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Abstract: Problem statement: Let A be a C*-algebra with unit 1. For each a∈A, let V(a), ν(a)  and 
ν0(a) denote its numerical range, numerical radius and the distance from the origin to the boundary of 
its numerical range, respectively. Approach: If a is a nilpotent element of A with the power of 
nilpotency n, i.e., an = 0, and ν(a) = (n-1) ν0(a). Results: We proved that V(a) = bW(An), where b is a 
scalar and An is the strictly upper triangular n-by-n matrix with all entries above the main diagonal 
equal to one. Conclusion/Recommendations: We also completely determined the numerical range of 
such elements, by determining the numerical range of W(An) and showed that the boundary of it does 
not contain any arc of circle.  
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INTRODUCTION 

 
 Let A be a C*-algebra with unit 1 and let S be the 
state space of A, i.e., S = {ϕ∈A*: ϕ≥0,ϕ(1) = 1}. For 
each a∈A, the C*-algebra numerical range V(a) and 
numerical radius ν(a) is defined, respectively, by: 
  

V(a): = {ϕ(a):ϕ∈S} and ν(a): = {|z|: z∈V(a)}  
 
 It is well known that V(a) is non empty, compact 
and   convex  subset  of the  complex  plane, 
V(α1+βa) = α+βV(a) for a∈A and α,β∈ℂ  and if 
z∈V(a), z a≤ [2].  

 The notion of numerical range or the classical field 
of values was first introduced by Toeplitz in 1918 for 
matrices. This concept were independently extended by 
G. Lumer and F. Bauer in sixties to a bounded linear 
operator on an arbitrary Banach space. In 1975, 
Lightbourne and Martin[9] have extended this concept 
by employing a class of seminorms generated by a 
family of supplementary projections. 
 As an example, let A be the C*-algebra of all 
bounded linear operators on a complex Hilbert space H 
and T∈A. It is well known that V(T) is the closure of 
W(T), where: 
 

( )W T : { Tx,x : x H, x 1}= ∈ =  

 
is the usual numerical range of the operator T. In this 
special case we denote the numerical radius of T and 
the distance from the origin to the boundary of its 
numerical range by w(T) and w0(T), respectively. 

 A complete survey on numerical range can be 
found in the books by Bonsall and Duncan[2,3] and the 
book by Gustafon and Rao[5] and we refer the reader to 
these books for general information and background. 
 In 1992, Haagerup and de la Harpe[6] have proved 
the following sharp estimate for the numerical radius of 
a nilpotent operator N:  
 

w(N) N cos
n 1

π ≤  + 
 

 
where, n is the power nilpotency of n. In  2004, Karaev 
give another proofs of the Haagerup-de la Harpe 
inequality. 
 In [4] the researchers have shown that if A is a 
nonzero nilpotent operator with the power of nilpotency 
n, with w(A)≤(n-1)w0(A) and if A attains its numerical 
radius then the following conditions are equivalent: 
 
• w(A) = (n-1)w0(A) 
• A is unitarily equivalent to an operator of the 

form  ηAn⊕A′,  where  η  is  a  scalar satisfying 
|η| = 2w0(A) and A′ is some other operator: 
 

• W(A) = bW(An) 
 

Where: 
 b = A scalar  
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MATERIALS AND METHODS 
 
 Let a be a nilpotent with the power of nilpotency 
n≥1, i.e., an = 0 and ν(a) = (n-1)ν0(a), where ν0(a) 
denotes the distance from the origin to the boundary 
of its  numerical range. In this study we show that 
V(a) = bW(An), where b is a scalar and by determining 
the boundary of numerical range of An, we show that 
the ∂V(a) not inclusive a circle section. Actually, this 
study is an extension of the Haagerup-de and la Harpe 
inequality and the research of an earlier study by Gau[4] 
to the C*-algebra numerical range. 
 
A short survey on W(An): For the study of numerical 
ranges of finite matrices, the matrix-theoretic properties 
can be exploited to yield special tools which are not 
available for general operators. One important way to 
yield ∂W(A) is the Kippenhahn's result that the 
numerical range of A coincides with the convex hull of 
the real points of the dual curve of det(xReA + ylmA + 
zl) = 0[4]. On the other hand, a parametric representation 
of the boundary W(A) can also be obtained from the 
largest eigenvalue of Re(e−iθA) yielding useful 
information on W(A). 
 For any n×n matrix A, let λ(θ) denote the 
maximum eigenvalue of Re(e−iθA). It is well known 
that λ(θ) is an analytic function of θ (possibly except 
for some isolated points) and a unit vector in n

ℂ  is 
such that <Ax, x> belong to ∂W(A)∩Lθ if and only if 
Re(e−iθA)x = λ(θ)x[4]. Also ∂W(A) admits a parametric 
representation: 
 
x(θ) = λ(θ) cos(θ)-λ′(θ) sin (θ) 
 
y(θ) = λ(θ) sin (θ)+λ′(θ) cos (θ) 
 
(again, with possible exception of finitely many points). 
The curvature and radius of curvature of ∂W(A) at p = 
(x(θ), y(θ)) are equals: 
 

1
K( )

( ) ''( )
θ =

λ θ + λ θ
 

 
and  
 

R(θ) = λ(θ)+λ′′(θ), 
 
respectively. 
 As we mentioned, if A is a nilpotent operator on a 
Hilbert space H with nilpotency n that attaint its 
numerical   radius  and   w(A) = (n-1)w0(A)  then 
W(A) = bW(An), for some b. Hence for determining 
W(A) it is enough to compute W(An). The following 
theorem can be help us to find W(A). 

RESULTS AND DISCUSSION 
 
Theorem 1: The boundary of W(An) is: 
 

∂W(An) = γ1+γ2 
 
Where: 
 

2

1 3 1
(t) i cot( )t cot( )

2 2 n 2 n

− π π γ = − + + 
 

 

 
for 0≤t≤1 and: 
 

γ1(θ) = (λ(θ)+iλ′(θ))eiθ 
 

which ( ) n 1
0

2

−λ =  and for -π≤θ≤π, θ ≠ 0: 

 

( ) 1
sin( )cot cos( )

2 n

 θ λ θ = θ − θ  
  

 

 
∂W(An) is differentiable at each points.  
 The curvature function of the boundary of 
numerical range of An, ∂W(An), is: 
 

3
2

1
R( ) csc sin( )cos( ) ncos( )sin( )

n n n n

θ θ θ   θ = − θ − θ      
 

 
Proof: First we want to compute the λ(θ). Put Mn = 
Re(eiθ An)-λIn and Pn(λ) = detMn. Therefore: 
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by adding the -1 multiple of any row to before row we 
have: 
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 Important, but easy to check, is the fact that when 
expanding this determinant about the first column, we 
have the following Recursion formula:  
 

i i i
n 1 n 1

n n 1

e e e
P ( ) P ( ) ( 1) ( ) ,n 1

2 2 2

θ θ − θ
− −

−
 

λ = −λ − λ + − λ + ≥ 
 

 

 
 with initial condition Po(λ) = 1. 
 By solving this recursion formula we have: 
 

n 1 i i
i n i

n i i

( 1) e e
P ( ) e ( ) e ( )n

e e 2 2

+ θ − θ
− θ θ

θ − θ

 −λ = λ + − λ + −  
 

 
if θ ≠ mπ, for each m∈ℤ  and: 
 

( )
n 1

n 1
n

( 1) 1
P ( ) n 2 1 ( )

2 2

+
−−λ = − λ − λ +  

 
whenever θ = mπ, for some m∈ℤ . 
 By solving Pn(λ) = 0, in the first case we have: 
 

ni

2i
i

e
2 e

e
2

θ

θ
− θ

 
λ + 

= 
 λ + 
 

 

 
 Which implies:  
 

k

1 k
sin cot( ) cos ,k 0,1,...,n 1

2 n

π + θ λ = θ − θ = −  
 

 
 By a simple  computation we see that for θ ≠ 0, 
λ(θ) = λ0≥λk, for each k and so λ(θ) satisfies (a). This 
relation with Eq. 1 and inequality sinkθ≤ksinθ implies 

that n

n 1
w(A )

2

−=  and 0 n

1
w (A )

2
= , independent from n. 

 This facts will help in discussing and proving many 
of the result below. Therefore let -π<θ<π and put: 
 

γ1(θ) = (λ(θ)+iλ′(θ))eiθ 
 
 Also define: 
 

2

1 3 1
(t) i( cot( )t cot( ))

2 2 n 2 n

− π πγ = − + +  

 
for 0≤t≤1. So we have: 
 

∂W(An) = γ1+γ2 

 
 It is easy to show that ∂W(An) is differentiable. 

 By direct calculation we have: 
 

21 1
'( ) cos( )cot( ) sin( )csc ( ) sin( )

2 n n n

θ θ λ θ = θ − θ + θ  
 

 
for -π≤θ≤π, θ ≠ 0 and λ′ (0) = 0 also: 
 

2

3
2

2
sin( )cot( ) cos( )csc ( )

1 n n n''( )
12

sin( )cos( )csc ( )cos( )
n n n

θ θ − θ − θ 
λ θ =  

θ θ + θ θ  

 

 
for -π≤θ≤π, θ ≠ 0 and λ′′(0) = 0 So the curvature 
function of the boundary of numerical range of An, 
∂W(An), is: 
 

3
2

1
R( ) csc ( )[sin( )cos( ) ncos( )sin( )]

n n n n

θ θ θθ = θ − θ  

 
  Now the proof is completed.  
 This proof will help in discussing the following 
corollary:  
 
Corollary 1: By radius of curvature, ∂W(An) does not 
contain any arc of circle.  
 
C*-algebra numerical range of nilpotent elements: 
As we mentioned in the introduction, let A be a C*-
algebra with unit 1 and let S be the state space of A, 
i.e., S = {ϕ∈A*: ϕ≥0, ϕ (1) = 1}. For each a∈A, the C*-
algebra numerical range is defined by: 
 

V(a): = {ϕ(a):ϕ∈S} 
 
 Analogy we define ν(a) and ν0(a) for an element 
a∈A by: 
 

(a) sup{ z : z V(a)}ν = ∈ ∂  
 

and 
 

0(a) dist(0, V(a)) inf{ z : z V(a)}ν = ∂ = ∈ ∂  

 
 Now we turn our attention to nilpotency.  
 
Theorem 2: Let A be a C*-algebra with unit and a∈A 
be a nilpotent element with nilpotency n. Then: 
 

(a) a cos( )
n 1

πν ≤
+
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If ν(a) = (n-1)ν0(a), then: 
 

V(a) = bW(An) 
 
where, b is a scalar. 
 

n 1
a b sec

2 n 1

− π≥
+

 

  
∂V(a) does not contain any arc of circle.  
 
Proof: Let ρ be a state of A. Then there exists a cyclic 
representation πρ of A on a Hilbert space Hρ and a unit 
cyclic vector xρ for Hρ such that: 
 

ρ(a) = 〈πρ(a)xρ, xρ〉, a∈A 
 
 By Gelfand-Naimark theorem the direct sum 

s
: a (a)ρρ∈

π → ⊕π∑  is a faithful representation of A on 

the Hilbert space 
s

H Hρρ∈
= ⊕∑ [8]. Therefore for each 

ρ∈S, ρ(a)∈W(πρ)(a)⊂W(π(a)) and hence V(a) 
contained in W(π(a)). On the other hand if x is a unit 
vector of H, then the formula ρ(c) =〈π(c)x, x〉,c∈A, 
defines a state on A and hence ρ(a) = 〈π(a)x, x〉∈V(a) 
and it follows that: 
 

W(Ta) = V(a) 
 
where, Ta = π(a)[1].  
Also an = 0 implies that n

a aT 0,T=  is a nilpotent operator 

with nilpotency n. Then (i) follows from (1) and (2). 
Part (iv) follows from Theorem 1. Also w(Ta) = (n-1) 
w0(Ta) and so V(a) = W(Ta) = bW(An), where b is a 
scalar, which implies (ii). Finally (iii) follows from (i) 

and the facts that n(a) b w(A )ν =  and n

n 1
w(A )

2

−= .  

 
CONCLUSION 

 
 If A is a C*-algebra with unit and a∈A is a 
nilpotent element with nilpotency n and ν(a) = (n-
1)ν0(a), then: 
 

V(a) = bW(An) 
 
where, b is a scalar. Also ∂V(a) does not contain any 
arc of circle.  
 So, we can completely determine the numerical 
range of such elements.  
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