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Abstract: Problem Statement: The problem of allocating a set of items in order to maximize the toal 
linear profit under uncertain capacity referred as a stochastic knapsack problem with continuous 
random capacity was studied theoretically and computationally. Approach: Two optimization based 
heuristic algorithms were proposed and developed for solving the problem and both efficiency and 
effectiveness are compared with the general purpose method using the Monte Carlo simulation. 
Results: For both the relaxed and the original problems, both algorithms with appropriate stepping size 
parameter were superior on average to the simulation approach in both computing time and solution 
quality. Conclusion: Therefore, both proposed approaches can be practical for large scale problem and 
can be used as a basic algorithm for a more complex nature in case of simultaneously random in both 
items weight and knapsack capacity.  
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INTRODUCTION 

 
 A common integer linear programming (ILP) used 
to decide which subset of n items or projects should be 
selected such that the total profit is maximized without 
exceeding a given capacity or budget is called the 
Knapsack Problem (KP). The knapsack problem has 
been extensively studied in operations research[1]. The 
knapsack problem has various industrial applications 
such as resource allocation problem, capital budgeting 
problem, project selection problem, cargo loading 
problem, cutting stock problem and  many others. The 
knapsack problem of this type is deterministic because 
all parameters are known with certainty. However, in 
realistic situations, these parameters may not be known 
with certainty. Therefore, they have to be considered as 
random variables having a certain distribution. Thus, 
this type of problem is called the stochastic knapsack 
problem. There are few researchers concerning with 
solving the stochastic knapsack problem, which are 
usually concentrated with special cases, e.g., Parks and 
Steinberg[2], Sniedovich[3] and Henig[4] studied static 
stochastic knapsack problem when benefit is uncertain. 
Kleywegt and Papastavrou[5] studied dynamic 
stochastic knapsack problem when benefit is uncertain. 
Chiu et al.[6], Kleywegt et al.[7], Slyke and Young[8] and 
Kleywegt and Papastavrou[9] studied dynamic 
stochastic knapsack problem when benefit and weight 
are uncertain. 
 All of the above works concern with studying 
uncertainty in weight parameters and/or benefit 

parameters. However, studying uncertainty in capacity 
is also important. For example, in capital budgeting 
problem, sometimes, the budget is uncertainty (e.g., 
there are n alternatives of budget with the probability 
for each alternative or the budget is random with known 
probability distribution). In resource allocation 
problem, sometimes, the available resource is 
uncertainty (e.g., the available resource is random with 
known probability distribution). In cargo loading 
problem, when the truck has many customers to load 
the items. The available space is unknown before the 
truck arrived. Hence, the remaining capacity of the 
truck is uncertainty. There are two types of uncertainty. 
One possibility is to estimate the probability of 
occurrence of each state of nature (i.e., there are the 
previous information). Another is not possible to 
estimate the probabilities of the states of nature. In this 
research, the stochastic knapsack problem with 
continuous probability distribution on capacity was 
studied.  
 The studied problem is the problem in which the 
allocation of decision variable xj is made to meet 
random capacity with a known distribution. The 
objective function in this problem may be a total cost, 
which can be divided into two parts. The first part is the 
cost of selecting the decision variables xj and the 
second part is the penalty cost (i.e., shortage and 
storage cost). When the capacity has continuous 
probability distribution, the problem is called Stochastic 
Knapsack Problem with Continuous Random Capacity 
(SKPCRC). It can be stated as follows: 
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 where xj is the decision variable, for j = 1,2,...,n, tj 
is the upper bound of xj, for j= 1,2,...n, u (b) is the slack 
variable and u (b)≥0, for L≤b≤U, v(b) is the surplus 
variable and v(b)≥0, for L≤b≤U, aj is the weight 
coefficient of item j and aj≥0, for j = 1,2,...,n, cj is the 
cost coefficient of item j and cj≥0, for j = 1,2,...,n, b is 
the capacity, p(b) is the probability of having capacity 
b, p(b)≥0, for L≤b≤U, g is the per unit cost of having 
u(b), g≥0 and h is the per unit cost of having v(b), h≥0.
  
  

MATERIALS AND METHODS 
 
Materials: 
 
• A personal computer, Intel Pentium M Processor 

1.6 GHz., 512 MB RAM, 60 GB hard drive 
• MATLAB 7.0.1 software 
• CPLEX 8.1 software (ILOG[10]) 
• Visual C.NET software 
 
Methods: According to the model, if integer constraint 
is relaxed, then the relaxed problem is SKPCRCR that 
can be stated as follows. Similarly to the discrete case, 
two algorithms were proposed for solving SKPCRCR. 
The following assumption was assumed. 
 

j j j 1 j 1c / a c / a , for j 1,2,...,n 1+ +≤ = −  

 
Algorithm 1 of SKPCRCR: This algorithm is based 
on the original approach of Witchakul and Sudas-na-
Ayudhaya[11]. There exist three optimality conditions 
adapted from[12] that are following: 
 
Case 1: The optimal solution is as follows: 
 
xj = 0, ∀j 

 

1 1
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u(b) b, L b U

where c / a g

= ≤ ≤
= ≤ ≤
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 Next part is to substitute these basic variables into 
the objective function as follows: 
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 Since, the minimum f can be found when all 
reduced costs of nonbasic variables are greater than or 
equal to zero. In this case, nonbasic variables are xj, for 
all j and v(b) for all b. In order to obtain the minimum 
value of f, the reduced costs of these nonbasic variables 
must be greater than or equal to zero that are 

U

L
(g h) p(b)v(b)db+ � for all b and j j(c ga ) 0, for all j− ≥ . 

Since g,h 0≥ and p(b) 0,≥  for L b U≤ ≤ , 
U

L
(g h) p(b)v(b)db+ �  is greater than or equal to zero. To 

minimize f, j j(c ga ) 0,− ≥  for all j, that is equivalent to 

j jc / a g,≥  for all j. According to the assumption 

j j j 1 j 1c / a c / a , for j 1,2,...,n 1+ +≤ = − , the required 

condition for this case is 1 1c / a g≥ . In this case, the 

minimum value of f is 
U

L
g p(b)bdb� . 

 
Case 2: The optimal solution is as follows: 
 j jx t , j= ∀  
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j 1
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Proof: j j jx t r , j= − ∀  



J. Math. & Stat., 4 (4): 269-276, 2008 
 

 271 

jr 0, j≥ ∀  

 

n n

j j j j 1
j 1 j 1

n n

j j j j 2
j 1 j 1

u(b) b a t a r v(b), b B

v(b) b a t a r u(b), b B

= =

= =

= − + + ∈

= − + − + ∈

� �

� �
 

  
 Next part is to substitute these basic variables into 
the objective function as follows: 
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 In this case, nonbasic variables are 

1v(b), for b B ,∈ u(b), for 2b B∈  and jr , for all j. In order 

to obtain the minimum value of f, the reduced costs of 
these nonbasic variables must be greater than or equal 

to zero that are 
1b B

(g h) p(b) v(b)db 0,
∈

+ ≥�  
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Case 3: The optimal solution is as follows: 
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Proof:  Suppose k and B have been specified. 
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 The next part is to substitute these basic variables 
into f (B) . Thus, the function becomes as follows:  
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  In this case, nonbasic variables are 

jx , for j k 1,k 2,...,n,= + +  u(b) , for L b B≤ < , 

v(b), for B b U, u(B)and v(B)< ≤ . In order to obtain the 
minimum value of f, the reduced costs of these 
nonbasic variables must be greater than or equal to zero 
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Algorithm 2 of SKPCRCR: his algorithm was used to 
find the optimal solution of the SKPCRCR by relaxing 
the original problem model and utilizing the approach 
from[13] as follows: 
 

n U U
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 Objective function (6.1) can be separated into two 
parts as follows: 
 

1 2Minimizef H ( ) H ( )
θ

= θ + θ  

 where: 
n

1 j j
j 1

H ( ) c y
=

′θ =�  

U U

2 L L
H ( ) g p(b)u(b)db h p(b)v(b)dbθ = +� �  

 
  Graphs of 1H ( )θ and 2H ( )θ of SKPCRCR were 
shown in Fig. 1 and 2, respectively 
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Fig. 1:  Graph of H1(θ)of SKPCRC 
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Fig. 2: Graph of H2(θ) of SKPCRCR 
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−′ ′≤θ≤ −′ ′= θ ≤ θ ≤ . jc′=  

  Since j j 1c c , for j 1,...n 1,+′ ′≤ = −  1H ( )θ  is a 

piecewise-linear convex function. 
Let ( B) 2SH2 slope of graph H ( ), Bθ= = θ θ = . 

For  
L U≤ θ ≤ , v(b) b,L b= θ − ≤ < θ
 u(b) b , b U= − θ θ < ≤  v(b) 0, b U= θ ≤ ≤  and 
u(b) 0,L b= ≤ ≤ θ . 

 
U

2 L
H ( ) gp(b)(b )db hp(b)( b)db

θ

θ
θ = − θ + θ −� �  

U

(L U) L L
SH2 g p(b)db h p(b)db g (g h) p(b)db

θ θ

≤θ≤ θ
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 Since ( ) ( B)SH2 SH2 , for L U B,θ θ+∆≤ ≤ θ ≤ − ∆  2H ( )θ  is a 

convex function.  
  Since 1H ( )θ is a piecewise-linear convex function 
and 2H ( )θ is a convex function, 1 2H ( ) H ( )θ + θ is also a 
convex function. 

Let 
1 2SH slope of graph H ( ) slope of graph H ( )θ = θ + θ

U

j L
c g p(b)db h p(b)db

θ

θ
′= − +� �  

 The optimal solution can be found by searching for 
the point that has SH 0θ = . This is the same criteria as 
in algorithm 1 of SKPCRCR. 
  
Monte carlo simulation:  Monte Carlo simulation is a 
natural alternative for using in stochastic programs and 
can be applied to solve SKPCRCR. In this approach, a 
numerous number of samples is generated. Then each 
sample is solved directly as a deterministic problem. 
The optimal solution is the expected value of all 
solutions. 
 For each sample, the problem is as follows. 

x,u,v
Minimizef =

n

j j
j 1

c x gu hv
=

+ +�

n
Subject to a x u v bj jj 1

+ − =�
=

j j0 x t≤ ≤    

For the above model, v is always zero because the 
objective value of solution that have v>0 can be smaller 
by reducing the value of xj. Therefore, the problem can 
be reduced to the following problem. 

 
x,u,v

Minimizef  = 
n

j j
j 1

c x gu
=

+�  

1

Subject to
=

+ =�
n

j j
j

a x u b j j0 x t≤ ≤   

 
Heuristics for solving SKPDRC and SKPCRC: The 
reasons for using heuristics for SKPDRC and SKPCRC 
are to save computing time and to provide the optimal 
solution or near-optimal solution. In this work, we 
adapted the approach used sucessfully in the discrete 
case as presented in[14,15] resulting as follows. If all 
elements in SKPDRCRx∗  are integer, then the solution of 
SKPDRC is the same as the solution of SKPDRCR 
(i.e., SKPDRCx∗  = SKPDRCRx∗ , SKPDRCu∗  = SKPDRCRu∗ , SKPDRCv∗  = 

SKPDRCRv∗  and  SKPDRC SKPDRCRf f∗ ∗= ). Similarly, if all 
elements in SKPCRCRx∗  are integer, then the solution of 
SKPCRC is the same as the solution of SKPCRCR (i.e., 

SKPCRCx∗  = SKPCRCRx∗ , SKPCRCu∗  = SKPCRCRu∗ , SKPCRCv∗  = 

SKPCRCRv∗  and  SKPCRC SKPCRCRf f∗ ∗= ). Otherwise, the solution 
of SKPDRC or SKPCRC can be found by using the 
proposed heuristics, which use the optimal capacity of 
the relaxed problem, i.e., SKPDRCRb∗  for discrete capacity 
and SKPCRCRB∗  for continuous capacity, as the upper 
bound of capacity. Due to SKPDRCR is a piecewise 
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convex function and SKPCRCR is a convex function, a 
good or near optimal solution should have the weight 

sum (
n

j j
j 1

a x
=
� ) near optimal capacity of the relaxed 

problem. The heuristics start from rounding down 
SKPDRCRx∗  or SKPCRCRx∗  and the upper bound of the 

decision variable (t). Let x is the rounding down of 
SKPDRCRx∗  or SKPCRCRx∗ , tint is the rounding down of t, k is 

the SKPDRCRk∗  or SKPCRCRk∗  and  minf is equal to infinity. 
Then calculate the weight sum and the objective value 
and  keep the minimum objective value ( minf ), the 
solution of the SKPDRC (xint, uint, vint) or the 
solution of the SKPCRC (xint). Next, go to the capacity 
checking point. If the weight sum is less than the 
optimal capacity of the relaxed problem, then go to the 
upper bounded checking point. Otherwise, integer 
solution is found. For the upper bound checking point, 
if xk is less than its upper bound k(tint ) , then let 

k kx x 1= +  and calculate the weight sum, the slack 
variable (u), the surplus variable (v) and the objective 
value (f). Otherwise, let k = k+1 and xk = 1 and  then 
calculate the weight sum, the slack variable (u), the 
surplus variable (v) and the objective value (f).  
 Next, go to the objective value checking point. If 
the objective value is less than fmin, then the new 
solution is found. Therefore, the old solution is replaced 
by the new solution. And then go back to the capacity 
checking point. Otherwise, keep the old solution and go 
back to the capacity checking point. And continue these 
steps until the weight sum is greater than or equal to the 
optimal capacity of the relaxed problem. Finally, the 
solution of SKPDRC or SKPCRC is found. 
 

RESULTS  
 
 The experiments for SKPCRCR and SKPCRC 
were conducted by varying m and n. The computing 
time (excluding parameter generating) and solutions 
obtained were collected and compared. The input data 
were generated as follows. j j jc ,a , t , for j 1,2,...,n= , 

were generated with uniform[0,10]. bwas normally 
distributed where mean was generated with 

uniform[0,
n

j j
j 1

a t
=
� ] and standard deviation was 

generated with uniform[0, n]. G, h were generated with 
uniform[0,10].

n n n n

j j j j j j j j
j 1 j 1 j 1 j 1

B 0.01 a t , 0.001 a t , 0.0001 a t , 0.00001 a t
= = = =

∆ = � � � �

 The reasons for generating j j jc ,a , t , g, and h via 
uniformly distribution [0,10] were to get the various 
positions of the optimal solution and the optimal 
objective function value will not be too large. 
Moreover, the reason for generating b with normally 
distributed where mean was generated with uniform 

[0,
n

j j
j 1

a t
=
� ] and standard deviation was generated with 

uniform [0, n] was to ensure that all items fit in the 
capacity. For stepping size ( B∆ ), we conducted the 
experiments with four values of B∆  in order to select 
the appropriate B∆ for this studied problem. According 
to the obtained results, the computing time (sec) of the 
algorithm 1 (or algorithm 2) was smaller than the 
computing time of the Monte Carlo simulation, when 

n

j j
j 1

B 0.01 a t
=

∆ = � and 
n

j j
j 1

0.001 a t
=
� for all n and when 

n

j j
j 1

B 0.0001 a t
=

∆ = � , the computing time (sec) of the 

algorithm 1 (or algorithm 2) was smaller than the 
computing time of the Monte Carlo simulation for 

n 2500≤ . Furthermore, for 
n

j j
j 1

B 0.01 a t
=

∆ = � and 

n

j j
j 1

0.001 a t
=
� , the percent winning in computing time is 

100% for all n. And the percent winning decreased 
when B∆ is more delicate and also decrease when n 
increased. Again, fifty generated samples were 
conducted to compare the quality of solutions between 
using the algorithm 1 (or algorithm 2) and the Monte 
Carlo simulation for solving the relaxed problem. From 

the results, when B∆  was 
n

j j
j 1

0.01 a t
=
� , the percent of win 

was 76%. And the percent of win was improved to 
more than 95% when B∆  was more delicate. In 

addition, when B∆  was
n

j j
j 1

0.00001 a t
=
� , the percent of 

win was 100%. The percent of win were more than 

50% for all B∆ . And when B∆ was 
n

j j
j 1

0.001 a t
=
� , 

n

j j
j 1

0.0001 a t
=
�  and 

n

j j
j 1

0.00001 a t
=
� , the percent of not 

losing (either win or tie) were more than 95%. 
Furthermore, when n increased the percent of win 
tended to be increased. The average absolute percent 
error was calculated in order to represent how far of the 
objective value of the algorithm 1 (or algorithm 2) 
compared with the Monte Carlo simulation. According 
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to the obtained result, for B∆ = 
n

j j
j 1

0.01 a t
=
�  , the values 

of average absolute percent error of the winning cases 
and losing cases were not much different. However, for 

B∆ =
n

j j
j 1

0.001 a t
=
�  and 

n

j j
j 1

0.0001 a t
=
� ,the average absolute 

percent error of the winning cases were significantly 
greater than the average absolute percent error of the 

losing cases, i.e. for B∆ =
n

j j
j 1

0.00001 a t
=
� , there was no 

losing case at all. Moreover, for B∆ =
n

j j
j 1

0.001 a t
=
� , 

n

j j
j 1

0.0001 a t
=
�  and 

n

j j
j 1

0.00001 a t
=
� , the values of the 

average absolute percent error of the winning cases 
tended to increase when n increased. If scale of B∆ was 
more delicate, the average absolute percent error of 
losing cases significantly decreased but the average 
absolute percent error of the winning cases only slightly 

decreased. When B∆ =
n

j j
j 1

0.01 a t
=
� , the values of the 

average absolute percent error of the winning cases 
were significantly greater than the average absolute 
percent error of the losing cases for small n (i.e., 
n 500≤ ). However, the values of the average absolute 
percent error of the winning cases were only slightly 
greater than the average absolute percent error of the 
losing case for large n (i.e., n 750≥ ). When 

B∆ =
n

j j
j 1

0.001 a t
=
� , 

n

j j
j 1

0.0001 a t
=
�  and 

n

j j
j 1

0.00001 a t
=
� , the 

values of the average absolute percent error of the 
winning case were significantly greater than the 
average absolute percent error of the losing cases for all 
n. If scale of B∆  was more delicate, the average 
absolute percent error of the losing cases tended to be 
decreased.  
 

DISCUSSION 
 
In order to select the appropriate algorithm, the 
computing time and the quality of the solutions are 
important criteria. From all results, it can be concluded 
that the algorithm 1 (or algorithm 2) with appropriate 

B∆  was superior to the Monte Carlo simulation. The 
ratios of computing time was calculated from taking the 
computing time of the algorithm 1 (or algorithm 2) of 
SKPCRCR divided by the computing time of the Monte 
Carlo simulation for solving SKPCRCR. The ratio of 
computing time was calculated from taking the 
computing time of the proposed heuristic where the 

relaxed problem was solved by using the algorithm 1 
(or algorithm 2) of SKPCRCR divided by the 
computing time of the proposed heuristic where the 
relaxed problem was solved by using the Monte Carlo 
simulation. For n = 5,000, if the quality of the solutions 
is more important criteria than the computing time, then 

better alternative is 
n

j j
j 1

B 0.0001 a t
=

∆ = � . The computing 

time of this B∆  was about 57.5 seconds more than the 
computing time of the Monte Carlo simulation for both 
SKPCRCR and SKPCRC. However, the percent of win 
of SKPCRCR was increased from 98-100% while the 
percent of lose of SKPCRCR was decreased from 2-
0%. In addition, the percent of win of SKPCRC was 
increased from 82-84% while the percent of lose of 
SKPCRC was decreased from 10-4%. 
 

CONCLUSION  
 

 The approaches for solving stochastic knapsack 
problem with continuous random capacity were 
presented. For the proposed procedure, the relaxed 
integer constraints were employed. Next we solved the 
relaxed problem. Then the optimal solution of the 
relaxed problem was found as the initial solution for 
finding the final integer solution. Two algorithms were 
proposed for solving the relaxed problem (SKPCRCR) 
and compared with the Monte Carlo simulation. 
According to the proof of the algorithms 1 and 2 of 
SKPCRCR, the criteria of these two algorithms were 
the same. The fifty generated samples were generated 
to compare an efficiency (i.e., computing time) and 
effectiveness (i.e., quality of solutions) between the 
algorithm 1 (or algorithm 2) and the Monte Carlo 
simulation. For the algorithm 1 (or algorithm 2) of 
SKPCRCR, if B∆  was more delicate, the computing 
time increased but it gave the better solution. As the 
results, the algorithm 1 (or algorithm 2) of SKPCRCR 
with appropriate B∆  was superior to the Monte Carlo 
simulation of SKPCRCR 
 For SKPCRC where the relaxed problem was 
solved by using the algorithm 1 (or algorithm 2) of 
SKPCRCR, if B∆  was more delicate, the computing 
time increased but it gave better solution. As the results, 
the proposed heuristic for solving SKPCRC where the 
relaxed problem was solved by using the algorithm 1 
(or algorithm 2) of SKPCRCR with appropriate B∆  
was superior to the proposed heuristic for solving 
SKPCRC where the relaxed problem was solved by 
using the Monte Carlo simulation 
 In addition, the study for characteristic types of 
generated data, which make the integer solution of the 
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proposed heuristic for SKPCRC where the relaxed 
solution was solved by using the algorithm 1 (or 
algorithm 2) of SKPCRCR is worse than integer 
solution of the proposed heuristic for SKPCRC solved 
by using the Monte Carlo simulation also should be 
investigated. Furthermore, it is worth to study the other 
types of stochastic knapsack problem such as both 
uncertain benefit and capacity and  both weight and 
capacity.  
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