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Abstract: Problem Statement: Integro-differential equations find special applicability within 
scientific and mathematical disciplines. In this study, an analytical scheme for solving Integro-
differential equations was presented. Approach: We employed the Homotopy Analysis Method 
(HAM) to solve linear Fredholm integro-differential equations. Results: Error analysis and illustrative 
examples were included to demonstrate the validity and applicability of the technique. MATLAB 7 
was used to carry out the computations. Conclusion/Recommendations: From now we can use HAM 
as a novel solver for linear Integro-differential equations. 
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INTRODUCTION 

 
 In recent years, there has been a growing interest in 
the Integro-Differential Equations (IDEs) which are a 
combination of differential and Fredholm-Volterra 
integral equations. IDEs play an important role in many 
branches of linear and nonlinear functional analysis and 
their applications in the theory of engineering, 
mechanics, physics, chemistry, astronomy, biology, 
economics, potential theory and electrostatics. The 
mentioned integro-differential equations are usually 
difficult to solve analytically; so a numerical method is 
required. Therefore, many different methods are used to 
obtain the solution of the linear and nonlinear IDEs 
such as the successive approximations, Adomian 
decomposition, Homotopy perturbation method, 
Chebyshev and Taylor collocation, Haar Wavelet, Tau 
and Walsh series methods.[1-4,8-16].  
 In this study, by means of the homotopy analysis 
method (HAM), presented by Liao[5-7], a general 
analytic approach is presented to obtain series solutions 
of linear IDEs: 
 

a

y '(x ) p(x)y(x)+g(x)+ K (x,t)y(t)dt= λ �  (1) 

 
under the initial condition: 
 
y(a) = α      (2) 
 
 where, the upper limit of the integral is constant or 
variable, λ, α, a are constants, g(x), p(x) and K(x,t) are 
given functions, whereas y(x) is to be determined. 

 The Homotopy Analysis Method (HAM) is based 
on homotopy, a fundamental concept in topology and 
differential geometry. Briefly speaking, by means of the 
HAM, one constructs a continuous mapping of an 
initial guess approximation to the exact solution of 
considered equations. An auxiliary linear operator is 
chosen to construct such kind of continuous mapping 
and an auxiliary parameter is used to ensure the 
convergence of solution series. The method enjoys 
great freedom in choosing initial approximations and 
auxiliary linear operators. By means of this kind of 
freedom, a complicated nonlinear problem can be 
transferred into an infinite number of simpler, linear 
sub-problems. 
 The Homotopy Analysis Method (HAM) is a 
general analytic approach to solve various types of 
nonlinear equations, including algebraic equations, 
ordinary differential equations, partial differential 
equations, differential-difference equation. More 
importantly, different from all perturbation and 
traditional non-perturbation methods, the HAM 
provides us a simple way to ensure the convergence of 
solution series and therefore, the HAM is valid even for 
strongly nonlinear problems. 
 

MATERIALS AND METHODS 
 
Consider: 

N[y(x )] 0=  
 
Where: 
 
N = An operator 
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y(x) = Unknown function 
x = The independent variable. 
 
 Let y0(x) denote an initial guess of the exact 
solution y(x), h ≠ 0 an auxiliary parameter, H(x) ≠ 0 an 
auxiliary function and L an auxiliary linear operator 
with the property L[y(x)] = 0 when y(x) = 0. Then 
using q∈[0,1] as an embedding parameter, we construct 
such a homotopy 
 

0

0

Ĥ[ (x;q);y (x),H(x),h,q]

(1 q)L[ (x;q) y (x)] qhH(x)N[ (x;q)]

φ =
− φ − − φ

 (3) 

 
 It should be emphasized that we have great 
freedom to choose the initial guess y0(t), the auxiliary 
linear operator L, the non-zero auxiliary parameter h 
and the auxiliary function H(t). 
 Enforcing the homotopy (3) to be zero, i.e.: 
 

0Ĥ [ ( x ; q ); y ( x ), H ( x ), h , q ] 0φ =  
 
 We have the so-called zero-order deformation 
equation: 
 

0(1 q)L[ (x; q) y (x)] qhH(x)N[ (x; q)]− φ − = φ  (4) 
 
 When q = 0, the zero-order deformation Eq. 4 
becomes: 
 

0(x;0) y (x)ϕ =    (5) 
 
and when q = 1, since h ≠ 0 and H(t) ≠ 0, the zero-order 
deformation Eq. 4 is equivalent to: 
 

(x;1) y(x)ϕ =     (6) 
 
 Thus, according to (5) and (6), as the embedding 
parameter q increases from 0 to 1, φ(x;q) varies 
continuously from the initial approximation y0(t) to the 
exact solution y(x). Such a kind of continuous variation 
is called deformation in homotopy. 
 By Taylor's theorem, φ(x;q) can be expanded in a 
power series of q as follows: 
 

m
0 m

m 1

(x ; q ) y (x ) y (x )q
∞

=

φ = + �  (7) 

 
Where: 
 

m

m q 0m

1 (x;q)
y (x) |

m! q =
∂ φ=

∂
  (8) 

  If the initial guess y0(x), the auxiliary linear 
parameter L, the nonzero auxiliary parameter h and the 
auxiliary function H(x) are properly chosen so that the 
power series (7) of φ(x; q) converges at q = 1. Then, we 
have under these assumptions the solution series: 
 

0 m
m 1

y(x) (x;1) y (x) y (x)
∞

=

=φ = +�  (9) 

 
 For brevity, define the vector: 
 

n 0 1 2 ny (x) {y (x), y (x), y (x), , y (x)}=�
�  (10) 

 
 According to the definition (7), the governing 
equation of ym(x) can be derived from the zero-order 
deformation Eq. 4. Differentiating the zero-order 
deformation Eq. 4 m times with respective to q and then 
dividing by m! and finally setting q = 0, we have the so-
called mth-order deformation equation: 
 

m m m 1 m m 1L[y (x ) y (x )] hH (x ) (y (x ))− −− χ = ℜ �  (11) 
 
where 
 

m 1

m m 1 q 0m 1

1 N[ (x;q)]
(y (x )) |

(m 1)! q

−

− =−

∂ φℜ =
− ∂

�  (12) 

 
and 
 

m

0, m 1
1, m 1

≤�
χ = � >�

 

 
 Note that the high-order deformation Eq. 10 is 
governing by the linear operator L and the term 

m m 1(y (x))−ℜ �  can be expressed simply by (11) for any 
nonlinear operator N. 
 According to the definition (11), the right-hand 
side of equation (10) is only dependent upon ym−1(x). 
Thus, we gain y1(x),y2(x)…. by mean of solving the 
linear high-order deformation Eq. 10 one after the other 
in order. 

 
RESULTS  

 
 We are now ready to construct a series solution 
corresponding to the IDE (1a)(1b). For this purpose, let: 
 

a

N[ y (x )] y '( x ) p (x )y(x )-g (x )- K (x ,t)y(t)d t= − λ �  
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 The corresponding mth-order deformation Eq. 11 
reads: 
 

m m m 1 m m 1

m

L[y (x) y (x)] hH(x) (y (x)),

y (0) 0
− −− χ = ℜ

=

�

 

 
 One has: 
 

m m 1 m 1 m-1

m m-1
a

(y (x)) y ' (x) p(x)y (x)

                        -(1- )g(x)- K(x,t)y (t)dt

− −ℜ = −

χ λ�

�

 

 
 The corresponding homotopy-series solution is 
given by: 
 

0 m
m 1

y(x) y (x) y (x)
∞

=
= +�   (14) 

 
 It is worth to present a simple iterative scheme for 
ym(x) To this end, the linear operator L is chosen to be 

dy
L[y(x)]

dx
= , as an initial guess y0(x) = α is taken, a 

nonzero auxiliary parameter h = -1 and an auxiliary 
function H(x) = 1 are taken. This is substituted into (13) 
to give the recurrence relation: 
 

0

x

1
0 a

y (x) ,

y (x) p( ) g( ) K( , t)dt d

= α

� �
= α τ + τ + λα τ τ� 	� 	


 �
� �

 

 
and for m 1≥ :  
 

x

m m 1 m 1
0 a

y (x) p( )y (x) K( , t) y (t)dt d− −

� �
= τ + λ τ τ� 	� 	


 �
� �  

 
 It is important to show that the homotopy-series 
solution (14) converges to the solution of the IDE (1a)-
(1b). To this end, we have the following theorem.  
 
Theorem 1: As long as the series (14) converges, it 
must be the exact solution of the integral equation (1a)-
(1b). 
 
Proof: If the series (14) converges, we can write: 
 

m
m 0

S(x) y (x)
∞

=

= �    (15) 

 
 And it holds that: 

mm
lim y (x) 0

→∞
=    (16) 

  
We can verify that: 
 

n

m m m 1 n
m 1

[y (x) y (x)] y (x)−
=

− χ =�  (17) 

 
which gives us, according to (16): 
 

m m m 1 nn
m 1

[y (x) y (x)] lim y (x) 0
∞

− →∞=

− χ = =�  

 
 Furthermore, using (17) and the definition of the 
linear operator L, we have: 
 

m m m 1 m m m 1
m 1 m 1

L[y (x) y (x)] L [y (x) y (x)] 0
∞ ∞

− −
= =

− χ = − χ =� �  

 
 In this line, we can obtain that: 
 

m m m 1 m 1 m 1
m 1 m 1

L[y (x ) y (x )] hH (x ) (y (x ))
∞ ∞

− − −
= =

− χ = ℜ� �
�  

 
which gives, since h�0 and H(x)�0, that: 
 

m 1 m 1
m 1

(y (x)) 0
∞

− −
=

ℜ =�
�    (18) 

 
 Substituting 

m 1 m 1
m 1

(y (x))
∞

− −
=

ℜ�
�  into the expression 

and simplifying it, we have: 
 
 

m 1 m 1 m 1 m-1
m 1 m 1

m m-1
a

m m m
m 0 m 0 m 0a

a

(y (x )) [y ' (x ) p(x)y (x)-

(1- )g(x)- K(x,t)y (t)dt]

y ' (x ) p(x) y (x)- g(x)- K(x,t) y (t)dt]

S '(x ) p(x )S(x ) g(x) K(x,t)S(t)dt

∞ ∞

− − −
= =

∞ ∞ ∞

= = =

ℜ = −

χ λ

= − λ

= − − − λ

� �

�

� � ��

�

�

 (19) 

 
 From (18) and (19), we have: 
 

a

S '( x ) p ( x )S ( x ) g ( x ) K ( x ,t ) S ( t ) d t= + + λ �  

 
and so, S(x) must be the exact solution of the IDE (1a)-
(1b). 
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DISCUSSION 
 

 The HAM provides an analytical solution in terms 
of an infinite power series. However, there is a practical 
need to evaluate this solution. The consequent series 
truncation and the practical procedure conducted to 
accomplish this task, together transforms the analytical 
results into an exact solution, which is evaluated to a 
finite degree of accuracy. In order to investigate the 
accuracy of the HAM solution with a finite number of 
terms, three examples will be solved.  
 To show the efficiency of the present method for 
our problem in comparison with the exact solution we 
report absolute error which is defined by: 
 

N N
H AM exact H AME y y y= −  

 
where, 

N
N
HAM m

m 0

y y (x).
=

=�  MATLAB 7 is used to carry 

out the computations. 
 
Example 1: First we consider the integro-differential 
equation: 
 

1
3x 3

0

1
y '(x) 3e - (2e +1)x+ 3xty(t)dt, y(0) 1

3
= =�  

 
 For which the exact solution is y(x) = e3x. We 
begin with y0(x) = 1, its iteration formulation reads: 
 

x 1
3 3

1
0 0

x 1

m m 1
0 0

1
y (x) 3e - (2e +1) 3 t dt d ,

3

y (x) 3 ty (t)dt d , m 2,3,

τ

−

� �
= τ + τ τ� 	� 	


 �

� �
= τ τ =� 	� 	


 �

� �

� � �

 

 
 Some numerical results of these solutions are 
shown in Table 1. The tabulated results indicate that as 
N increases the errors are decreased more rapidly. 
 
Example 2: Consider the FIDE: 
 

1

2
0

1 1 1 x
y '(x) y(x)- x+ -ln(1+x)+ y(t)dt, y(0) 0

2 1 x (ln2) 1 t
= =

+ +�
 

 
 For which the exact solution is y(x) = 1n(1+x). We 
begin with y0(x) = 0, its iteration formulation reads: 
 

x

1
0

x 1

m m-1 m 12
0 0

1 1
y (x) - ln(1 ) d

2 1

and for m 2,3,

1
y (x) y ( ) y (t)dt d

(ln 2) 1 t −

� �= τ + + + τ τ� 	+ τ
 �

=

� �τ= τ + τ� 	� 	+
 �

�

� �

�  

Table 1: Numerical results of example 1 
xi 10

HAMEy  20
HAMEy  30

HAMEy  

0.0 0 0 0 
0.2 9.56054E-5 5.25769E-9 2.92E-13 
0.4 3.82421E-4 2.10307E-8 1.16E-12 
0.6 8.60448E-4 4.73192E-8 2.61E-12 
0.8 1.52968E-3 8.41230E-8 4.63E-12 
1.0 2.39013E-3 1.31442E-7 7.23E-12 

 
Table 2: Numerical results of example 2 
xI 10

HAMEy  15
HAMEy  20

HAMEy  

0.0 0 0 0 
0.2 1.37293E-5 1.59052E-7 1.09615E-8 
0.4 6.59695E-5 7.64242E-7 5.26700E-8 
0.6 1.80934E-4 2.09607E-6 1.44457E-7 
0.8 3.98060E-4 4.61144E-6 3.17811E-7 
1.0 7.81579E-4 9.05447E-6 6.24015E-7 

 
Table 3: Numerical results of example 3 
xi 10

HAMEy  20
HAMEy  30

HAMEy  

0.0 0 0 0 
0.2 2.5701E-4 4.2117E-6 3.1192E-10 
0.4 4.8001E-4 5.6797E-7 2.5436E-11 
0.6 7.6043E-4 4.2112E-8 6.6122E-11 
0.8 9.7723E-3 6.4123E-8 8.2163E-12 
1.0 1.3021E-3 2.2314E-6 1.5723E-09 
  
 Some numerical results of these solutions are 
shown in Table 2. Results indicate that the convergence 
rate is very fast and lower approximations can achieve 
high accuracy.  
 
Example 3: In the last example, we Consider the FIDE: 
  

1

0

1
y'(x) y(x)-cos(2 x)-2 sin(2 x)- sin(4 x)

2

sin(4 x+2 t)y(t)dt, y(0) 1

= π π π π

+ π π =�
 

 
 For which the exact solution is y(x) = cos(2πx). 
We begin with y0(x) = 1, its iteration formulation reads: 
 

( )

( )

x

1
0

1

m 1
0

x 1

m m 1 m 1
0 0

1
y (x ) .(1 cos(2 ) 2 sin(2 ) sin(4 )

2

sin(4 2 t )y ( t ) dt d ,

and for m 2,3,

y (x ) y ( ) sin(4 2 t )y ( t ) dt d

−

− −

= − πτ − π πτ − πτ +

πτ + π τ

=

� �
= τ + πτ + π τ� 	� 	


 �

�

�

� �

�

 

 
 Some numerical results of these solutions are 
shown in Table 3.  
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CONCLUSION 
 
 The HAM was used for evaluating integrals arises 
in integral transforms. Three examples were discussed 
as demonstrations. It was concluded that the homotopy 
methodology is very powerful and efficient technique 
in evaluating a wide class of integral transforms and 
problems. It is also worth noting to point out that the 
advantage of the homotopy methodology is the fast 
convergence of the solutions.  
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