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Abstract: Problem Statement: There have been many cases in real life where two independent 
sources have ranked n objects, with the interest focused on agreement in the top rankings. Spearman's 
rho and Kendall's tau coefficients assigned equal weights to all rankings. As a result, the literature 
proposed several weighted correlation coefficients with emphasis on the top rankings, including the 
top-down, weighted Kendall's Tau and Blest’s correlation coefficient. Approach: This article 
introduced a new weighted rank correlation coefficient that was sensitive to agreement in the top 
rankings. It presented the limiting distribution under the null hypothesis of independence and provided 
a summary of quantiles of the exact null distribution for n = 3(1)9. Results: The article summarized 
the power comparison between the new weighted coefficient and other weighted coefficients, and 
showed that the new weighted rank correlation coefficient provided the locally most powerful rank 
test. Conclusions/Recommendations: The new weighted correlation should be used along with other 
weighted coefficients when the interest focused on agreement in the top rankings, in order to make an 
effective inference. 
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INTRODUCTION 
 
 Every year many students want to apply for 
postgraduate courses and research, leading to a large 
number of applicants to universities. Postgraduate 
committee can choose only few of them, according to 
some criteria such as GPA and the average of their 
grades in the major courses that they have studied 
before. Since the number of the applicants is large, the 
aim is to minimize the effort and the cost of 
interviewing all the candidates while choosing the best 
among them. In such cases, a measure which gives 
more weight to those who have higher grades is 
required. Many other cases in life require more weight 
for values in the top in order to reach decision. For 
instance, a couple of panels of judges in one of the 
Olympic game wants to choose the best participants. 
 For such cases, correlation measures that give more 
weighted for the top rankings were presented by[1,4,5]. 
To review these measures briefly, let {(Xi, Yi), 1�i�n} 
be an independently and identically distributed (i.i.d.) 
sample from a bivariate distribution where qi is the rank 
of Y whose corresponding X has rank i among {Xj}. 
Throughout we assume that no ties occur among the 
variables being considered. If ties occur, the average of 

weighted score can be used. Iman and Conover[4] 
introduced the top-down correlation coefficient, Rt, as: 
 

n

t i qi 1
i=1

R = S S n / (n S )
� �

− −� �
� �
�  (1) 

 
Where, Si is Savage score[4] defined as: 
 

n

i
j=i

S = 1 / j�  

 
 Shieh[5] proposed the weighted Kendall's Tau, Rk, 
which is given by: 
 

k i j
1 j<i m

2
R = sgn(i j)sgn(q q )

m(m 1) ≤ ≤

− −
− �  (2) 

 
 Where, m is the number of top rankings taken into 
account and sgn(a) = -1, 0 or 1, if a < , = or > 0. 
 A graphical approach was proposed by[1], leading 
to a correlation coefficient Rb, which is given by: 
 

n
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 A new weighted rank correlation, Rw, that depends 
on weighted scores, will be introduced along with its 
asymptotic distribution under the null hypothesis of 
independence. Then some exact and approximated 
quantiles of Rw are summarized. Power comparisons 
between Rw and other reviewed coefficients will be 
presented. Finally, an example is given for illustration. 
 

MATERIALS AND METHODS 
 
A new weighted rank correlation: Let (Xi, Yi), 
(1�i�n) be an i.i.d. sample from a bivariate distribution 
and let (i, qi), i = 1, 2,…, n, be paired rankings of n  
objects, where qi is the rank of the Y values whose 
corresponding X has rank i  among all {Xj}. We define 
weighted scores as: 
 
Wi = wi (4) 
 
 Where, i is the rank of the order observations in a 
sample of size n and 0<w<1. 
 The new weighted rank coefficient Rw is obtained 
by computing the ordinary Pearson correlation 
coefficient, r, on the weighted scores, 
 

n
i qi

w 1 2 1
i=1

R = w a / (na a )+� �
− −� �

� �
�  (5) 

 
 Where, 2 n 2 2

1a = w (1 w ) / (1 w)− −  and 
2 2n 2

2a = w (1 w ) / (1 w )− − . 
 In another form, we can write Rw as: 
 

qi 1 1in
1 1

w 1/2 1/ 2
i=1 2 1 2 1

w n a w n a
R =

[a (a / n)] [a (a / n)]

− −� �� �− −
� �� �

� �� �− −� �� �
�  (6) 

 
 The statistic Rw has a maximum value of 1. 
However, its  minimum  possible  value  is  only  -1 for 
n = 2, similar as the top-down correlation[4] and for 

∞→n  it increases from -1 towards approximately a 
value in the range from -2E -6 to -3E -4, depending on 
the value of w. 
 
The asymptotic distribution of Rw: Now, the 
asymptotic distribution of Rw is derived under H0, the 
null hypothesis of independence. The alternative 
hypothesis of a positive dependence in the rankings can 
be detected using any of several statistics. The weighted 
rank correlation Rw is more sensitive to agreement in 
the top ranks than to agreement in the bottom. For a test 
of H0 that is equally sensitive to agreement among 
ranks at all levels, Spearman's rho or Kendall's tau 
correlation coefficient can be used. If the marginal 
distributions are normal and the alternative hypothesis 

is bivariate normal with positive correlation, the 
Pearson correlation coefficient, r , provides the most 
powerful test of H0 against the alternative. Under H0, 
the asymptotic distribution of Rw is given by the 
following theorem: 
 
Theorem 1: Under the null-hypothesis of 
independence, E(Rw) = 0, V(Rw) = 1/(n-1) and the 
asymptotic distribution of (n-1)1/2 Rw is the standard 
normal distribution.  
 
Proof: The mean and the variance of the Rw, under H0, 
are computed as follows. Since i qiE( w ) =+

�  
qi 2 n 2 2i

1nE(w )E(w ) = (1 / n)w (1 w ) / (1 w) = a / n− − , then 
by substituting in (5) we directly obtain that E(Rw) = 0. 
For the variance, 
 

( )i q2 2i
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Where 
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2
1

w 22
2 1

n 1 a 1
V(R ) = (a ) =

(na a ) n 1 n n 1
−

− − −
 

  
 Using ( )1/2 i 1

n ni 2 1 1a (R ,f ) = [a (a / n)] w n a− −− −  and 

( )q1/2 1i
n ni 2 1 1a (Q ,g) = [a (a / n)] w n a− −− − , we can write 

n

w n ni n nii=1
R = a (R ,f )a (Q ,g)� . That is, Rw is written as a 
linar rank statistic. Under H0, using Theorem V.1.8 in 
Hájek and Šidák[3], the distribution of the statistic Rw 
for n → ∞  is asymptotically normal with mean 0 and 
variance 2 1

R ww
= V(R ) = (n 1)−σ − . 

 
Exact and approximate quantiles of Rw: When the 
null hypothesis is true, all permutations of ranks (I, qi), 
1�i�n, are equally likely where w can take any value 
between 0 and 1, exclusive. Then, exact and 
approximate quantiles of Rw can be computed for 
chosen values of w, say 0.3, 0.6 and 0.9. Exact 
quantiles for n = 3(1)9 are summarized in Table 1 and 
for large n, approximate quantiles are shown in Table 2. 
 
Table 1: Exact quantiles for the weighted correlation, Rw 
w n 0.90 0.95 0.975 0.99 0.995 0.999 
0.3 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
 4 0.9261 0.9934 1.0000 1.0000 1.0000 1.0000 
 5 0.9035 0.9363 0.9920 0.9995 1.0000 1.0000 
 6 0.8930 0.9170 0.9905 0.9947 0.9993 1.0000 
 7 0.8897 0.9143 0.9448 0.9924 0.9950 0.9996 
 8 0.8875 0.9150 0.9246 0.9907 0.9927 0.9993 
 9 0.8884 0.8990 0.9205 0.9904 0.9927 0.9992 
0.6 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
 4 0.8366 0.9412 1.0000 1.0000 1.0000 1.0000 
 5 0.6990 0.8824 0.9170 0.9848 1.0000 1.0000 
 6 0.6811 0.7714 0.9015 0.9617 0.9761 0.9956 
 7 0.6525 0.7371 0.8595 0.9160 0.9600 0.9883 
 8 0.6021 0.7136 0.7989 0.8969 0.9248 0.9710 
 9 0.5762 0.6966 0.7704 0.8780 0.9096 0.9678 
0.9 3 1.0000 1.0000 1.000 1.0000 1.0000 1.0000 
 4 0.8018 0.8394 1.0000 1.0000 1.0000 1.0000 
 5 0.6801 0.7932 0.8906 0.9282 1.0000 1.0000 
 6 0.6063 0.7329 0.8133 0.8945 0.9442 0.9634 
 7 0.5525 0.6809 0.7716 0.8475 0.8900 0.9415 
 8 0.5081 0.6314 0.7205 0.8060 0.8500 0.9141 
 9 0.4731 0.5920 0.6818 0.7704 0.8199 0.8975 
 

 
 
Fig. 1: Power curves of randomized tests of 

independence for n =8 

Power comparison: Let *X = X Z+ ∆  and *Y = Y Z+ ∆ , 
where X*, Y* and Z are independent random variables 
and assume that X* and Y* have probability density 
functions f(x) and g(y), respectively, while the 
distribution of Z is arbitrary. If f(x) and g(y) are 
continuous almost everywhere and satisfy the 

conditions | f (x) | dx <
∞

−∞
′ ∞�  and | g (y) | dx <

∞

−∞
′ ∞� , then 

from (6) and Hájek and Šidák[3], Theorem II.4.11, the 
locally most powerful rank test of 0H : = 0∆  versus 

1H : > 0∆  is the test with rejection region wR c≥  for 
some suitable chosen constant c. 
 The power comparisons, from a bivariate normal 
population, between Rw for chosen values of w and the 
top-down, weighted Kendall's tau and Blest's 
correlation , as given in (1), (2) and (3), respectively, 
are shown in Table 3. From Table 3, we note that Rw 
has better power than other correlation coefficients, 
especially for w = 0.9 at small sample size (e.g., n = 8) 
and at significant level � = 0.05, as shown in Fig. 1. 
 
Table 2: Approximate quantiles for the weighted correlation, Rw 
w   n  0.90  0.95  0.975  0.99  0.995  0.999  
0.3   10  0.8895  0.8991  0.9205  0.9902  0.9911  0.9992 
  11  0.2536  0.8961  0.9214  0.9903  0.9911  0.9991 
  12  0.2377  0.8965  0.9057  0.9278  0.9907  0.9933 
  13  0.2474  0.8978  0.9062  0.9263  0.9906  0.9932 
  15  0.1983  0.8981  0.9058  0.9256  0.9908  0.9916 
  20  0.1994  0.5273  0.9017  0.9097  0.9280  0.9911 
  30  0.0475  0.2274  0.9041  0.9064  0.9120  0.9914 
  40  0.0376  0.2377  0.9056  0.9059  0.9079  0.9316 
  50  0.0465  0.2450  0.2479  0.9066  0.9072  0.9320 
  60   -0.0040  0.0779  0.2500  0.9071  0.9072  0.9147 
  70   -0.0018  0.0576  0.2532  0.9075  0.9076  0.9151 
  80  0.0014  0.0601  0.2557  0.9079  0.9079  0.9108 
  90  0.0040  0.0626  0.2577  0.9081  0.9081  0.9104 
  100   -0.0107  0.0645  0.2592  0.2615  0.9083  0.9090 
0.6   10  0.5457  0.6752  0.7460  0.8576  0.8981  0.9590 
  11  0.5291  0.6519  0.7275  0.8439  0.8842  0.9500 
  12  0.5108  0.6317  0.7173  0.8162  0.8673  0.9217 
  13  0.4795  0.6275  0.7141  0.7907  0.8584  0.9187 
  15  0.3898  0.6001  0.6914  0.7685  0.8438  0.9081 
  20  0.3156  0.5675  0.6308  0.7311  0.7728  0.8658 
  30  0.2875  0.3861  0.5997  0.6582  0.7380  0.8539 
  40  0.1901  0.3405  0.6017  0.6358  0.6902  0.7885 
  50  0.1683  0.3333  0.4216  0.6212  0.6437  0.7642 
  60  0.1623  0.3246  0.3640  0.6174  0.6275  0.7106 
  70  0.1161  0.2366  0.3581  0.6193  0.6297  0.7121 
  80  0.0943  0.1940  0.3531  0.6211  0.6240  0.7093 
  90  0.0983  0.1961  0.3560  0.6234  0.6302  0.7109 
  100  0.0764  0.1985  0.3584  0.4384  0.6259  0.6563 
0.9   10  0.4441  0.5580  0.6476  0.7360  0.7870  0.8710 
  11  0.4243  0.5282  0.6138  0.7022  0.7511  0.8276 
  12  0.3949  0.5056  0.5888  0.6762  0.7294  0.8206 
  13  0.3766  0.4781  0.5664  0.6675  0.7135  0.7970 
  15  0.3610  0.4531  0.5263  0.6071  0.6527  0.7455 
  20  0.3065  0.3868  0.4523  0.5286  0.5724  0.6699 
  30  0.2423  0.3147  0.3838  0.4575  0.5022  0.5643 
  40  0.2162  0.2766  0.3345  0.3975  0.4400  0.5327 
  50  0.1889  0.2484  0.3002  0.3579  0.4083  0.4907 
  60  0.1738  0.2326  0.2798  0.3403  0.3868  0.4768 
  70  0.1634  0.2179  0.2657  0.3201  0.3584  0.4337 
  80  0.1471  0.1972  0.2465  0.2995  0.3329  0.4037 
  90  0.1469  0.1961  0.2408  0.2928  0.3317  0.4178 
  100  0.1355  0.1834  0.2235  0.2718  0.3038  0.3736
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Table 3: Powers of randomized tests of independence 

 ρ  0 00.1 00.2 00.3 00.4 00.5 00.6 00.7 00.8 00.9 
n = 8 Rk  0.0416 0.0510 0.0638 0.0777 0.0976 0.1215 0.1561 0.2075 0.2830 0.4106 
 Rt  0.0516 0.0756 0.1057 0.1472 0.2023 0.2705 0.3584 0.4748 0.6138 0.7879 
 Rb  0.0503 0.0760 0.1103 0.1593 0.2242 0.3059 0.4171 0.5555 0.7265 0.8970 
 R0.1  0.0280 0.0410 0.0565 0.0781 0.1072 0.1463 0.2023 0.2783 0.3871 0.5600 
 R0.25  0.0526 0.0712 0.0966 0.1252 0.1621 0.2097 0.2698 0.3471 0.4519 0.6041 
 R0.5 0.0536 0.0735 0.1012 0.1321 0.1737 0.2245 0.2904 0.3765 0.4861 0.6385 
 R0.6 0.0524 0.0745 0.1063 0.1466 0.1974 0.2627 0.3450 0.4601 0.5975 0.7759 
 R0.75  0.0518 0.0769 0.1117 0.1551 0.2120 0.2878 0.3877 0.5143 0.6690 0.8488 
 R0.9  0.0528 0.0775 0.1132 0.1645 0.2319 0.3135 0.4258 0.5656 0.7340 0.9055 
n = 12 Rk  0.0425 0.0581 0.0758 0.1012 0.1306 0.1677 0.2228 0.3006 0.4177 0.6081 
 Rt  0.0508 0.0795 0.1247 0.1858 0.2639 0.3646 0.4911 0.6411 0.7931 0.9340 
 Rb  0.0544 0.0933 0.1492 0.2274 0.3309 0.4595 0.6192 0.7760 0.9161 0.9863 
 R0.1  0.0841 0.1104 0.1421 0.1787 0.2209 0.2713 0.3295 0.4058 0.5001 0.6306 
 R0.25  0.0407 0.0590 0.0840 0.1141 0.1548 0.2098 0.2726 0.3609 0.4714 0.6206 
 R0.5 0.0402 0.0591 0.0863 0.1192 0.1612 0.2185 0.2889 0.3844 0.5083 0.6758 
 R0.6 0.0376 0.0568 0.0864 0.1230 0.1732 0.2400 0.3289 0.4448 0.5969 0.7803 
 R0.75  0.0381 0.0602 0.0977 0.1499 0.2199 0.3128 0.4392 0.5922 0.7596 0.9218 
 R0.9  0.0366 0.0647 0.1081 0.1748 0.2627 0.3828 0.5411 0.7090 0.8771 0.9786 
n = 20 Rk  0.0302 0.0473 0.0727 0.1089 0.1618 0.2334 0.3325 0.4711 0.6527 0.8641 
 Rt  0.0521 0.0978 0.1637 0.2595 0.3821 0.5369 0.7046 0.8554 0.9575 0.9966 
 Rb  0.0544 0.1078 0.1914 0.3212 0.4887 0.6704 0.8310 0.9435 0.9924 0.9999 
 R0.1  0.0496 0.0694 0.0947 0.1285 0.1662 0.2158 0.2717 0.3448 0.4395 0.5856 
 R0.25  0.0496 0.0694 0.0947 0.1285 0.1662 0.2158 0.2717 0.3448 0.4395 0.5856 
 R0.5 0.0493 0.0719 0.1003 0.1387 0.1831 0.2440 0.3125 0.4048 0.5251 0.7029 
 R0.6 0.0501 0.0735 0.1075 0.1525 0.2075 0.2819 0.3714 0.4859 0.6444 0.8340 
 R0.75  0.0500 0.0903 0.1450 0.2204 0.3252 0.4556 0.6048 0.7606 0.8969 0.9827 
 R0.9  0.0542 0.1049 0.1847 0.3082 0.4611 0.6396 0.8059 0.9287 0.9862 0.9996 
n = 30 Rk  0.0569 0.0987 0.1591 0.2517 0.3640 0.4994 0.6658 0.8155 0.9323 0.9923 
 Rt  0.0511 0.1104 0.2068 0.3492 0.5303 0.7226 0.8727 0.9622 0.9945 0.9998 
 Rb  0.0501 0.1235 0.2554 0.4493 0.6682 0.8446 0.9504 0.9932 0.9995 1.0000 
 R0.1  0.0519 0.0780 0.1133 0.1617 0.2242 0.3068 0.4102 0.5312 0.6750 0.8344 
 R0.25  0.0519 0.0780 0.1133 0.1617 0.2242 0.3068 0.4102 0.5313 0.6751 0.8347 
 R0.5 0.0568 0.0855 0.1285 0.1831 0.2563 0.3467 0.4650 0.5967 0.7410 0.8954 
 R0.6 0.0548 0.0847 0.1283 0.1846 0.2580 0.3569 0.4817 0.6269 0.7784 0.9296 
 R0.75 0.0501 0.0887 0.1452 0.2283 0.3381 0.4767 0.6396 0.8016 0.9236 0.9901 
 R0.9 0.0513 0.1184 0.2341 0.3985 0.5958 0.7793 0.9105 0.9792 0.9980 1.0000 

 
RESULTS AND DISCUSSION 

 
Numerical Example: To illustrate our new weighted 
rank correlation, we use a data set, in Table 4, that was 
also used by[5]. The data set considers two techniques, 
A and B, used to select the most effective variables out 
of 20 variables for evaluation of some software 
packages. 
 We see that the two techniques agree strongly on 
the top six variables. However, there is large 
disagreement between these techniques after that. In 
such circumstances, we may want to place more 
emphasize on the top rankings rather than equity over 
all ranking values. Therefore, we calculate some 
different weighted rank statistics, along with our 
weighted rank correlation at different weighted values. 
For each statistic the corresponding p-values are 
evaluated, these values are given in Table 5.  
 From Table 5 we can conclude that at different 
weight values, our weighted rank correlation and the  

Table 4:  Example: Two techniques A and B for selecting the most 
effective variables out of 20 variables for evaluation of some 
software packages. 

A 1 2 3 4 5 6 7  8 9 10 
 11  12 13 14 15 16 17 18 19 20 
B 1  2 4 3 6 5 20 13 15 19 
 17 18  14  16 12 9 11 8 10 7 
 
Table 5: Example: Weighted rank correlation statistics and their p-

values  
  Statistic p-value 
Blest's Rank Rb 0.5602 <0.01 
Top-down Rt 0.8206 <0.001 
Weighted Kendal Rk (m = 6)  0.7333 <0.01 
Weighted rank Rw   
R0.1  0.9999 <0.001 
R0.25  0.9977 <0.001 
R0.5 0.9851 <0.001 
R0.6 0.9786 <0.001 
R0.75 0.9434 <0.001 
R0.9 0.7135 <0.001 

 
top-down    correlation   provide    strong     evidence 
(p-value <0.001) against the null hypothesis of 
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independence of A and B. The criteria behind choosing 
the weight depends on the degree of emphasis the user 
may wish to apply to top ranks. However, we suggest 
the weight w = 0.9 since as shown in Table 3, our new 
weighted rank with w = 0.9 has higher power than other 
rank correlation coefficients. 
 

CONCLUSION  
 
 This article proposed a new weighted rank 
correlation coefficient that was sensitive to agreement 
in the top rankings. Under the null hypothesis of 
independence, the proposed coefficient's limiting 
distribution was derived along with the exact and 
approximated quantiles for different sample sizes. As 
shown, the test that depended on the new weighted rank 
correlation coefficient was the locally most powerful 
rank test. Therefore, when interest focused on the top 
rankings, we recommended using the new weighted 
rank correlation coefficient, together with other 
weighted coefficients, to reach an effective decision. 
 A generalization of this article, when more than 
two independent sources rank n objects with focus on 
top rankings, known as a Concordance measure, will be 
presented somewhere else.  
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