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Abstract: Problem statement: This study deals with the study of a Signorini Problem (SP) of 
unilateral contact between two a linear or non linear elastic bodies. Approach: We present two 
variational formulations noted P1, P2, of the considered problem, where P1 depends on the 
displacement field and P2 depends on the stress field. In the linear case, under assumptions, then the 
considered problem was equivalent to a mixed variational formulation problem, where the unknowns 
are the displacement field and the normal constraint stress on the contact area. Results: Problems P1 
and P2 were formally equivalent to the Signorini Problem (SP) and using Lions-Stampachia Theorem, 
we shown the existence and uniqueness result. Conclusion: The Signorini problem (PS) has a unique 
variational solution.  
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INTRODUCTION 
 
 The modeling of contact problems between two 
deformable bodies depends mainly the mechanical 
properties of materials considered as boundary 
conditions of contact. Among the different types of 
problems considered include problems of bilateral or 
unilateral contact without friction for elastic body. The 
accumulation of experimental data shows the 
limitations of the classical laws of friction both in terms 
of mathematical mechanics. Variational formulations 
and results of existence and uniqueness have been 
obtained in (Drabla, 1999) and in (Djabi et al., 1998) in 
the case of a frictionless contact problem between an 
elastic body and a rigid foundation and (Hild and 
Laborde, 2002; Amassad and Sofonea, 1998), for a 
frictionless contact problem between two deformable 
bodies using the quadratic finite elements method. Our 
aim in this study is to study the existence and uniqueness 
of a variational solution for a frictionless contact between 
two elastic bodies based on a mixed formulation, this 
problem known as problem of Signiorin. 
 
Problem statement: Let us consider two elastic bodies, 
occupying two bounded domains Ω1, Ω2 of IRN, N = 2, 
3. The boundaryΓ = ∂Ωℓ ℓ is assumed piecewise 

continuous and composed of three complementary parts 

1 2Γ ,Γℓ ℓ  and 3Γℓ . The bodyΩℓ is fixed on the set 1Γℓ of 

positive measure. The 2Γℓ  boundary is submitted to a 

density of forces noted gℓ and the body forces are 

denoted by fℓ . In the initial configuration, both bodies 
have a common contact portion1 2

3 3 3Γ = Γ = Γ . The 

normal unit outward vector on Ωl is denoted ηl. 
Mathematical relations in a mechanical problem can be 
divided into two kinds: one of them consists of material-
independent relations and the other material-dependent 
relations, or constitutive laws, the material-independent 
relations include the strain-displacement relation, the 
equation of equilibrium and boundary conditions. The 
equation of equilibrium takes the form Eq. 1: 
 

divσ + f = 0  in  Ωℓ ℓ ℓ  )1(  
  
where, σℓ  represents the stress tensor field. The 
specified boundary conditions take the form Eq. 2 and 3: 
 

1u 0  on  = Γℓ ℓ  (2) 
 

2g   on  σ η = Γℓ ℓ ℓ ℓ   (3) 
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 The elastic constitutive law of the material is 
assumed to be Eq. 4: 
  

F ( (u ))  in  σ = ε Ωℓ ℓ ℓ ℓ  (4) 
 
 In which Fℓ  is the given linear or nonlinear 
function. The conditions on the boundary part Γ3 

constrained by frictionless unilateral contact conditions 
incorporate the Signorini conditions Eq. 5: 
 

 

1 2

3

1 2

(a)

(b) [u ] 0,  0, [u ] 0        on  

(c) 0

η η η

η η η η

τ τ

 σ = σ ≡ σ
 ≤ σ ≤ σ = Γ
 σ = σ =

  (5) 

 
 In the study of the problem (1)-(5), we assume that 
the elasticity operator: 
  

N NF : S S→ℓ  

 
Satisfies Eq. 6-8: 
 

2

1 2 1 2 1 2

1 2 1 2

(a) m > 0: (F (ε ) - F (ε ))(ε - ε )  m ε - ε

(b) L > 0: F (ε ) - F (ε ) L ε - ε

(c) F (0) = 0

 ∃ ≥

 ∃ ≤



ℓ ℓ

ℓ ℓ

ℓ

  (6) 

  
 2 Nf IL ( )∈ Ωℓ ℓ   (7) 
  
 2 N

2g IL ( )∈ Γℓ ℓ   (8) 

 
 Using the notation 2 N NIL ( ) ×= Ωℓ ℓ

H  and from (6) we 

obtain that for all τ ∈ℓ ℓ
H , with the function 

x F (x )ℓ ℓ ℓ
֏ belongs to ℓ

H  and hence we may consider 

Fℓ as an operator defined on ℓH with the range on ℓ
H . 

Moreover, F : →ℓ ℓ ℓ
H H  is a strictly monotone, Lipschitz 

and continuous operator. Therefore Fℓ  is invertible and 

his inverse 
1

(F )
−

ℓ is also, a strictly monotone, Lipschitz 
and continuous operator.  
 
Variational formulations: Let us introduce the 
following spaces Eq. 9: 
  

{ }1 N
1

1 2

V( ) v H ( ) ;  v 0  on  ,   1,2

V V( ) V( )

 Ω = ∈ Ω = Γ =


= Ω × Ω

ℓ ℓ ℓ ℓ ℓ
ℓ

 (9)  

 
 Since 1meas( ) 0,Γ >ℓ  from Korn's inequality it 

follows Eq. 10: 

 ( ) ( )H Ω
ε ν m ν ,   v V(Ω )≥ ∀ ∈

ℓ ℓℓ

ℓ ℓ ℓ ℓ ℓ

H
  (10) 

 
 Here and below mℓ  denotes a strictly positive 
generic constant which may depend on 1, ,FΩ Γℓ ℓ ℓ . 

 On V we consider the inner product given by Eq. 11: 
 

( ) ( ) ( ) ( )1 2

1 1 2 2v,w = ε ν ,ε w + ε ν ,ε w
H H

  (11) 

 
and let 

V
. be the associated norm. It follows from (10) 

that 
1

.
H

and 
V

.  are equivalent norms.  

 Therefore V is a real Hilbert space. Thus applying 
the Riesz representation theorem to claim that there 
exists a unique member ϕ = (ϕ1, ϕ2)∈V such that Eq. 12: 
 

 
2

2V( )   
,v f .v d g .v d , v V( ).

Ω Ω Γ
φ = Ω + η Γ ∀ ∈ Ω∫ ∫ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ

 (12) 

  
 Finally, we denote in the sequel by Uad the set of 
admissible displacement fields defined by Eq. 13: 
  

{ }3

1 2
ad η ΓU = v = (v ,v ) V, [v ] 0∈ ≤ .  (13) 

 
 Also, let ∑ad denotes the set of admissible stress 
fields given by Eq.14: 
 

( )

( )
1 2

2
ad

ad
1

τ τ ,τ ;

τ , v ,v , v U
=

 = ∈
 Σ =  

ε ≥ φ ∀ ∈ 
 
∑ ℓ

ℓ ℓ

ℓ
H

H

 (14) 

 
 Using (1)-(5) we have the following result. 
 
Lemma 1: If (u , )σ  are sufficiently regular functions 
satisfying (1)-(5), then Eq. 15-17:  

 

ad adu U , σ Σ∈ ∈ ,  (15) 

  

( ) ( )
2

ad
H

1

σ ,ε u ε u ,v u ,  v U
=

− ≥ φ − ∀ ∈∑ ℓ

ℓ ℓ ℓ

ℓ

,  (16) 

  

 ( )
2

ad
H

1

, u 0,  τ Σ
=

τ − σ ε ≥ ∀ ∈∑ ℓ

ℓ ℓ ℓ

ℓ

.  (17) 

 
Proof of lemma 1: The regularity u∈Uad follows from 
(2) and (5). Using Green’s formula in (1), (2), (3), (12), 
we have (16). 
 Choosing now v = 2u and v = 0 in (16), we deduce 
Eq. 18: 
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 ( )
2

H1

 ,ε u ,u
=

σ = ϕ∑
ℓ

ℓ ℓ

ℓ

  (18)  

 
Fom (16), it finds:  
 

( )
2

H1

 ,ε v ,v
=

σ ≥ ϕ∑
ℓ

ℓ ℓ

ℓ

 

 
 Thus using (14) we deduce that σ∈∑ad. Using now 
(14) and (18) we find (17). 
 The Lemma1 and (4) permit us to consider the 
following two variational problems.  
 
Problem P1: Find a displacement fields 1 2u (u ,u )= , 

where Nu :Ω →ℓ ℓ
ℝ  such that Eq. 19: 

 

( )( ) ( ) ( )
ad

2

ad
1

u U ,

F ε u ,ε ν ε u ,v u , v U .
=

∈

 − ≥ φ − ∀ ∈

∑

ℓ

ℓ ℓ ℓ ℓ

ℓ
H

  (19)  

 
Problem P2: Find a stress fields 1 2( , )σ = σ σ , where 

N:σ Ω →ℓ ℓ
S  such that Eq. 20: 

 

( ) ( )
ad

2 1

ad
1

,  

, F 0,  .
−

=

σ∈Σ

 τ − σ σ ≥ ∀τ ∈Σ

∑

ℓ

ℓ ℓ ℓ ℓ ℓ

ℓ H

 (20)  

 
 We note that problems P1 and P2 are formally 
equivalent to the mechanical problem (1)-(5).  
  Let 1 2u (u ,u )=  be a solution of the variational 
problem P1 and 1 2( , )σ = σ σ  is defined by (4), then, 
using the arguments of (Hild and Laborde, 2002), it 
follows that(u , )σ is a solution of the variational 
problem (1)-(5). Similarly, let 1 2( , )σ = σ σ be a 

solution of the variational problem P2 and 1 2u (u ,u )= is 

given by F ( (u ))σ = εℓ ℓ ℓ , then (u , )σ  is a solution of the 
variational problem (1)-(5). 
 
Mixed variational formulation: In the linear case, we 
establish a new variational formulation of the problem 
(1)-(5), where the unknowns are the displacements field:  

1 2u = (u ,u ) and the function λ which is the normal 
component of the stress tensor field on Γ3 . The linear 
elastic constitutive law is given by Hooke's law for 
homogeneous and isotropy materials: 
  

A (u ) tr( (u ))id 2 (u )σ = ε = λ ε + µεℓ ℓ ℓ ℓ ℓ ℓɶ ɶ  

where, jipqA = (A ),  = 1,2ℓ
ℓ  denotes the fourth-order 

isotropy material for linear elasticity satisfying the 
usual symmetry and ellipticity conditions in elasticity: 
  

ijpq jiqp pqij

2 N N
ijpq ij pq ij

A A A ,

A m , IR .×

 = =


ε ε ≥ ε ∀ε ∈

ℓ ℓ ℓ

ℓ

 

 
 The set of admissible normal stresses on Γ3 can be 
defined as: 
  

( )

( )

1
2

1 1
32 2

1
2

3 , ,Γ

3 3

µ H ;  µ,ψ 0,  
M

ψ H , and  ψ 0  p.p  on

−
−

 ∈ Γ ≥ =  
 ∀ ∈ Γ ≥ Γ 

 

 
 For any u,v V∈  and for any Mµ ∈ , we define: 
 

( ) ( ) ( )

( ) ( )

( )

3

2

2

1

1 1 2 2
3

2

1

a u,v A ε u ,ε v d ,   

b u,µ µ u .η u .η d ,              

L v f .v d g .v η d .

= Ω

Γ

= Ω Γ



 = Ω

 = + Γ



 
 = Ω + Γ  

  

∑ ∫

∫

∑ ∫ ∫

ℓ

ℓ

ℓ ℓ

ℓ ℓ ℓ ℓ

ℓ

ℓ ℓ ℓ ℓ ℓ ℓ ℓ

ℓ

H

 

 
 Using (18) and Green's formula, we have the 
following result:  
 
Lemma 2: For A (u ),  =1,2σ = εℓ ℓ ℓ

ℓ , if 1 2u (u ,u )=  is a 
solution to the problem (1)-(5), then Eq. 21-24: 
 

1 2
3( )  on  η ησ = σ ≡ −λ Γ  (21) 

  
λ M∈   (22) 
 

( ) ( ) ( )a u,v b v,λ L v ,    v V+ = ∀ ∈   (23) 

 
( )b v,µ λ 0,   µ M− ≤ ∀ ∈   (24) 

 
Proof of lemma 2: The appurtenance of u  to H1 allows 

easily deducing that
1
2

3H ( )−
ησ ∈ Γ . On another hand, 

taking into consideration the fact that σ η ≤0 on Γ3, we 
deduce that λ 0≥  on Γ3, where λ M∈ .  
 Since A (u ),  =1,2σ = εℓ ℓ ℓ

ℓ , we have: 

  

( ) ( ) ( )

( ) [ ]
1

2
3

1 1 1
η

2 2 2
η 3

a u, v b v, σ σ ,ε v d

σ ,ε v d σ v.η d

Ω

ΓΩ

+ − = Ω

+ Ω − Γ

∫

∫ ∫
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 Using Green’s formula, we obtain: 

  

( ) ( )
1 1
2 2

3

η

2 2

( ) ( )
1 1

3

a u,v b v, σ

f v d ,v

v. d

−
Η Γ ×Η Γ

= =Ω

η
Γ

+ − =

Ω + σ η η

− σ η Γ  

∑ ∑∫

∫

ℓ ℓ

ℓ

ℓ ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ

 

 
 Remarking that ση [v.η] = 0 on Γ3 and 1v = 0 on Γℓ ℓ  , 

we have: 
 

( ) ( ) ( )

( )
1 1

2

2 1
2

1 1 1 1 1 1 1
η η 2

2 2 2 2 2 2 2
η 2

a u,v b v, σ f v d σ v .η d

f v d σ v .η d

Ω Γ

Ω Γ

+ − = Ω + Γ

+ Ω + Γ

∫ ∫

∫ ∫
 

 
 Using 2σ η = g  on Γ ;  = 1,2ℓ ℓ ℓ ℓ

ℓ , we find: 

  

( ) ( ) ( )

( )
1 1

2

2 2
2

1 1 1 1 1 1 1
η 2

2 2 2 2 2 2 2
2

a u,v b v, σ f v d g v .η d

f v d g v .η d

Ω Γ

Ω Γ

+ − = Ω + Γ

+ Ω + Γ

∫ ∫

∫ ∫
 

 
 Then equality (23). 
 It now follows from ση [v.η] = 0 on Γ3, [u.η] ≤0 
and µ∈M, then (24).  
 This Lemma permit us to obtain the following 
variation problem.  
 
Problem Pm: Find u∈V and λ M∈ such that Eq. 25-26: 
 
 ( ) ( ) ( )a u,v b v,λ L v ,  v V+ = ∀ ∈   (25) 
 
 ( )b v,µ λ 0, µ M− ≤ ∀ ∈   (26) 
  
Remark 1: According to the precedent lemma, it is 
easy to remark that Pm is a mixed formulation of the 
considered problem. If u is a solution of problem P1, 
then (u,ση), where A (u ),  =1,2σ = εℓ ℓ ℓ

ℓ , is a solution 
of problem Pm. 
 
Remark 2: Another classical formulation of problem 
P1 is a given by, (Hild and Laborde, 2002), Find u such 
that Eq. 27: 
  
 ad adu U ,   a(u, v u) L(v u),  v U∈ − ≥ − ∀ ∈  (27)  
 
 It is easy to verify that the problem (27) has a 
unique solution, via the Stampachia theorem. 

Existence and uniqueness:  
Theorem 1: Under the hypotheses (6)-(8), there exists 
a unique solution u∈V of P1. 
 
Proof of theorem 1: Let ω = (ω1, ω2) ∈V, it is easy to 
prove that the application:  

 

( )( ) ( ) ( )( ) ( )
1 2

1 1 1 2 2 2   a( , v) = A ε ω , ε v  + A ε ω , ε vω
H H

 

 
 Is a continuous linear form on V (for ω fixe), 
consequently Riesz-Frechet theorem permit us to define 
the operator A: V→V, such that: 

  

( )( ) ( )
2

1

  Aω, v A , v , ω, v V
=

= ε ω ε ∀ ∈∑
ℓ

ℓ ℓ ℓ

ℓ H

 

 
 Using (6) and Korn inequality, we deduce that the 
operator A is a strictly monotone and Lipschitz on V. 
Also Uad is a closed, convex and nonempty subset of V. 
 According to the Lions-Stampachia theorem, we 
obtain the existence and uniqueness of the element u∈V 
such that Eq. 20-29: 
  

ad adu U ,   Au,v u ,v u , v U∈ − ≥ ϕ − ∀ ∈  

 
Then: 
  

( )( ) ( ) ( )
2

ad
1

ad

u U ,  A u ,  v u

, v u , v U
=

∈ ε ε − ε

≥ ϕ − ∀ ∈

∑
ℓ

ℓ ℓ ℓ ℓ

ℓ H  

 
Theorem 2: Under the hypotheses (6)-(8), there exists 
a unique solution σ∈H1 of P2. 
 The proof of Theorem 1 and Theorem 2 are carried 
out in several steps, based on Lions-Stampachia 
theorem arguments similar to those used in (Lions and 
Magenes, 1968). 
 
Lemma 3: Let u be the solution of the problem P1 

obtained in theorem1 and let σ be the solution of the 
problem P2 obtained in Theorem 2, then 

F ( (u ))σ = εℓ ℓ ℓ . 
 
Theorem 3: Under the hypotheses (6)-(8), let u∈V and 
let σ∈H1, then we have: 
 
• If u is a solution of P1 obtained in theorem 1 and σ 

a solution of P2 obtained in theorem 2, then 
F ( (u )); 1,2σ = ε =ℓ ℓ ℓ

ℓ  
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• If u is a solution of P1 obtained in theorem1 and σ 
= (σ1, σ2) with F ( (u )); 1,2σ = ε =ℓ ℓ ℓ

ℓ , then σ is a 
solution of P2 

• If σ is a solution of P2 obtained in theorem2, then 
there exists a unique solution u = (u1, u2) ∈ V of P1 

such that F ( (u )); 1,2σ = ε =ℓ ℓ ℓ
ℓ  

 
Proof of theorem 3: The proof of Theorem 3, is a result 
of the lemma 2, theorem 1, theorem 2 and lemma 3. 

 
Theorem 4: Under the hypotheses (6)-(8), there exists 
a unique solution (u,λ)∈V×M of Pm. 
 
Proof of theorem 4: Let u∈V be the solution of P1 
obtained in Theorem1and led σ = (σ1, σ2) be the 

functions given by F ( (u )); 1,2σ = ε =ℓ ℓ ℓ
ℓ , according to 

lemma 2, we have 1 2 Mη ησ = σ ∈  and (u,ση) is a solution 

of Pm. The uniqueness is easly obtained. Let (u1, λ1) and 
(u2, λ2) denote two solutions of Pm.  
 
Then: 
 

( ) ( ) ( ) ( ) ( )1 1 2 2a u ,v b v,λ L v a u ,v b v,λ ,  v V+ = = + ∀ ∈ . 

 
 By subtracting, we have Eq. 28: 
  
 ( ) ( )1 2 1 2a u - u ,v + b v,λ - λ = 0   (28) 

 
 Putting v = u1-u2∈V in (27), we get Eq. 29: 
 

( ) ( )1 2 1 2 1 2 1 2a u u ,u u b u u ,λ λ 0− − + − − =  (29) 
 
and since a(.,.) is positive, using (26) we conclude:  
 

( ) ( )
( ) ( )( )

1 2 1 2 1 2 1 2

1 2 1 2 1 2

0 a u - u ,u - u = -b u - u ,λ - λ =

b u ,λ - λ + b u ,λ - λ 0

≤

≤
 

 
Consequently:  
 

( ) ( )1 2 1 2 1 2 1 2a u - u ,u - u = b u - u ,λ - λ = 0  
 
 Which implies that u1= u2 and from (28), we have:  
 

( )1 2b v,λ λ 0  :   v V− = ∀ ∈ . 
 
 From where, it results λ1= λ2. 
 
Theorem 5: For A (u ); 1,2σ = ε =ℓ ℓ ℓ

ℓ , let u∈V and 
λ∈M, the following hypotheses are equivalent: 

• u is a solution of P1 with λ= -ση 
• (u, λ) is a solution of Pm 

 
Proof of theorem 5: The implication (i) ⇒ (ii) is 
obvious using the Lemma 2.  
 Concerning the inverse implication (ii) ⇒ (i). Let 

1 2u = (u ,u )ɶ ɶ ɶ
 denotes the solution of P1 obtained in 

Theorem 1 and let 1 2σ = (σ ,σ )ɶ ɶ ɶ  be the function given by: 

A (u ), 1,2σ = ε =ℓ ℓ ℓ
ɶ ɶ ℓ  

 
  According to Lemma 2 we have η(u,-σ )ɶ ɶ is a 

solution of Pm, which parmit us to conclude thatu = uɶ . 
From the fact that Pm has a unique solution, we 
conclude that u is a solution of P1, with λ = -ση. 
 

REFERENCES 
 
Amassad, A. and M. Sofonea, 1998. Analysis of a 

quasistatic viscoplastic problem involving tresca 
friction law. Discrete Contin. Dynam. Syst., 4: 55-
72.  

Djabi, S., M. Sofonea and B. Teniou, 1998. Analysis 
of some frictionless contact problems for elastic 
bodies. Ann. Polonici Math. 

Drabla, S, 1999. Variational analysis of some boundary 
value problems in elasticity and viscoplasticity. 
PhD Thesis, University of  Setif. 

Hild, P. and P. Labord, 2002. Quadratic finite element 
methods for unilateral contact problems. Applied 
Num. Math., 41: 401-421. DOI: 10.1016/S0168-
9274(01)00124-6 

Lions, J.L. and E. Magenes, 1968. Problèmes aux 
Limites non Homogènes et Applications. 1st Edn., 
Dunod, Paris, pp: 957.  

 


