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On Numerical Ranges of Nilpotent Elements of C*-Algebra

A. Abdollahi, M.T. Heydari and M. Moosavi
Department of Mathematics, Shiraz University, Shird454, Iran

Abstract: Problem statement: Let A be a C*-algebra with unit 1. For eadh/s let V(a),v(a) and
vo(a) denote its numerical range, numerical radiubthe distance from the origin to the boundary of
its numerical range, respectivelfpproach: If a is a nilpotent element of A with the power of
nilpotency n, i.e., 8= 0, andv(a) = (n-1)vy(a). Results: We proved that V(a) = bW() where b is a
scalar and Ais the strictly upper triangular n-by-n matrix kiall entries above the main diagonal
equal to oneConclusion/Recommendations: We also completely determined the numerical rasfge
such elements, by determining the numerical rarig#/(@\,) and showed that the boundary of it does
not contain any arc of circle.
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INTRODUCTION A complete survey on numerical range can be
found in the books by Bonsall and Dunshand the
Let A be a C*-algebra with unit 1 and let S be thebook by Gustafon and R&oand we refer the reader to
state space of A, i.e., S H[A* $=0,6(1) = 1}. For  these books for general information and background.
each @A, the C*-algebra numerical range V(a) and  In 1992, Haagerup and de la Hdfpbave proved
numerical radius(a) is defined, respectively, by: the following sharp estimate for the numerical vadof
a nilpotent operator N:

V(a): = {¢(a)¢0S} andv(a): = {|z|: zZOV(a)}

| _ W(N)SHNHCO{Lj
It is well known that V(a) is non empty, compact n+1
and convex subset of the complex plane,

V(al+Ba) = a+BV(a) for dJA and a,B0C and if Where, nis the power nilpotency of n. In 2004ra&v
20V(a), |2 <4 2] give another proofs of the Haagerup-de la Harpe
Cem _ _ inequality.
The notion of numerical range or the classicdtifie In [4] the researchers have shown that if A is a

of values was first introduced by Toeplitz in 198 57610 nilpotent operator with the power of nitraty
matrices. This concept were independently extetyed n, with W(A)<(n-1)we(A) and if A attains its numerical

G. Lumer and F. Bau_er in sixties to a bounded fineay i s then the following conditions are equivalent
operator on an arbitrary Banach space. In 1975,

Lightbourne and Martf! have extended this concept ,
by employing a class of seminorms generated by a
family of supplementary projections.

As an example, let A be the C*-algebra of all
bounded linear operators on a complex Hilbert sphce
and TOA. It is well known that V(T) is the closure of W(A) = bW(A,)

W(A) = (n-1)w(A)

A is unitarily equivalent to an operator of the
form nA.,0A', wheren is a scalar satisfying
[n] = 2wy(A) and A is some other operator:

W(T), where:
Where:
W(T):={{Tx,x):x OH, x| =1 b = A scalar
. . o1 -1
is the usual numerical range of the operator Tthia S
. . . 0 :
special case we denote the numerical radius ofdl an  A,: =
the distance from the origin to the boundary of its -1
numerical range by w(T) andy(i), respectively. 0
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MATERIALSAND METHODS RESULTSAND DISCUSSION

Let a be a nilpotent with the power of nilpotency Theorem 1: The boundary of W(# is:
n>1, i.e., & = 0 andv(a) = (n-1yy(a), wherevy(a)
denotes the distance from the origin to the boundar OW(An) = Yity,
of its numerical range. In this study we show thatWhere'

V(a) = bW(A,), where b is a scalar and by determining '
the boundary of numerical range of,Ave show that 1 (-3 1 1 n
the 0V(a) not inclusive a circle section. Actually, this Vz(t)=—5+|[700t(?])t+*2C0t(*n)j
study is an extension of the Haagerup-de and lgpdiar
inequality and the research of an earlier studBay?  {or 0<t<1 and:
to the C*-algebra numerical range. o '

— N 0
A short survey on W(A,): For the study of numerical ¥i(®) = AO)+N ©))e
ranges of finite matrices, the matrix-theoreticpadies )
can be exploited to yield special tools which agt n Which A
available for general operators. One important way
yield dW(A) is the Kippenhahn's result that the 1 9
numerical range of A coincides with the convex fuil A(6) =2{Sln(9)60f£j— cos@ %
the r%a} points of the dual curve of det(xReA + Al n
zl) = 0. On the other hand, a parametric representatio o . :
of the boundary W(A) can alt%(g\ be obtained from theBW('.?.‘F])els gﬁiﬁﬂﬁfblfugisgﬁh g?mttﬁé boundary of
largest eigenvalue of Re(&) vyielding useful : .
information on W(A). numerical range of AOW(A,), is:

For any mn matrix A, let A(B) denote the 1 9 . I
maximum eigenvalue of Re(®A). It is well known R(G)ZFCSS[EJ‘[S'”Q )cos% ¥ nco8( )S”Er‘l(}
that A(8) is an analytic function 0@ (possibly except
for some isolated points) and a unit vectorGh is  Proof: First we want to compute thg®6). Put M, =
such that <Ax, x> belong tdW(A)nLg if and only if Re(¢® A)-Al, and R(A) = detM,. Therefore:
Re(e"A)x = A(B)x!*l. Also dW(A) admits a parametric

(0) =n7_1 and for 7=0<1, 6 # 0:

i6 5i07]

representation: o €0 e e
2 2 2
X(8) = \(8) cos@)-A'(8) sin @) ¢ , €° &'
. , 2 2 2
Y(6) = \(8) sin @)+\'(6) cos ) Rmsdele & e
(again, with possible exception of finitely manyings). 2 2 2
The curvature and radius of curvaturedw¥(A) at p = P :
(x(0), y(©)) are equals: e & & -\
L 2 2 ]
K(6) -1
A(B) +A"(B) by adding the -1 multiple of any row to before raw
have:
and ) .
i0 e—ie
R(6) = A(6)+\"(8), g My ° °
i eie e—ie
respectively. 0 A-— A+— 0
As we mentioned, if A is a nilpotent operator on a P O\)= def 2 249
Hilbert space H with nilpotency n that attaint its " * /'~ 0 0 - 0
numerical radius and w(A) = (n-19¢4) then ] } 2
W(A) = bW(A,), for some b. Hence for determining : : :
W(A) it is enough to compute W(A The following e° e €
theorem can be help us to find W(A). L 2 2 2 J

349



J. Math. & Stat., 5 (4): 348-351, 2009

Important, but easy to check, is the fact thatwhe By direct calculation we have:
expanding this determinant about the first columa,
have the following Recursion formula: 1 1 . _
INC)) =E{cos@)cotg Y= sing )cszc«% 3} snﬁ(}}

eie ée e—ie n n n
Pn(h)=[->\-J Pab)+ €Y = d+— ) !
2 2 2 for -T=B<11, 8 # 0 and\’ (0) = 0 also:
with initial condition B(A) = 1. ) 2
By solving this recursion formula we have: A= 2 _5'”(e)°°t§ )= coR )CSQC%
T2) 1
. o . g0 +Fsm(9)cos§ )cs%\?»] ) co§(
PAN)=F%"—€" 0+=)-€A+—)n
e’ -e 2 2
_ for -TB<1, 8 # 0 andA”(0) = 0 So the curvature
if 8 # mm, for each MIZ and: function of the boundary of numerical range of, A
o 1 OW(A), is:
e e N I
2 2 1 . 0
R(e):chéé)[sme)cos% ¥ nco§( )SH?\(

wheneve® = mt, for some Ml Z .

By solving R(A) = 0, in the first case we have: Now the proof is completed.
. This proof will help in discussing the following
A+ & corollary:
2 = g?®
A +ie Corollary 1: By radius of curvaturegW(A,) does not
2 contain any arc of circle.
Which implies: C*-algebra numerical range of nilpotent elements:
As we mentioned in the introduction, let A be a C*-
A, :l{sine Cot(kﬂ+9)_ co:@} e OL..n algebra with unit 1 and let S be the state spaca, of
2 n i.e.,, S =H0OA* ¢=0, ¢ (1) = 1}. For each@A, the C*-

algebra numerical range is defined by:
By a simple computation we see that @# 0,
A(B) = Ao=Ay, for each k and sd(B) satisfies (a). This V(a): = {¢(a)¢OS}
relation with Eq. 1 and inequality sifkksin® implies

that w(A ) :nT—l and w,(A ) :% , independent from n. Analogy we definev(a) andvy(a) for an element

allA by:

This facts will help in discussing and proving man

of the result below. Therefore lgt<B<mand put: v(a)=sup{2 : 219 V(a)}
¥1(6) = (\(B)+iA'(6))€® and
Also define: vo(a)= dist(09 V(a)E inf{7 : 21 V(a)}
1 .-3 1 1 .’
Ya(t) = =5 +i(— cot t+—cote ) Now we turn our attention to nilpotency.

for O<t<1. So we have: Theorem 2: Let A be a C*-algebra with unit and]a

be a nilpotent element with nilpotency n. Then:
OW(An) = Y1tY,

v(@)<|d cos(%1 )
It is easy to show tha@WW(A,) is differentiable. n
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If v(a) = (n-1y(a), then:
V(a) = bW(Ay)
where, b is a scalar.

n-1 Tt
> —
Jd 2[4 see T

0V(a) does not contain any arc of circle.

Proof: Letp be a state of A. Then there exists a cycIic3'

representatiom, of A on a Hilbert space Hand a unit
cyclic vector x for H, such that:

p(a) =(TH(a)X%,, Xo), A

By Gelfand-Naimark theorem the direct sum5

ma- Zpusmnp(a) is a faithful representation of A on

the Hilbert spacet =" H, B Therefore for each

pdS, p(@)OW(M)(@)dW(m(@)) and hence V(a)

contained in Wi(@)). On the other hand if x is a unit

vector of H, then the formula(c) Xm(c)x, x),cOA,
defines a state on A and hemq@) =(r(a)x, »V(a)
and it follows that:

W(T,) = V(a)

where, T, = n(a)*.

Also d' = 0 implies that =0, T, is a nilpotent operator
with nilpotency n. Then (i) follows from (1) and)(2
Part (iv) follows from Theorem 1. Also w{= (n-1)
wq(T,) and so V(a) = W(J) = bW(A,), where b is a
scalar, which implies (ii). Finally (iii) followsrbm (i)

and the facts that(a)=|4 w(A,) and w(A ) = nT—l

CONCLUSION

If A is a C*algebra with unit and [ is a
nilpotent element with nilpotency n anda) = (n-
1)ve(a), then:

V(a) = bW(A)

where, b is a scalar. Als#V(a) does not contain any

arc of circle.

6.

7.

9.

So, we can completely determine the numerical

range of such elements.
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