Journal of Mathematics and Statistics 5 (4): 334-341, 2009 ISSN 1549-3644 © 2009 Science Publications

Heuristic Placement Routines for Two-Dimensional Bin Packing Problem

¹L. Wong and ²L.S. Lee

 ^{1,2}Department of Mathematics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
 ²Laboratory of Applied and Computational Statistics, Institute for Mathematical Research, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Abstract. Problem statement: Cutting and packing (C and P) problems are optimization problems that are concerned in finding a good arrangement of multiple small items into one or more larger objects. Bin packing problem is a type of C AND P problems. Bin packing problem is an important industrial problem where the general objective is to reduce the production costs by maximizing the utilization of the larger objects and minimizing the material used. **Approach:** In this study, we considered both oriented and non-oriented cases of Two-Dimensional Bin Packing Problem (2DBPP) where a given set of small rectangles (items), was packed without overlaps into a minimum number of identical large rectangles (bins). We proposed heuristic placement routines called the Improved Lowest Gap Fill, LGFi and LGFi_{OF} for solving non-oriented and oriented cases of 2DBPP respectively. Extensive computational experiments using benchmark data sets collected from the literature were conducted to assess the effectiveness of the proposed routines. **Results:** The computational results were compared with some well known heuristic placement routines. The results showed that the LGFi and LGFi_{OF} produced better packing quality compared to other heuristic placement routines.

Key words: Bin packing problem, heuristic placement, cutting and packing

INTRODUCTION

Generally, Cutting and Packing (C and P) Problems can be summarized as follows^[10]:

"Given two sets of elements, namely, a set of large objects (input, supply) and a set of small items (output, demand) which are defined in one, two, or an even larger number of geometric dimensions. Then some or all the small items will be grouped into one or more subsets and assign each of them into one of the larger objects with the conditions all small items of the subset lie entirely within the large object and the small items are not overlapping"

The C and P problems contribute to many areas of application in business and industry such as in metal, wood, glass and textile industries, newspaper paging and cargo loading. The objective of the allocation process is to maximize the utilization of the larger objects or maximizing the number of items to be packed in the larger objects. In this study, we consider oriented and non-oriented cases of two-dimensional rectangular single bin size bin packing problems which known as 2DRSBSBPP in Wäscher *et al.*^[10]. According to Lodi *et al.*^[8], the problem can be defined as follows:

"Given a set of n rectangular items $j \in J = \{1, 2, ..., n\}$, each item j is defined by a height h_j and a width w_j and an unlimited number of rectangular bins, each having a height H and width W. The objective is to allocate without overlaps, all the rectangles into the minimum number of bins"

For the oriented case, the rectangles have fixed orientation while the rectangles can be rotated at 90° in non-oriented case of 2DBPP. This problem is classified as a class of NP-hard problem by^[6].

The non-oriented case of 2DBPP can be found in metal industry, where the pieces of the metal as the bins (larger objects) while the different dimension of layouts that needed to be cut out from the pieces of metal are the items. The aim of this problem is to find a good

Corresponding Author: Lai Soon Lee, Department of Mathematics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia Tel: +603 8946 8454 Fax: +603-8943 7958

arrangement of the layout which give the highest utilization of the metal. The oriented case of 2DBPP can contributes in newspaper paging process where the pieces of pages in newspaper are the bins and the news or advertisements (with fixed orientation) are the items. The purpose is to arrange the maximum numbers of news into minimum number of pages.

Most of the classical placement routines for 2DBPP work on levels heuristics where the packing is obtained by placing the rectangles in row from left to right which form levels. The first level is at the bottom edge of the bin while the subsequence levels in the bin are the horizontal line denoted by the top edge of the tallest rectangle packed on the level below. Coffman *et al.*^[4] suggested three classical strategies for level packing which are summarized in Table 1 (note j = current rectangle).

In this study, we consider Bottom-Left Fill $(BLF)^{[3]}$, Lowest Gap Fill $(LGF)^{[7]}$, Touching Perimeter $(TP)^{[8]}$, Floor Ceiling $(FC)^{[8]}$ and Alternate Direction $(AD)^{[8]}$, which are some well known heuristic placement routines for solving the problem.

The BLF routine places the rectangles by searching through a list of location points in bottom left ordering sequence that indicates potential positions where the rectangle may be placed. Meanwhile, TP will first initialize L bins (where L is the lower bound) before packing the rectangle at the bin and position which give the highest score (percentage of the rectangle perimeter which touches the bin and the others rectangles that have been packed). The FC is a two-phase placement routine. In the first phase, the current rectangle will be packed on a floor, according to Best-Fit strategy or on a ceiling if the rectangle cannot be packed on the floor below. If neither floor nor ceiling at that level can fit the rectangle, a new level is initialized. In the second phase, the levels are packed into finite bins either through the Best-Fit Decreasing (BFD) algorithm or by using an exact algorithm for the one-dimensional bin packing problem. BFD algorithm is referred to the rectangles that are initially sorted in decreasing width, height or area following by the BF routine. For the AD,

Table 1: Classical strategies for levels packing

Packing strategy	Description
Next-Fit (NF)	Rectangle j is packed left justified on a level if it
	fits. Otherwise, the level is closed and a new level
	is created to pack the rectangle left justified.
First-Fit (FF)	Rectangle j is packed left justified on the first
	level where it fits. If there are no level can pack j,
	a new level is initialized as in NF.
Best-Fit (BF)	Rectangle j is packed left justified on that level,
	among those where it fits, for which the resulting
	packing has the minimum remaining horizontal
	space. If no level can accommodate j, a new level
	is initialized as in NF.

the routine is started by sorting the items according to non-increasing heights and L (lower bound) bins are initialized by packing on their bottoms a subset of the rectangles, following best-fit decreasing policy. The remaining rectangles are packed into the bands according to the current direction associated with the bin. The LGF routine consists of two stages: Preprocessing and packing stage. In the preprocessing stage, the rectangles are initially arranged following a horizontal orientation and sorted in non-increasing order of their width (breaking ties by non-increasing order of height). LGFi uses a pointer (x, y) to indicate the position of the lowest available gap in the bin during packing stage. Best-fit strategy is used to examine the rectangles list and dynamically select a best fitting rectangle to place at the lowest available gap in the bin.

The objective of this study is to develop an improved version of the Lowest Gap Fill (LGF) routine proposed by Lee^[7] for 2DBPP. Then, the developed heuristic routine will be modified to design a new heuristic placement routine for solving the oriented case.

MATERIALS AND METHODS

Heuristic placement routine for non-oriented case: The heuristic placement routine, LGFi is a modified version of LGF. Unlike LGF, LGFi chooses the shortest edge between the remaining gap height and gap width as the current gap. This allows the routine to identity the shortest available gap so that it is easier to examine the rectangles list in term of finding a rectangle with its width or height that can fit the current gap completely. If there is no rectangles can fit the current gap completely, the first rectangle in the list that can fit the gap without overlaps is selected.

The preordering process is an important procedure in giving the advantage in time for searching the best-fit rectangle. The appropriate sorting of the rectangles will allow the rectangle with a larger dimension to be packed first to reduce the wastage in the bin. With this in mind, the LGFi will apply the preordering procedure in the preprocessing stage.

Similar to LGF, LGFi uses the pointer (x, y) to indicate the lowest and leftmost point in the current bin where a rectangle can be packed without overlaps with other rectangles that have been packed in the current bin. LGFi consists of two stages: preprocessing stage and packing stage.

Preprocessing stage: The rectangles are first rotated so that the width of the rectangle is always greater than its

height. For example, by denoting each rectangle by a (width, height) pair, the rectangles list of set P:

$$\{(5, 8), (4, 9), (7, 6), (5, 4), (2, 3), (6, 3)\}$$

will become:

$$\{(8, 5), (9, 4), (7, 6), (5, 4), (3, 2), (6, 3)\}$$

after rotating. Initial investigation of different preordering sequences of the rectangles as in Table 2 and the computational results in Table 3 and 4 show that initially sorted the rectangles in decreasing order of height (breaking ties by decreasing order of width) which denoted as DH(DW) gives better packing quality. Hence, the rectangles in set P:

$$\{(8, 5), (9, 4), (7, 6), (5, 4), (3, 2), (6, 3)\}$$

will become

$$\{(7, 6), (8, 5), (9, 4), (5, 4), (6, 3), (3, 2)\}$$

after sorting in DH(DW) preordering sequence. This preprocessing stage required O(nlogn) time.

Packing stage: The smallest dimension of height among the available rectangles in the list, $\min_{i = 1,2,...,j} \{w_{j},h_{j}\}$ (where j = number of the remaining rectangles in the rectangles list) is stored. The value of $\min_{j} \{h_{j}\}$ will be updated if the rectangle with the smallest dimension of height is packed.

At first, an empty bin is initialized as the current bin, the current point is at the bottom-left corner (x = 0, y = 0) and the current gap is the shortest edge between the height H and the width W of the bin. The first rectangle in the rectangles list is removed and placed at the bottom left of the current bin. The current point and the current gap are updated as follow. The current point is the lowest and leftmost point in the current bin. The current gap is the shortest edge between the remaining gap height and gap width at the current point. The gap width is the difference between the x-coordinate and the right edge of the bin or the left edge of a tall rectangle while the gap height is the difference between the ycoordinate and the height of the bin. The current gap area which is the area with the dimension of the gap width and gap height at the current point is determined.

If the current gap is less than the current value of $\min_{j}\{h_{j}\}$, then the relevant space is regarded as the wastage. Then, the pointer is raised to the next lowest and leftmost point where the corresponding current gap is at least as big as the value of $\min_{j}\{h_{j}\}$. The rectangles list is examined again. The rectangle with its width or height that can fill the gap completely is given the priority to be chosen to be packed at the current point.

Fig. 1: Improved Lowest Gap Fill (LGFi) for nonoriented case

If there is no any rectangle either its width or height can fill the gap completely, then the first rectangle in the list with its area is less than or equal to the current gap area and can fill the gap without overlapping with other rectangles that have been packed is selected. The selected rectangle is placed at the current point by its shortest edge packed at the current gap. The selected rectangle is removed from the rectangles list and the current point and gap are updated. When the current bin is full or the pointer has been raised to the top of the current bin, the bin is closed. A new empty bin is initialized as the current bin and the process is continues until all the rectangles in the rectangles list are packed. This packing stage required $O(n^2)$ time.

The time consuming overlapping test is not needed in LGFi since the selected rectangle will always be packed at the updated current point and current gap. Since the current gap will give us both the dimensions of the available gap, the selected rectangle will not overlap with other rectangles that already packed in the current bin. Hence, this will reduce the processing time. Figure 1 shows the LGFi by packing the set P using two bins.

Heuristic placement routine for oriented case: We propose a new heuristic called, $LGFi_{OF}$ which is a modified version of LGFi to solve the oriented case of 2DBPP. Unlike the non-oriented case, the small rectangles have fixed orientation. $LGFi_{OF}$ also consists of two stages: preprocessing stage and packing stage.

Preprocessing stage: The rectangles are sorted in nonincreasing order of area (breaking ties by nondecreasing order of the differences between the width and the height). For instance, set Q:

 $\{(7, 5), (8, 2), (6, 4), (3, 5), (4, 4), (10, 3), (2, 4), (1, 2), (9, 1), (6, 5)\}$

will become:

 $\{(7, 5), (6, 5), (10, 3), (6, 4), (4, 4), (8, 2), (3, 5), (9, 1), (2, 4), (1, 2)\}$

after sorting. The preprocessing stage required O(nlogn) time.

Packing stage: The smallest dimension among the available rectangles in the list $\min_{i=1,2,...,j} \{w_j,h_j\}$ (where j = number of the remaining rectangles in the rectangles list) is stored. The value of $\min_j \{w_j,h_j\}$ is updated after the corresponding rectangle is packed.

At first, an empty bin is initialized as the current bin, the current point is at the bottom-left corner (x = 0, y = 0) and the current gap is the shortest edge between the height of the bin, H and the width of the bin, W. The first rectangle in the rectangles list is removed and placed at the bottom left of the current bin.

The pointer and the gap are updated as follow. The current point is the lowest and leftmost point of the current bin. The gap width is the difference between the x-coordinate and the right edge of the bin or the left edge of a tall rectangle while the height of gap is the difference between the y-coordinate and the height of the bin. The current gap is the shortest edge between the remaining gap height and gap width. The area of the current gap is also determined. Next, the rectangles list is examined again. If the current gap is less than the current value of $\min_{i} \{w_{i}, h_{i}\}$, then the relevant space is regarded as the wastage. The pointer is raised to the next lowest and leftmost point where the corresponding current gap is at least as big as the value of $\min_{i} \{w_{i}, h_{i}\}$. If the current gap is the gap width, then the rectangle with its width that can fill the gap completely is given priority to be chosen to be packed at the current point. If the current gap is the gap height, then the rectangle with its height that can fill the current gap completely is given the priority.

If there is no any rectangle that can fill the gap completely, the first rectangle in the list which its area is less than or equal to the area of the current gap and can fill the gap without overlapping with other rectangles that have been packed is selected to be placed at the current point. When the current bin is full or the pointer has been raised to the top of the current bin, the bin is closed. A new empty bin is initialized as the current bin and the process is continues until all the rectangles in the rectangles list are packed. Only one bin is opened at a time. This packing stage required $O(n^2)$ time. Figure 2 shows the LGFi_{OF} by packing the set Q using two bins.

Computational experiments: The first set of experiment compares the different preordering sequences of the rectangles in the preprocessing stage of LGFi by using the lower bounds proposed by^[2,5].

Fig. 2: Improved Lowest Gap Fill (LGFi_{OF}) for oriented case

Then, the LGFi is compared with some well known heuristic placement routines, namely BLF, LGF, FC and TP using the lower bounds proposed by^[5]. The LGFi is also compared with BLF and LGF where both routines required $O(n^2)$ time using lower bound proposed by Boschetti and Mingozzi^[2]. In the oriented case, LGFi_{OF} is compared with AD and FC. All placement routines are coded in ANSI-C using Microsoft Visual C++ version 6.0 as the compiler. In this study we consider ten different classes of problems instances proposed by^[1]. In each class all the items are generated in the same interval and are classified as follows:

- Class I: w_j and h_j uniformly random in [1, 10], W = H = 10
- Class II: w_j and h_j uniformly random in [1, 10], W = H = 30
- Class III: w_j and h_j uniformly random in [1, 35], W = H = 40
- Class IV: w_j and h_j uniformly random in [1, 35], W = H = 100
- Class V: w_j and h_j uniformly random in [1, 100], W = H = 100
- Class VI: w_j and h_j uniformly random in [1, 100], W = H = 300

The other four classes (VII-X) are introduced by Martello and Vigo^[9] where a more realistic situation is considered. The items are classified into four types:

Type 1:
$$w_j$$
 uniformly random in $\left\lfloor \frac{2}{3}W,W \right\rfloor$, h_j
uniformly random in $\left[1,\frac{1}{2}H\right]$.

Type 2: w_j uniformly random in $\left[1, \frac{1}{2}W\right]$, h_j uniformly random in $\left[\frac{2}{3}H, H\right]$. Type 3: w_j uniformly random in $\left[\frac{1}{2}W, W\right]$, h_j uniformly random in $\left[\frac{1}{2}H, H\right]$. Type 4: w_j uniformly random in $\left[1, \frac{1}{2}W\right]$, h_j

uniformly random in $\left[1, \frac{1}{2}H\right]$.

The bin size is W = H = 100 for all classes, while the items are as follow:

Class VII:	Type 1 with probability 70%,	Туре	2,	3,	4
	with probability 10% each.				
Class VIII	Type 2 with probability 700/	Tuno	1	2	1

Class VIII: Type 2 with probability 70%, Type 1, 3, 4 with probability 10% each.

- Class IX: Type 3 with probability 70%, Type 1, 2, 4 with probability 10% each.
- Class X: Type 4 with probability 70%, Type 1, 2, 3 with probability 10% each.

For each class, we consider five values of n: 20, 40, 60, 80 and 100, where n is the number of rectangles that need to be packed into the bins. For each combination of class and value of n, ten problem instances are generated. To investigate the best sorting procedure that gave LGFi better packing quality, different preordering sequences of the rectangles are tested in the preprocessing stage which is listed in Table 2.

The performance of the different preordering sequences of the rectangles and the various heuristic placement routines are compared on the basis of the average Ratio defined by:

Average Ratio =
$$\frac{1}{10} \sum_{i=1}^{10} \frac{UB_i}{LB_i}$$
 (1)

where, UB_i and LB_i represent the heuristic solution and the lower bound of the problem instance i respectively.

Table 2: Preordering sequences of the rectangles

U	
Type of preordering sequences of the rectangles	Notation
Decreasing area (breaking ties by decreasing height)	DA (DH)
Decreasing area (breaking ties by decreasing width)	DA (DW)
Decreasing width (breaking ties by decreasing height)	DW (DH)
Decreasing height (breaking ties by decreasing width)	DH (DW)
Without preordering	Random

RESULTS AND DISCUSSION

Table 3 and 4 show the computational results of LGFi with different preordering sequences of the rectangles in the preprocessing stage by using the lower bounds proposed by Dell'Amico et al.^[5] and Boschetti and Mingozzi^[2] respectively. Table 5 gives the comparison of five different heuristic placement routines namely BLF, LGF, FC, TP and LGFi using the lower bound proposed by Dell'Amico et al.^[5] while Table 6 shows the comparison of LGFi with other two heuristic placement routines namely BLF and LGF where both routines required $O(n^2)$ time by using the lower bound proposed by Boschetti and Mingozzi^[2]. Table 7 gives the comparison between the three different heuristic placement routines for oriented case of 2DBPP namely FC, AD and LGFiOF. For each type of sorting in Table 3 and 4 as well as the different placement routines in Table 5-7, the entries report the average ratio, computed over ten problem instances. The final line for each class gives the average overall values over that class. The final line in all tables gives the overall average value over all classes. We do not give the execution time because it is negligible (never exceed 0.1 CPU sec).

From the overall average ratio of all classes in Table 3 and 4, we found that LGFi with DH(DW) preordering sequence gives the best solution quality. Therefore, in the preprocessing stage of LGFi, the rectangles are initially sorted in DH(DW). The computational results in Table 5 indicate that the LGFi produced a slightly better packing quality compared to LGF. However, neither of the placement routines for LGF, LGFi and TP can be classified as the clear winner in this experiment as they produced mixed degrees of success in each class. It is worth mentioning that TP has a time complexity of $O(n^3)$, while both LGF and LGFi has a time complexity of only $O(n^2)$. This shows that the LGFi is a more competitive heuristic placement routine.

Since the results in Table 5 gives the LGFi a more competitive heuristic, so the purpose of the computational experiment in Table 6 is only to investigate the improvement in term of ratio for the heuristic routines which required the same time complexity. Therefore, the comparisons are only done on BLF, LGF and LGFi. The computational results in Table 6 show that BLF, LGF and LGFi give the improvement in terms of the ratio by using lower bound proposed by Boscetti and Mingozzi^[2]. All three heuristic placement routines show a 1.2% of improvement if compared with the ratio using the lower bound proposed by Dell'Amico *et al.*^[5].

J. Mai	th. &	Stat.,	5(4)	: 334	!-341,	2009
--------	-------	--------	------	-------	--------	------

rec	DA(DH)	LGF1 USING	DW(DH)	U proposed	RANDOM	rec	DA(DH)		DW(DH)		BANDOM
Class I	DA(DH)	DA(DW)	Dw(DR)	DH(DW)	KANDOW	Class I	DA(DH)	DA(DW)	DW(DH)	DH(DW)	KANDOM
20	1.030	1.030	1.050	1.040	1.080	20	1.000	1.000	1.020	1.010	1.050
40	1.050	1.050	1.060	1.050	1.080	40	1.030	1.030	1.040	1.030	1.060
60	1.060	1.060	1.060	1.060	1.110	60	1.020	1.020	1.020	1.020	1.070
80	1.060	1.060	1.060	1.060	1.120	80	1.010	1.010	1.010	1.010	1.060
100	1.030	1.030	1.030	1.030	1.070	100	1.020	1.020	1.020	1.020	1.060
Average	1.045	1.045	1.052	1.049	1.092	Average	1.014	1.014	1.021	1.018	1.060
Class II	1.000	1.000	1.000	1 000	1.000	Class II	1.000	1.000	1.000	1.000	1 000
20 40	1.000	1 100	1 100	1.000	1 100	20 40	1 100	1 100	1 100	1,000	1 100
40 60	1.100	1.100	1.050	1.050	1.150	40 60	1.100	1.100	1.050	1.050	1.150
80	1.000	1.000	1.000	1.000	1.070	80	1.000	1.000	1.000	1.000	1.070
100	1.000	1.000	1.000	1.030	1.060	100	1.000	1.000	1.000	1.030	1.060
Average	1.040	1.040	1.030	1.017	1.075	Average	1.040	1.040	1.030	1.017	1.070
Class III						Class III					
20	1.110	1.110	1.180	1.130	1.200	20	1.090	1.090	1.170	1.110	1.190
40	1.120	1.120	1.150	1.120	1.220	40	1.080	1.080	1.110	1.080	1.180
60	1.100	1.100	1.110	1.110	1.230	60	1.050	1.050	1.060	1.060	1.170
80	1.090	1.090	1.120	1.100	1.220	80	1.050	1.050	1.070	1.060	1.170
Auerogo	1.070	1.080	1.090	1.090	1.190	Average	1.050	1.000	1.070	1.070	1.100
Class IV	1.097	1.098	1.150	1.107	1.211	Class IV	1.004	1.005	1.095	1.075	1.1/4
20	1.000	1.000	1.000	1.000	1.100	20	1.000	1.000	1.000	1.000	1.100
40	1.000	1.000	1.100	1.000	1.100	40	1.000	1.000	1.100	1.000	1.100
60	1.100	1.100	1.100	1.100	1.250	60	1.100	1.100	1.100	1.100	1.250
80	1.070	1.070	1.100	1.030	1.100	80	1.070	1.070	1.100	1.030	1.100
100	1.030	1.030	1.030	1.030	1.100	100	1.030	1.030	1.030	1.030	1.100
Average	1.040	1.040	1.067	1.033	1.130	Average	1.040	1.040	1.067	1.033	1.130
Class V	1 0 5 0	1 0 7 0		1 0 7 0		Class V	1 0 2 0	1 0 2 0	1.070	1.020	
20	1.070	1.070	1.110	1.070	1.200	20	1.030	1.030	1.070	1.030	1.150
40	1.100	1.100	1.170	1.140	1.200	40	1.050	1.050	1.120	1.090	1.140
80	1.090	1.090	1.140	1.110	1.200	80	1.000	1.000	1.110	1.080	1.170
100	1.090	1.090	1.130	1.100	1.160	100	1.040	1.040	1.100	1.050	1.130
Average	1.090	1.090	1.120	1 100	1.186	Average	1.000	1.000	1.098	1.000	1 146
Class VI	1.007	1.007	1.120	1.100	1.100	Class VI	1.000	1.000	1.090	1.002	1.1.10
20	1.000	1.000	1.000	1.000	1.000	20	1.000	1.000	1.000	1.000	1.000
40	1.400	1.400	1.400	1.300	1.400	40	1.400	1.400	1.400	1.300	1.400
60	1.050	1.050	1.050	1.000	1.150	60	1.050	1.050	1.050	1.000	1.150
80	1.000	1.000	1.000	1.000	1.000	80	1.000	1.000	1.000	1.000	1.000
100	1.070	1.070	1.100	1.100	1.170	100	1.070	1.070	1.100	1.100	1.170
Average	1.103	1.103	1.110	1.080	1.143	Average	1.103	1.103	1.110	1.080	1.143
Class VII	1 170	1 1 50	1 100	1 170	1 220	Class VII	1 170	1 150	1 100	1 170	1 220
20	1.170	1.150	1.190	1.170	1.220	20	1.170	1.150	1.190	1.170	1.220
40 60	1.130	1.130	1 1 2 0	1.140	1.250	40 60	1.130	1.130	1 120	1.140	1.250
80	1.120	1.110	1.120	1.130	1.160	80	1.110	1.110	1.150	1.130	1.160
100	1.120	1.120	1.110	1.120	1.150	100	1.110	1.110	1.110	1.110	1.140
Average	1.135	1.129	1.146	1.138	1.182	Average	1.133	1.127	1.145	1.136	1.180
Class VIII						Class VIII					
20	1.150	1.150	1.190	1.170	1.270	20	1.150	1.150	1.190	1.170	1.270
40	1.180	1.180	1.160	1.170	1.240	40	1.180	1.180	1.160	1.170	1.240
60	1.110	1.110	1.120	1.120	1.140	60	1.110	1.110	1.120	1.120	1.140
80	1.120	1.120	1.140	1.130	1.100	80	1.110	1.110	1.130	1.120	1.150
Average	1.100	1.100	1.110	1.100	1.130	Average	1.100	1.100	1.100	1.100	1.130
Class IX	1.131	1.132	1.145	1.137	1.195	Class IX	1.120	1.129	1.140	1.134	1.190
20	1.010	1.010	1.020	1.000	1.010	20	1.010	1.010	1.020	1.000	1.010
40	1.020	1.020	1.020	1.010	1.020	40	1.000	1.000	1.010	1.000	1.010
60	1.010	1.010	1.010	1.010	1.010	60	1.000	1.000	1.000	1.000	1.000
80	1.010	1.010	1.010	1.010	1.010	80	1.000	1.000	1.000	1.000	1.000
100	1.010	1.010	1.010	1.010	1.010	100	1.000	1.000	1.000	1.000	1.000
Average	1.009	1.009	1.013	1.007	1.012	Average	1.002	1.002	1.007	1.000	1.005
Class X					1.0-0	Class X					
20	1.180	1.180	1.150	1.130	1.270	20	1.150	1.150	1.120	1.100	1.250
40	1.100	1.100	1.120	1.090	1.230	40	1.100	1.100	1.120	1.090	1.230
00	1.100	1.100	1.120	1.120	1.240	6U 80	1.100	1.100	1.120	1.120	1.240
80 100	1.070	1.070	1.080	1.080	1.180	80 100	1.070	1.070	1.080	1.080	1.180
Average	1.000	1.050	1 105	1.070	1.100	Average	1.050	1.050	1 100	1.070	1 211
Average	1.070	1.078	1 003	1.077	1 144	Average	1.067	1.067	1 081	1.065	1 1 3 1
1 I VOI UZO	1.017	1.070	1.075	1.0//	1.177	inverage	1.00/	1.00/	1.001	1.005	1.1.51

Average

Average

 Table 5:
 Comparison of BLF, LGF, FC, TP and LGFi routines using lower bound proposed by Dell'Amico *et al.*

Table 6: Comparison of BLF, LGF and LGFi routines using lower bound proposed by Boschetti and Mingozzi^[2]

		BLF	LGF	FC	TP	LGFi		LGFi	LGF	BLF		LGFi	LGF	BLF	
20 1.090 1.030 1.040 1.040 20 1.010 1.000	Class I						Class I				Class VI				
40 1.120 1.040 1.040 1.050 1.450 1.040 1.050 1.050 1.050 1.050 1.060 1.000 1	20	1.090	1.030	1.060	1.050	1.040	20	1.010	1.000	1.060	20	1.000	1.000	1.000	
9.6 1.130 1.050 1.090 1.190 1	40	1.120	1.040	1.080	1.060	1.050	40	1.030	1.020	1.090	40	1.300	1.400	1.400	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	1.130	1.050	1.090	1.050	1.060	60	1.020	1.010	1.090	60	1.000	1.050	1.100	
100 1.120 1.040 1.070 1.030 1.030 1.100 1.030 1.100 1.030 1.100 1.030 1.100 1.030 1.100 1.030 1.100 1.030 1.100 1.030 1.100 1.030 1.100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.010 1.000 1.010 1.000 1.010 1.000 1.010 1.000 1.010 1.000 1.010 1.000 1.010 1.000 1.000 1.001 1.000 1.000 1.001 1.000 1.000 1.001 1.000 1.000 1.001 1.000 1.001 1.000 1.001 1.000 1.001 1.000 1.001 1.000 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1	30	1.150	1.060	1.090	1.060	1.060	80	1 010	1 010	1.090	80	1.000	1.000	1.000	
Average 1.042 1.044 1.078 1.050 1.049 Average 1.012 1.089 1.021 1.089 1.021 1.089 1.021 1.089 1.021 1.081 1.021 1.081 1.021 1.081 1.002 1.081 1.002 1.081 1.002 1.081 1.000	100	1.120	1.040	1.070	1.030	1.030	100	1.020	1.030	1 1 1 0	100	1 100	1.000	1 130	
	Average	1.122	1.044	1.078	1.050	1.049	Average	1.020	1.030	1.080	Average	1.100	1 103	1.130	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Class II						Class II	1.018	1.012	1.069	Class VI	T.080	1.105	1.12/	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.000	1.000	1.000	1.000	1.000	Class II	1 000	1 000	1 000		1	1 100	1 220	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.0	1 100	1 100	1 100	1 100	1 000	20	1.000	1.000	1.000	20	1.170	1.190	1.220	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	õ	1 100	1.050	1.050	1,000	1.050	40	1.000	1.100	1.100	40	1.140	1.120	1.200	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	1.070	1.050	1.030	1.000	1.000	60	1.050	1.050	1.100	60	1.130	1.100	1.200	
Normage 1.042 1.032 1.034 1.037 1.030 1.037 1.037	00	1.070	1.070	1.030	1.000	1.000	80	1.000	1.070	1.070	80	1.130	1.100	1.200	
Average 1.003 1.004 1.004 1.004 Average 1.017 Average 1.017 1.005 Average 1.017 1.005 Average 1.017 1.005 Average 1.017 1.005 Average 1.017 1.105 1.100 1.100 1.100 1.100 1.100 1.000 <td>00</td> <td>1.000</td> <td>1.050</td> <td>1.030</td> <td>1.000</td> <td>1.030</td> <td>100</td> <td>1.030</td> <td>1.030</td> <td>1.060</td> <td>100</td> <td>1.110</td> <td>1.080</td> <td>1.190</td>	00	1.000	1.050	1.030	1.000	1.030	100	1.030	1.030	1.060	100	1.110	1.080	1.190	
		1.005	1.050	1.042	1.054	1.017	Average	1.017	1.050	1.065	Average	1.136	1.117	1.200	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1 200	1.0.00	1 1 0 0	1.0.00	1 1 2 0	Class III				Class VI	Π			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.200	1.060	1.180	1.060	1.130	20	1 1 1 0	1 040	1 190	20	1 170	1 1 5 0	1 230	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.220	1.130	1.160	1.110	1.120	40	1.080	1.000	1 1 1 2 0	40	1 170	1 160	1 220	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.260	1.100	1.190	1.110	1.110	40	1.060	1.050	1.100	40	1.170	1.100	1.220	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.270	1.100	1.150	1.100	1.100	00	1.000	1.050	1.210	00	1.120	1.090	1.190	
$\begin{array}{c} \text{verage} & 1.239 & 1.093 & 1.162 & 1.092 & 1.107 & 1.070 & 1.070 & 1.020 & 1.202 & 1.00 & 1.100 & 1.100 & 1.00$	00	1.230	1.080	1.130	1.080	1.090	80	1.060	1.060	1.230	80	1.120	1.090	1.180	
	verage	1.239	1.093	1.162	1.092	1.107	100	1.070	1.060	1.210	100	1.100	1.090	1.190	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lass IV						Average	1.073	1.059	1.202	Average	1.134	1.113	1.201	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.000	1.000	1.000	1.000	1.000	Class IV				Class IX				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.0	1.000	1.000	1.000	1.000	1.000	20	1.000	1.000	1.000	20	1.000	1.010	1.010	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.100	1.150	1.100	1.100	1.100	40	1.000	1.000	1.000	40	1.000	1.010	1.000	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.100	1.100	1.100	1.070	1.030	60	1 100	1 1 5 0	1 100	60	1 000	1 000	1 000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00	1 1 30	1 070	1 070	1.030	1 030	80	1.030	1 100	1 100	80	1.000	1.000	1 000	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	verage	1.065	1.063	1.054	1.040	1.033	100	1.030	1.100	1 1 20	100	1.000	1.000	1.000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	There V	1.005	1.005	1.054	1.040	1.055	100	1.030	1.070	1.150	100	1.000	1.000	1.000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21 ass v	1 1 50	1 000	1 090	1.060	1.070	Average	1.055	1.005	1.065	Average	1.000	1.004	1.002	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.130	1.090	1.080	1.000	1.070	Class V				Class X				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.180	1.100	1.100	1.110	1.140	20	1.030	1.050	1.110	20	1.100	1.180	1.130	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.100	1.090	1.110	1.080	1.110	40	1.090	1.050	1.130	40	1.090	1.070	1.130	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	1.170	1.090	1.110	1.080	1.100	60	1.080	1.070	1.130	60	1.120	1.080	1.140	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00	1.160	1.080	1.100	1.080	1.090	80	1.050	1.050	1.120	80	1.080	1.060	1.140	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Average	1.165	1.092	1.100	1.082	1.100	100	1.060	1.060	1.140	100	1.070	1.070	1.110	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Class VI						Average	1.062	1 0 5 5	1 125	Average	1 093	1 093	1 1 3 0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C	1.000	1.000	1.000	1.000	1.000	IIVerage	11002	11000	11120	Assesses	1.065	1.067	1 1 2 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.400	1.400	1.400	1.400	1.300					Average	1.065	1.067	1.121	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.100	1.050	1.050	1.050	1.000									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1.000	1.000	1.000	1.000	1.000	Table 7:	Compar	ison of	FC, AD	and LDFi	i _{oF} rout	ines for	oriented	
werage lass VII 1.127 1.103 1.104 1.104 1.080 FC AD LDFioF FC AD 21ass VII 0 1.220 1.190 1.130 1.100 1.400 4.001 1.200 1.100 1.400 1.400 4.001 4.001 4.001 1.400 1.40	00	1.130	1.070	1.070	1.070	1.100		case of	2DBPP						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	verage	1.127	1.103	1.104	1.104	1.080		FC	AD	LDFior		FC	AD	LDFior	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	lass VII		11100	11101		11000	Class I	10	710	LDIIOF	Class VI	10	7 ID	LDIIOF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1 220	1 190	1 1 9 0	1 1 3 0	1 170	Class I	1 1 2 0	1 1 2 0	1 1 1 0	Class VI	1 000	1 000	1 000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	1.220	1.120	1.170	1 100	1.170	20	1.120	1.120	1.110	20	1.000	1.000	1.000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	1.200	1.120	1.170	1.100	1.140	40	1.080	1.090	1.060	40	1.400	1.400	1.400	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1.200	1.100	1.100	1.120	1.130	60	1.070	1.070	1.050	60	1.100	1.050	1.100	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00	1.200	1.100	1.170	1.110	1.130	80	1.060	1.060	1.040	80	1.000	1.000	1.000	
Average 1.202 1.119 1.176 1.114 1.138 Average 1.078 1.078 1.059 Average 1.12 1.104 Class VIII Class VII Class II Class II Class VII Class VII 10 1.220 1.160 1.160 1.170 20 1.000 1.000 20 1.08 1.100 10 1.220 1.160 1.160 1.170 20 1.00 1.000 1.00 20 1.08 1.100 100 1.190 1.090 1.160 1.110 1.20 40 1.100 1.00 40 1.00 40 1.00 40 1.00 40 1.00 40 1.00 40 1.00 40 1.00 40 1.00 40 1.00 40 1.00 40 1.00 40 4.00 40 4.00 40 4.04 Average 1.010 1.010 1.010 1.010 1.010 4.010 4.010	.00	1.190	1.090	1.170	1.110	1.120	100	1.060	1.050	1.030	100	1.1	1.070	1.100	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Average	1.202	1.119	1.176	1.114	1.138	Average	1.078	1.078	1.059	Average	1.12	1.104	1.120	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Jass VIII	1.000	1 1 50	1.1.50	1 1	1 1 5 0	Class II				Class VII	[
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1.230	1.150	1.160	1.160	1.170	20	1 100	1 000	1 000	20	1.08	1 100	1 100	
	10	1.220	1.160	1.190	1.160	1.170	40	1 100	1 100	1 100	40	1.09	1 100	1 070	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	1.190	1.090	1.180	1.110	1.120		1 100	1 100	1 100	60	1.07	1.100	1.040	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	30	1.190	1.100	1.160	1.110	1.130	80	1.100	1.100	1.100	80	1.07	1.0/0	1.040	
Average 1.204 1.116 1.172 1.132 1.137 100 1.030 <th< td=""><td>100</td><td>1.190</td><td>1.090</td><td>1.170</td><td>1.120</td><td>1.100</td><td>80</td><td>1.070</td><td>1.070</td><td>1.030</td><td>80</td><td>1.06</td><td>1.060</td><td>1.060</td></th<>	100	1.190	1.090	1.170	1.120	1.100	80	1.070	1.070	1.030	80	1.06	1.060	1.060	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Average	1.204	1.116	1.172	1.132	1.137	100	1.030	1.030	1.030	100	1.04	1.040	1.030	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lass IX						Average	1.080	1.060	1.053	Average	1.068	1.074	1.059	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1.010	1 010	1.000	1 010	1 000	Class III				Class VII	Ι			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1.020	1.020	1.010	1.020	1.000	20	1.180	1.200	1.230	20	1.160	1.130	1.120	
00 1.010 1.000 1.	50	1.020	1.020	1.010	1.020	1.010	40	1.140	1.150	1.170	40	1.070	1.080	1.080	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1.010	1.010	1.010	1.010	1.010	60	1 1 1 0	1 130	1 100	60	1.060	1.060	1.060	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	1.010	1.010	1.010	1.010	1.010	80	1 100	1 100	1.070	80	1.060	1.060	1.040	
Average 1.011 1.008 1.012 1.007 1.00 1.090 <t< td=""><td>100 A</td><td>1.010</td><td>1.010</td><td>1.010</td><td>1.010</td><td>1.010</td><td>100</td><td>1.100</td><td>1.100</td><td>1.070</td><td>100</td><td>1.000</td><td>1.000</td><td>1.040</td></t<>	100 A	1.010	1.010	1.010	1.010	1.010	100	1.100	1.100	1.070	100	1.000	1.000	1.040	
Average 1.124 1.134 1.131 Average 1.124 1.134 1.131 Average 1.124 1.134 1.131 Average 1.124 1.134 1.131 Average 1.134 1.131 Average 1.124 1.134 1.131 Average 1.134 1.131 Average 1.134 1.131 Average 1.130 1.130 1.134 1.131 Average 1.130 1.130 1.130 1.020 1.002 1.002 1.002 1.002 1.010 1.020 1.140 1.060 1.060 1.080 1.000 <th cols<="" td=""><td>Average</td><td>1.011</td><td>1.011</td><td>1.008</td><td>1.012</td><td>1.007</td><td>100</td><td>1.090</td><td>1.090</td><td>1.090</td><td>100</td><td>1.060</td><td>1.060</td><td>1.050</td></th>	<td>Average</td> <td>1.011</td> <td>1.011</td> <td>1.008</td> <td>1.012</td> <td>1.007</td> <td>100</td> <td>1.090</td> <td>1.090</td> <td>1.090</td> <td>100</td> <td>1.060</td> <td>1.060</td> <td>1.050</td>	Average	1.011	1.011	1.008	1.012	1.007	100	1.090	1.090	1.090	100	1.060	1.060	1.050
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jass X						Average	1.124	1.134	1.131	Average	1.082	1.078	1.068	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1.150	1.200	1.150	1.200	1.130	Class IV				Class IX				
501.1401.0801.0901.0901.120401.0001.0001.000401.0201.020301.1401.0601.0601.0601.080601.1001.1501.100601.0201.020001.1101.0701.0701.0601.0601.070801.1001.1001.100801.0201.020Average1.1351.0981.0921.0981.0981001.1001.0301.0701001.010	0	1.130	1.070	1.090	1.080	1.090	20	1.000	1.000	1.000	20	1.010	1.010	1.010	
30 1.140 1.060 1.060 1.060 1.080 60 1.100 1.100 60 1.020 1.020 00 1.110 1.070 1.070 1.060 1.070 80 1.100 1.100 80 1.020 1.020 Average 1.135 1.098 1.092 1.098 1.098 100 1.100 1.070 100 1.010 1.010 1.010	0	1.140	1.080	1.090	1.090	1.120	40	1.000	1.000	1.000	40	1.020	1.020	1.010	
00 1.110 1.070 1.070 1.060 1.070 80 1.100 1.100 1.100 80 1.020 1.020 average 1.135 1.098 1.092 1.098 1.098 100 1.100 1.000 1.000 1.010 1.010 1.010	.0	1.140	1.060	1.060	1.060	1.080	60	1.100	1.150	1.100	60	1.020	1.020	1.010	
Average 1.135 1.098 1.092 1.098 1.098 1.098 1.091 1.000 1.100 1.100 1.100 1.000 1.020 <	00	1.110	1.070	1.070	1.060	1.070	80	1,100	1,100	1,100	80	1.020	1.020	1.010	
	Average	1.135	1.098	1.092	1.098	1.098	100	1 100	1.030	1 070	100	1 010	1 010	1 010	
Average 1133 1070 1000 1076 1077 Average 1060 1056 1052 Average 1016 1016	Average	1 1 2 2	1.070	1.000	1.076	1.077	100	1.100	1.050	1.070	Avorage	1.014	1.016	1.010	

Table 7: Continued										
Class V				Class X						
20	1.140	1.140	1.110	20	1.140	1.100	1.130			
40	1.110	1.110	1.100	40	1.090	1.090	1.090			
60	1.100	1.100	1.090	60	1.080	1.110	1.110			
80	1.090	1.090	1.080	80	1.110	1.100	1.090			
100	1.090	1.090	1.090	100	1.090	1.100	1.080			
Average	1.106	1.106	1.092	Average	1.102	1.100	1.100			
				Average	1.084	1.081	1.075			

In Table 7, the overall average ratio of all classes indicates that $LGFi_{OF}$ gives better packing quality if compared to AD and FC. $LGFi_{OF}$ is also better than AD and FC in terms of time complexity where both of AD and FC required $O(n^3)$ time while $LGFi_{OF}$ required only $O(n^2)$ time.

CONCLUSION

In this study, we developed heuristics placement routines called the Improved Lowest Gap Fill, LGFi and LGFi_{OF} for solving both non-oriented and oriented cases of two-dimensional bin packing problems respectively. Both routines are capable of filling the available gaps in the partial layout by dynamically selecting the best rectangle for placement during packing stage. The routines require only $O(n^2)$ time. Computational results shown that our proposed routines are capable of producing high quality solution.

REFERENCES

- Berkey, J.O. and P.Y. Wang, 1987. Two dimensional finite bin packing algorithms. J. Operat. Res. Soc., 38: 423-429. http://www.jstor.org/pss/2582731
- Boschetti, M.A. and A. Mingozzi, 2003. The twodimensional finite bin packing problem. Part II: New lower and upper bounds. 4OR: Q. J. Operat. Res. Soc., 1: 135-147. DOI: 10.1007/s10288-002-0006-y

- Chazelle, B., 1983. The bottom-left bin packing heuristic: An efficient implementation. IEEE Trans. Comput., 32: 697-707. http://www2.computer.org/portal/web/csdl/doi/10.1 109/TC.1983.1676307
- Coffman, E.G., M.R. Garey and D.S. Johnson, 1984. Approximation Algorithms for Bin Packing. In. Algorithm Design for Computer Systems Design, Ausiello, G., N. Lucertini and P. Seratini (Eds.). Springer, Vienna, ISBN: 0-387-81816-2, pp: 49-106.
- Dell'Amico, M., S. Martello and D. Vigo, 2002. A lower bound for the non-oriented two-dimensional bin packing problem. Discrete Applied Math., 118: 13-24.

http://portal.acm.org/citation.cfm?id=584685.584688

- Garey, M.R. and D.S. Johnson, 1979. Computer and Intractability: A guide to the Theory of NP-Completeness. WH Freeman, San Francisco, ISBN: 0716710455, pp: 338.
- Lee, L.S., 2008. A genetic algorithms for twodimensional bin packing problem. MathDigest. Res. Bull. Inst. Math. Res., 2: 34-39.
- Lodi, A., S. Martello and D. Vigo, 1999. Heuristic and metaheuristic approaches for a class of twodimensional bin packing problems. INFORMS J. Comput., 11: 345-357. http://portal.acm.org/citation.cfm?id=768372
- Martello, S. and D. Vigo, 1998. Exact solution of the two-dimensional finite bin packing problem. Manage. Sci., 44: 388-399. http://portal.acm.org/citation.cfm?id=289228
- Wäscher, G., H. Hauβner and H. Schumann, 2007. An improved typology of cutting and packing problems. Eur. J. Operat. Res., 183: 1109-1130. http://ideas.repec.org/a/eee/ejores/v183y2007i3p11 09-1130.html