)  ≥ 0  
 
for all x and y, since α and a are positive constants, 
hence in both cases we have: 
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W1≤0  (22) 
 
Also hypotheses (i) and (iv) of Theorem 1, imply  
 
ßr(t)h(x)x ≥ ßd0ß1x2  ∀x≠ 0  (23a) 
 
 Since r(t) ≤ q(t), g(y) ≥ by (y ≠0), h′(x) ≤ c∀x  and 
r(t) ≥ d1∀t ≥ 0, it follows by (10) that: 
 

1

q(t)g(y)
r(t) ( a) 2h'(x) [( a)b 2c] 0

r(t)y
 

α + − ≥ δ α + − > 
 

 (23b) 

  
 By hypothesis (v) f(t,x,y) ≥ a for all x,y and t ≥ 0 
so that:  
 
2f(t,x,y) - ( α+a) ≥  a-α  (23c) 
 
 On gathering estimates (23a), (23b) and (23c), we 
obtain:  
 
W2 ≥ ßd0d1x2+d1[(α+a)b-2c]y2+(a-α)z2    (24) 
 
From (22) and (24), estimate (21) becomes: 
 

2 2
4 0 1 1 1

2 2 2

2 2 2
4 0 1 1

2

1 1
1 0 1

V x ( b c)y [ (ab c)

1 1
(a 1) ]y (a )z (a ) z

2 2

q(t)g(y) b] xy [ f ( t , x , y ) a]xz
y

1 1
V x ( b c)y (a )z

2 2

q(t)g(y)
(ab c ) a 1 b

y
− −

≤ − β δ δ − δ α − − δ −

 − + β − − α − − α − β  
 

−β − − β − 
 

≤ − β δ δ − δ α − − − α

     − δ − − β + + δ δ −      

&

&

2

1 1 2 2
0 1

2

1 1
0 1 0 1

1 1 2
0 1 0 1

y

1
(a ) [1 [ f ( t , x , y ) a ] ] z

2

1 q(t)g(y)
x 2 [ b] y

4 y

1
[x 2 [ f ( t , x , y ) a]z]

4

− −

− −

− −



 − − α − β + δ δ −  

  
− βδ δ + δ δ −  

   

− βδ δ + δ δ −

  

 
 Now by (10) and the fact that:  
 

2

1 1
0 1

1 1 2
0 1

q(t)g(y)
x 2 b y 0

y

[x 2 [f(t,x,y) a]z] 0

− −

− −

  
+ δ δ − ≥  

   
+ δ δ − ≥

  

for all x,y,z and t ≥ 0 and ß,d0 d1 are all positive 
constants, there exists a positive constant: 
 

4 0 1 1
1 1min ; ( b c); (a )]
2 2

 δ = β δ δ δ α − − α  
 

 
such that for all x,y,z and t ≥ 0: 
 

(4)V&  ≤ - d4 (x2+y2+z2)      (25) 
 
This completes the proof of Lemma 2.  
 
Proof of Theorem 1: Let (x(t),y(t),z(t)) be any solution 
of (4). To prove the Theorem 1, we shall use the usual 
limit point argument as is contained in [23] to show that 
when Lemma 1 and Lemma 2 hold, then V(t) 
V(t) V(t,x(t),y(t),z(t)≡ → 0 as t →8. In view of the 
fact that from Lemma 1 V (t,x,y,z) = 0 if and if only if 
x2 +y2+z2 = 0, V(t,x,y,z) > 0 if and if only if x2+y2+z2 ≠ 
0, V (t,x,y,z) →+ 8 if and if only if x2+y2+z2 → 8.  The 
remaining of this proof follows the strategy indicated 
in[11], and hence it omitted. This completes the proof of 
Theorem 1.  
 
Proof of Theorem 2: Let (x(t),y(t),z(t) be any solution 
of (6). According to Lemma 1 and Lemma 2, it follows 
that V(t,x,y,z) = 0 if and if only if x2 + y2 + z2 = 0, 
V(t,x,y,z) > 0  if and if only if x2 + y2 + z2 ≠ 0,  
V(t,x,y,z) →+ 8   if and if only if x2 + y2 + z2 → 8 .  
Along any solution (x(t),z(t),z(t)) we have:  
 

( ) ( )(6) (4)V V x a y 2z]p t= + β + α + +& &   
 
By Lemma 2: 
  

2 2 2
(4) 4V (x y z )≤−δ + +&   

 
in (25), so that:  
 

0

2 2 2 1/2 2 2 2 1/2
(6) 4 5V (x y z ) 3 P ( x y z )≤−δ + + + δ + +&      (26) 

 
where d5 = max [ß;α+a;2]. Choose: 
  

( )
1

2 2 2 12
5 4 6x y z 2 3 −+ + ≥ δ δ =δ   

 
the inequality in (26) becomes: 
 

2 2 2
(6) 4 7

1
V (x y z )

2
≤ − δ + + ≤−δ&     (27) 
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provided that:  
 

2 2 2 1
7 4 8x y z 2 =  −+ + ≥ δ δ δ  

 
 Theorem 2 follows from (16), (19) and (27), see for 
instance[22]. 
  
Proof of Theorem 3: Along any solution (x(t),y(t), 
z(t)) we have:  
 

(2) (4)V V [ x ( a)y 2z]p(t,x,y,z)= + β + α + +& &  
  
 By Lemma 2, ( )2 2 2

(4) 4V x  y  z≤−δ + +& in (25), and by 

condition (ii) of Theorem 3, we have:  
 

(2) (4) 5 1 2

2 2 2 1 / 2 2 2 2 1 / 2
4 5 5

V V ( x y z)[p (t) p ( t ) ( x y z)]

( 3 )(x y z ) 3 (x y z )

≤ + δ + + + + +

≤ − δ − δ ∈ + + + δ + +

& &
  

 
 Choose ∈ so small so that d4 >3 d5∈, there exist 
positive constants d9 and d 10  such that:  
 

( ) ( )1/22 2 2 2 2
( 2) 9 2 10V  x  y z  x y z≤−δ + + + δ + +&

. 
 
 The remaining of this proof follows the strategy 
indicated   in   the   proof  of  Theorem 2. Hence   it    is  
omitted; this completes the proof of Theorem 3. 
 
Remark 1: If p(t,x,y,z) = e(t) then (1) reduces to the 
case studied by Swick[17]. Clearly our results improve 
and extend that of [17]. 
 
Remark 2: Unlike in [17] and[21], the bounding constants 
in Theorem 2 and Theorem 3 do not depend on the 
solutions of (1) and (5). 
 

CONCLUSION 
 
 It is well known that the problem of ultimate 
boundedness of solutions of nonlinear is very important 
in the theory and applications of differential equations. 
And the effective method for studying problems of 
ultimate boundedness of solution of nonlinear 
differential equations is still the Lyapunov’s direct 
method see for instance[1,7-15,18-23]. In this study a 
complete Lyapunov function was used to achieve the 
desired results. 
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