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Abstract: Problem statement: In this study, we present the mathematical model of the transmission 
dynamics of fowl pox infection in poultry. Approach: It describes the interaction between the 
susceptible and the infected birds which results in a system of ordinary differential equation. 
Introducing the control which represents the effort in applying chemoprophylaxis control u1 and 
treatment control u2 in birds with fowl pox, the system becomes a system of ordinary differential 
equations with control. Results: Our optimal control problem involves that in which the number of 
birds with latent and active fowl pox infections and the cost of treatment controls u1 (t) and u2 (t) were 
minimized subject to the differential Eq. 5-8. This involves the number of birds with active and latent 
fowl pox respectively as well as the cost of applying chemoprophylaxis control u1 and treatment u2 in 
birds with fowl pox. Conclusion: Analysing the model using Pontryagin’s Maximum Principle and 
optimality conditions, optimal effort necessary to reduce the transmission rate of fowl pox in the 
poultry has been  determined. Hence, it is possible to reduce to reduce the rate of transmission. 
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INTRODUCTION 
 
 Fowl pox, pox, or avian pox is a relatively slow-
spreading viral disease characterized by skin lesions 
or plagues in the pharynx. It is prevalent among 
chickens, turkey, pigeons, canaries, worldwide. 
Morbidity is 10-95% and mortality usually 0-50%. 
Infection occurs through the skin abrasions and bites, 
or by the respiratory route. 
 The virus persists in the environment for months. 
The duration of the disease is about 14days on 
individual bird bases. The infected birds display some 
of the following symptoms: warty spreading eruption, 
scabs on comb and wattles caseous deposits in mouth 
throat and sometimes trachea, depression, poor growth 
and poor egg production. Because of its slow-spreading 
nature, it is possible to vaccinate to stop   an 
outbreak. Flocks and individuals still unaffected may 
be vaccinated usually with chicken strain by wing 
web vaccinating method. If there is evidence of 
secondary bacterial infection, broad-spectrum, 
antibiotics may be of some benefit. 
 Fowl pox or avian pox is transmitted by direct 
contact between infected and susceptible birds or by 
mosquitoes. Virus-containing scabs also can be slough 
from infected birds and serve as a source of infection. 

The virus can enter the blood stream through the eye, 
skin wound, or respiratory tracts. Mosquitoes become 
infected by feeding on birds with fowl pox in their 
blood stream. There is some evidence that the 
mosquitoes remain infected for life. Mosquitoes are the 
primary reservoir and spreaders of fowl pox on poultry 
ranges. Several species of mosquito can transmit fowl 
pox. Often mosquitoes winter-over in poultry houses, 
so outbreak can occur during winter and early spring.[ 
http://msucares.com/poultry/disease/disviral.htm] 
       Joshi (2002)  in this study on Optimal control of 
HIV immunology model, illustrate the idea of optimal 
control on two types of disease model, the first is an 
epidemic model with two incidence forms, a percentage 
of the population are vaccinated to achive control of the 
disease. The percentage as a function of time is the 
control. While the second one illustrate drug treatment 
strategy in an immunology model.  
 Hee-Dae (2005), presented a work on the 
Application of optimal control theory to mathematical 
model of biological systems. In his study, he 
formulated a dynamic mathematical model for a 
vector-transmitted disease. He derived the condition 
necessary for optimality using lagrangian, optimal 
prevention and treatment effort was derived by 
formulating and analysing an optimal control 
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problem. It was shown that there are control effort 
for treatment of host and prevention of host-vector 
contact with minimal cost and side effect. 
 Ollerton (1989) in his study on the application of 
optimal control theory to diabetes mellitus, uses 
mathematical model and optimal control theory as 
grid search techniques and discrete segment 
approaches to derive a closed-loop insulin infusion 
algorithm for the metabolic control of hospitalised, 
non-insulin producing subjects. 
 Nanda et al. (2007), in their stduy on the Optimal 
Control of treatment in mathematical model of chronic 
mylogenous leukaemia described the interaction 
between naive T cell and leukemic cancer cells in a 
hypothetical patient with a system of ordinary 
differential equation. Optimal control theory was used 
to determine the treatment regimen that minimizes the 
cancer cell count and the deleterious effects of the 
drugs for a given patient. Both analytical and numerical 
solution setting were considered in determining the 
optimal control regimen under various assumptions. 
 Hattaf et al. (2009) in their study on Optimal 
Control of tuberculosis with exogenous reinfection,  
applied optimal control theory in the resulting ordinary 
differential equation to minimize the infectious group 
by the reduction of the contact between infection and 
the exposed individuals. Pontryagins Maximum 
Principle was used to characterize the optimal control; 
optimality system was derived and solved numerically. 
 Adekunle (2009), in  their study on the application of 
optimal control to the epidemiology of tuberculosis 
transmission via the application of the Pontryagins 
Maximum  of optimal control theory incorporated controls 
to a simple SEIR disease model of tuberculosis 
transmission dynamics to reduce the latently infected and 
actively infected individual populations. 
       Afshari et al. (2009), in their study on 
Determination of Nonlinear Optimal Feedback Law for 
Satellite Injection Problem Using Neighbouring 
Optimal Control investigated an optimal trajectory 
design of a nonlinear satellite injection problem for 
transfer to a final target orbit by minimizing the time. 
According to their investigation, this design was an 
exact solution to the nonlinear two-point boundary 
value problem which determined optimal control 
history as well as optimal state trajectories in the open-
loop form. 
 In this study, we present the mathematical model 
for application of optimal control to the epidemiology 
fowl pox transmission dynamics in poultry. Our goal is 
to determine optimal effort needed for the prevention and 
treatment of fowl pox in order to reduce incidence rate in 
poultry. As suggested by (Adekunle, 2009; Reluga et al., 

2010) that when virulence decreases with age the optimal 
behaviours for individual will minimize disease 
transmission. Here we seek for optimal effort necessary 
to reduce transmission rate of fowl pox in poultry. 
 
Fowl pox transmission model with 
chemoprophylaxis: 
Assumptions: 
 
• Infected birds are treated 
• The exposed (latent) birds are treated 
• Recovered birds can join the susceptible population 

class 
• Individuals die only by infection 
 
 The fowl pox transmission model divides the 
population of birds into the following sub-groups that 
are Susceptible birds (S), those exposed to fowl pox 
virus (E), those Infected with fowl pox and are 
displaying symptoms (I) and those that have been 
removed or Recovered from infection (R).   
 Parameters/symbols: 
 
S = Susceptible population of birds at time t 
E = Exposed (Latent) population of birds at time t 
I = Infected population of birds at time t 
R = Removed population of birds at time t 
β = Recruitment new birds that enter into the 

susceptible population 
A = Transmission rate of infection 
δ = The rate at which the susceptible join the 

exposed pop ulation class 
µ = The rate at which the recovered birds join the 

susceptible population class 
 r1= The rate at which the exposed birds are taken 

care to avoid becoming infectious 
r2 = The rate at which the infected birds are treated  
K = Rate at which the exposed moves to infected 

population 
d1 = Death rate due to infection 
d2  = Death rate of the removed population 
R = The rate at which the susceptible birds are 

bought in the poultry 
δ = The rate at which susceptible birds are born into 

the poultry  
 
The model: 
Mode formulation: Our model describes the 
transmission dynamics of fowl pox infection based on 
two strains. Here we assume that birds which recover 
from one strain can become susceptible to the other 
strain. The susceptible population is increased by 
recruitment of birds either by birth (δ) or immigration 
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(r) and the recovered bird (µ) that become susceptible. 
This population is reduced by infection and by natural 
death or emigration (δ) Using the above 
symbols/parameters and assumptions, we develop the 
model as follows Eq. 1-4: 
 
ds

s aSI R S
dt

= β − + µ − γ  (1) 

  

1

dE
S kE r E

dt
= γ − −  (2) 

 

1 2

dI
aSI kE d I r I

dt
= + − −  (3) 

  

2 1 2

dR
r I r E ( d )R r

dt
= + − µ + β = + δ  (4) 

 
 Introducing the controls representing the treatment 
of the exposed and that of the infected, the model (1) - 
(4) becomes Eq. 5-8: 
 
dS

S aSI R S
dt

= β − + µ − γ  (5) 

  

1

dE
S kE E

dt
= γ − − µ  (6) 

 

1 2

dI
aSI kE d I u I

dt
= + − −  (7) 

 

2 1 2

dR
I E ( d )R r

dt
= µ + µ − µ + β = + δ  (8) 

  
where, S (0) , E(0) , I(0) , R(0) are given, the definition 
of the  model parameters are as given above. The 
control functions u1(t) and  u2(t) are bounded lebesgue 
integrable functions. The control u1(t) the time 
dependent effort on the treatment of latently infected 
birds practiced on the time interval [0 , tf] to reduce the 
number of birds that may become fully infected. While 
u2 (t) is the effort on actively infected birds to increase 
the number of recovered birds  
 

MATERIALS AND METHODS 
 
Optimal control: Our optimal control problem 
involves that in which the number of birds with latent 
and active fowl pox infections and the cost of treatment 
controls u1 (t) and u2 (t) are minimized subject to the 
differential Eq. 5-8. This involves the number of birds 
with active and latent fowl pox respectively as well as 
the cost of applying chemoprophylaxis control u1 and 
treatment u2 in birds with fowl pox.  

 The objective function is defined as Eq. 9: 
 

t 2 2
u1,u 2 1 2 1 1 2 20

J min f[K E K I C u C u ]dt= + + +∫   (9) 
 
where, tf is the final time and the co-efficient K1, K2, 
C1, C2 are balancing cost factors. 
 Our target is to minimize the objective functional 
defined in Eq. 9 by minimizing the number of the 
exposed and infectious classes. In order words, we seek 
to find the optimal pair  *

1u   and  *
2u    such that: 

 
J ( *

1u , *
2u )   =   min [ J (u1 ,  u2) / u1 ,   u2  ∈U] 

 
where,   U    = { u1(t), u2(t)/ u1(t), u2(t) are measurable,  
ai ≤ (u1(t) u2 (t)) ≤ bi , = 1,2,t∈[0,tf]}  is the control set. 
Here ai and bi are constant in [0, 1]. 
 
Theorem 1: There exist  optimal control  *2u   , *

2u    and 

solutions  S*, E*  I*  R* of the corresponding state 
system (5-8)  that minimizes  J (u1 ,  u2) over   U. 
Furthermore there exist λs, λE, λ1, λR satisfying: 
 

Sd H

dt S

λ ∂=
∂

 

Ed H

dt E

λ ∂=
∂

 

Id H

dt I

λ ∂=
∂

 

Rd H

dt R

λ ∂=
∂

 

 
 With transversality conditions: 
 

i f(t ) 0,i S,E, I,Rλ = =  

  Moreover, the optimal control is given by: 
 

* E R
1 1 1

1

E ( )
u min{b ,max[a , ]}

2C

= λ − λ=  

 
And:  
 

* I R
1 2 2

2

I( )
u min{b ,max[a , ]}

2C

λ − λ=  

 
Proof: Corollary 4.1 of (Fleming and Rishel, 1975) 
gives the existence of an optimal control pair due to the 
convexity of the integrand of J in (9) with respect to the 
control u1 and u2, a priori boundedness of the state 
solutions and the Lipschitz property of the state system 
with respect to the state variables. 
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 The differential equations governing the adjoint 
variables are obtained by differentiation of the 
Hamiltonian function, evaluated at the optimal 
control pair. 
 The adjoint system can be written as: 
  

S
S f

d H
, (t ) 0

dt S

λ ∂− = λ =
∂

 

E
E f

d H
, (t ) 0

dt E

λ ∂− = λ =
∂

 

I
I f

d H
, (t ) 0

dt I

λ ∂− = λ =
∂

 

R
R f

d H
, (t ) 0

dt R

λ ∂− = λ =
∂

 

 
Where: 
 

s E 1

H
( aI ) aI

S

∂ = λ β − − γ + λ γ + λ
∂

 

1 E 1 1 R 1

H
K (k ) k u

E

∂ = − λ + µ + λ + λ
∂

 

2 s I 2 R 2

H
k (aI) (aI u ) u

I

∂ = − λ + λ − + λ
∂

 

s R 2

H
( d )

S

∂ = λ µ − λ µ +
∂

 

 
Therefore: 
 

s
s E 1

d
(aI ) aI

dt

λ = λ + γ − β − λ γ − λ  

E
E 1 1 I R 1

d
(k ) k k

dt

λ = λ + µ − λ − λ µ  

I
S 2 I 2 R 2

d
(aI) k (aI u ) u

dt

λ = λ − − λ − − λ  

 
  We shall use the optimality conditions: 
 

i

H
0

u

∂ =
∂

 

 
where, i = 1, 2: 
 

1 2

H H
0 0

u u

∂ ∂= =
∂ ∂

 

 
And:    
 

*
2 2 1 R

1

H
2C u I I 0

u

∂ = − λ + λ =
∂

 

I
S 2 I 2 R 2

1

H d
(aI) k (aI u ) u

u dt

∂ λ= = λ − − λ − − λ
∂

 

 Hence, we obtain: 
 

* E R
1

1

E( )
u

2C

λ − λ=  

* 1 R
2

2

1( )
u

2C

λ − λ=  

 

 Then by standard control argument involving the 
bounds on the controls, we conclude for control   u1   
and   u2: 
   

* E R
1 1

1

E( )
u min{b , }

2C

λ − λ=  

 
 And: 
 

* 1 R
2 2

2

1( )
u min{b , }

2C

λ − λ=  

 
RESULTS 

 
Analysis of optimal control: Using Pontryagin’s 
Maximum principle, we formulate the Hamiltonian 
from the cost functional (9) and the governing dynamic 
Eq. 5-8 to obtain the optimality conditions Eq. 10: 
 

2 2
1 2 1 1 2 2

E 1 1 1 2

R 2 1 2

H k E K I C u C u

s( S aSI R S)

( S kE u E) (aSI kE d I I)

(u I u E ( d )R)

= + + +
+λ β − + µ − γ
+λ γ − − + λ + − − µ

+λ + − µ +

  (10) 

 
where, the λs, λE, λ1, λR are the associated adjoint for 
the epidemiological states S, E, I, R  The system of 
equation is found by taking the appropriate partial 
derivative of the Hamiltonian with respect to the 
associated state variable. Using the optimality condition 
and by standard control argument involving the bounds 
on the controls, we obtain the solution of the optimal 
control problem as control: 
   

* E R
1 1

1

E( )
u min{b , }

2C

λ − λ=  

 
And: 
 

* 1 R
2 2

2

1( )
u min{b , }

2C

λ − λ=  

 
DISCUSSION 

 
 Herd immunity describes a form of immunity that 
occurs when the vaccination of a significant portion of 
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a population (or herd) provides a measure of protection 
for individuals who have not developed immunity John 
and Samuel (2000). Herd immunity theory proposes 
that, in contagious diseases that are transmitted from 
individual to individual, chains of infection are likely to 
be disrupted when large numbers of a population are 
immune or less susceptible to the disease. The greater 
the proportion of individuals who are resistant, the 
smaller the probability that a susceptible individual will 
come into contact with an infectious individual. The effort 
of applying chemoprophylaxis control u1 and treatment 
control  u2 in birds with fowl pox is aimed toward 
reducing the number of birds that are infected with fowl 
pox. This will enable us achieve ‘herd immunity’ hence 
controling the rate of transmission of infection. 
 

CONCLUSION 
  
 In this study, we present the mathematical model of 
the transmission dynamics of fowl pox infection in 
poultry. It describes the interaction between the 
susceptible and the infected birds which results in a 
system of ordinary differential equation. Introducing 
the control which represents the effort in applying 
chemoprophylaxis control u1 and treatment control u2 in 
birds with fowl pox, the system becomes a system of 
ordinary differential equation with control. Analysing 
the model using Pontryagin’s Maximum Principle and 
optimality conditions, optimal effort necessary to 
reduce the transmission rate of fowl pox in the poultry 

has been determined to be  * E R
1

1

E( )
u

2C

λ − λ=            and  

* I R
2

2

I( )
u

2C

λ − λ=  this effort is partially aimed at achieving 

the herd immunity of the infection. 
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