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ABSTRACT 

The axisymetric laminar boundary layer unsteady flow along a continuously stretching cylinder immersed 
in a viscous and incompressible fluid is studied. The governing partial boundary layer equations in 
cylindrical form are first transformed into ordinary differential equations these equations are solved 
analytically using the optimal modified Homotopy Asymptotic method in order to get a closed form 
solution for the dimensionless functions f and è. The main object of this study is to investigate the effect of 
an unsteady motion of a stretching cylinder on the flow and heat transfer characteristics such as surface skin 
friction and surface heat flux. These characteristics have a direct effect on the quality of the final product of 
the fiber manufacturing and extrusion processes. Considerable effects were found for the dynamic 
parameter (γ), the curvature parameter (ρ) and the prandtl number (pr) on the velocity and the heat transfer.  
 
Keywords: Optimal Homotopy Asymptotic Method, Stretching Cylinder, Boundary Layer Flow, 

Unsteady Flow 

1. INTRODUCTION 

The boundary layer flow and heat transfer of 
stretching flat plates or cylinders are very important in 
fiber technology and extrusion processes. The production 
of sheeting material arises in a number of industrial 
manufacturing processes and includes both metal and 
polymer sheets. We have many applications such as the 
cooling of an infinite metallic plate in a cooling bath, the 
boundary layer along material handling conveyers, the 
aerodynamic extrusion of plastic sheets, the boundary 
layer along a liquid film in condensation processes, 
paper production, glass blowing, metal spinning, 
drawing plastic films and polymer extrusion. The quality 
of the final product depends on the rate of heat transfer at 
the stretching surface. Sakiadis (1961) was the first to 
consider the boundary layer flow on a moving 
continuous solid surface. Crane (1970) extended this 
concept to a stretching sheet with linearly varying 
surface speed and presented an exact analytical solution 
for the steady two-dimensional stretching of a surface in 
a quiescent fluid. Then many authors considered various 

aspects of this problem and obtained similarity solutions. 
A similarity solution is one in which the number of 
independent variables is reduced by at least one, usually 
by a coordinate transformation. The idea is analogous to 
dimensional analysis, but instead of parameters the 
coordinates themselves are collapsed into dimensionless 
groups that scale the velocities (White, 2006). The 
boundary layer flow due to a stretching surface in a 
quiescent viscous and incompressible fluid when the 
buoyancy forces are taken into consideration have been 
considered by Daskalakis (1993), Chen (1998; 2000), 
Lin and Chen (1998), Ali (2004), Partha et al. (2005) and 
Ishak et al. (2007) (Grubka and Bobba, 1985; 
Daskalakis, 1993). Lin and Shih (1980; 1981), 
considered the boundary layer and heat transfer along 
horizontally and vertically moving cylinders with 
constant velocity and found that the similarity solutions 
could not be obtained due to the curvature effect of the 
cylinder. The case of stretching sheet is studied by 
Grubka and Bobba (1985) and Ali (1994), this study is 
extended by Ishak and Nazar (2009), to the case of 
stretching cylinder. In this study we consider a 
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stretching cylinder in an unsteady flow and have been 
solved analytically. 

2. FORMULATION OF THE PROBLEM 

Consider an unsteady, laminar, incompressible and 
viscous flow on a continuous stretching cylinder as in 
figure (1).It is assumed that the stretching velocity 
Uw(x,t)= (a x)/(1-γt and the surface temperature Tw (x,t) 
= (b x)/(1-γt),where a, b and γ are constants. The x-axis 
and r-axis are taken as shown in Fig. 1. The conservation 
equations for this case are Equation (1 to 3): 
 

(ru) (rv) 0
r r

∂ ∂+ =
∂ ∂

 (1) 

 
u u u v u

u v r
t x r r r r

∂ ∂ ∂ ∂ ∂ + + =  ∂ ∂ ∂ ∂ ∂ 
 (2) 

 
T T T a T

u v r
t x r r r r

∂ ∂ ∂ ∂ ∂ + + =  ∂ ∂ ∂ ∂ ∂ 
 (3) 

 
Subjected to The boundary conditions Equation (4): 

 

wwu U (x),v 0,T T (x), at r R

u 0,T as r R

= = = =
→ → ∞ →

 (4) 

 
where, u and vare velocity components in the x and r 
directions, respectively, T is the fluid temperature and α 
is the thermal diffusivity. The continuity equation can be 
satisfied by introducing a stream function ψ, such 

that
1 1

u and v
r r r x

∂ψ ∂ψ= = −
∂ ∂

. The momentum and energy 

equations can be transformed into the corresponding 
ordinary differential equations by the following 

transformations (Mahmood and Merkin (1988), Ishak 
(2009)) Equation (5): 
 

2 2

w

r R U(x)
,

2R vx

T T
R U(x)vx f ( ), ( )

T T
∞

∞

−η = ψ =

−η θ η =
−

 (5) 

 
The transformed ordinary differential equations are 

Equation (6 and 7): 
 

2(1 2 )f 2 f ff f f f 0
2

η ′′′ ′′ ′′ ′ ′ ′′+ ηρ + ρ + − − γ + = 
 

 (6) 

( )1 2 2 Pr(f f ) Pr 0
2

η ′′ ′ ′ ′ ′+ ηρ θ + ρθ + θ − θ − γ θ + θ =  
  

 (7) 

 
where, (pr) = (ν/α) is the prandtl number 

Subjected to the boundary conditions Equation (8): 
 

( ) ( ) ( )f 0   0 ,  f ' 0   1 ,  0   1

f'( ) 0, ( ) 0

= = θ =
∞ → θ ∞ →

 (8) 

 
where, primes denotes differentiation with respect to η and 
ρ denotes the curvature parameter defined as Equation (9): 
 

2

v(1 t)

R

− γρ =
α

 (9) 

 
The physical quantities of interest are the skin friction 

coefficient Cf  and the local Nusselt number Nux, which 
are defined as Equation (10): 
 

w
f x2

w

w

xq
C ,Nu

U \ 2 k(T T )∞

τ= =
ρ −

 (10) 

 

 
 

Fig. 1. Physical problem 
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where, the surface shear stress τw and the surface heat 
flux qw are given by Equation (11): 

 

w r=R w r=R

u T
τ = µ( ) ,q = -k( )

r r

∂ ∂
∂ ∂

 (11) 

 
With µ and k being the dynamic viscosity and the 

thermal conductivity, respectively. Using the similarity 
variables (5) we get Equation (12): 

 

( )1\2 '' 1\ 2 '
f x x x

1
C Re f 0 ,N R

2
\u e (0)= = −θ  (12) 

 
where, Rex=Uw/v is the local Reynolds number. 

3. OPTIMAL HOMOTOPY ASYMPTOTIC 
METHOD (OHAM) 

Consider a differential Equation (13) in the form: 

 
L(u(t)) N(u(t)) g(t) 0,B(u) 0+ + = =  (13) 

 
where, L is a linear operator, t denotes an independent 
variable, u(t) is an unknown function, g(t) is a known 
function, N(u(t)) is a nonlinear operator and B is a 
boundary operator. By means of OHAM a family of 
equations is constructed Equation (14): 

 

( ) ( )
( ) ( ) ( )

(1 p) L F(t,p) g(t) H p

L F(t,p) g(t) N F(t,p) 0, B F(t,p) 0

−  +  − 

 + +  = = 
 (14) 

 
where, p∈[0,1] is an embedding parameter, H(p) is a 
nonzero auxiliary function for p ≠ 0 and H(0)=0, F(t,p) is 
an unknown function. Obviously, when p = 0 and p = 1, 
we have Equation (15): 

 
( ) ( ) ( ) ( )0F t,0 u t ,F t,1 u t= =   (15) 

 
Then, as p increases from 0 to 1, the solution F(t,p) 

varies from u0(t) to the solution u(t) , where u0(t) is 
obtained from (14) for p = 0 Equation (16): 

 

( )( ) ( ) ( )0 0L u t g t 0, B u 0+ = =  (16) 

The auxiliary function is chosen in the form 
Equation (17): 

 
( )H p p C1 p² C2= + +  (17) 

 
where, C1,C2,…… are constants which can be 
determined later. 

Expanding F(t,p) in a series with respect to p, we get 
Equation (18): 

 

( ) ( )i 0 i
k 1

k
kF t,p,C u t u (t,C )pi 1,2

≥

= + =∑  (18) 

 
Substituting (18) in (14), collecting the same powers 

of p and equating each coefficient of p to zero, we obtain 
a set of differential equations with boundary conditions. 
Solving differential equations with boundary conditions: 
 

0 1 1 2 2u (t),u (t,C ),u (t,C ) 

 
Is obtained. Generally the solution of (13) can be 

determined in the form Equation (19): 
 

( ) ( ) ( )0
m m

k 1 k iu u t u t,C== +∑ɶ  (19) 

 
Substituting (19) in (13) we get the following residual 

Equation (20): 
 

( ) ( )( ) ( ) ( )( )m m
i i iR t,C L u t,C g t N u t,C= + +ɶ ɶ  (20) 

 
If R(t,Ci) = 0 then u~(m) (t, Ci) is much closer to the 

exact solution to minimizing the occurred error for 
nonlinear problem, let Equation (21): 
 

( ) ( )b 2
1 2 m 1, 2 ma

J C ,C ,........,C R t,C C ,.........,c dt= ∫  (21) 

 
where, a and b are values depending on the given 
problem. The unknown constants Ci (i = 1,2………,m) 
can be determined from the conditions Equation (22): 
 

1 2

J J
... 0

c c

∂ ∂= = =
∂ ∂

 (22) 

 
With these known constants, the approximate 

solution (of order m) (19) is well determined. 
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4. SOLUTION USING OHAM 

Applying (14) into (8),(9) and (10) we get 
Equation (23): 
 

( ) ( ) ( )

( )[ ] ( )

( )

'' ' '''
1

'' '' '2 ' '' ''

''
2

' ' ' ' '

1 p f f H p [f 1 2

2 f ff f f f f f '] 0
2

1 p ' H (p)[ 1 2

2 pr f f pr ] 0
2

 − + − + ρη 

η+ ρ + − − γ − γ − − =

− θ + θ − θ + ρη +

η ρθ + θ − θ − γ θ + θ − θ − θ = 
 

 

 (23) 

 
where, primes denote differentiation with respect to η. 

Since the first two equations in (23) are identical, 
then we take f, θ, H1 and H2 as following Equation (24): 
 

( )
( )

2
0 1 2

2
0 1 2

2
1 1 2

2
2 1 2

f f pf p f

p p

H p pC p C

H p pC p C

= + +

θ = θ + θ + θ

= +

= +

 (24) 

 
Collecting same powers of p and solving the resulted 

set of differential equations we obtain: 
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5. RESULTS 

Computations have been carried out for various 
values of the dynamic parameter (γ), the curvature 
parameter (ρ) and the Prandtl number (pr). The Results 
for the skin friction f “(0) are computed for various 
values of the dynamic parameter (γ) and the curvature 
parameter (ρ) in Table 1 and the results for the 
temperature surface gradient θ‘ (0) are computed for 
various values of the dynamic parameter (γ), Prandtl 
number (Pr) and the curvature parameter (ρ) in Table 2 
and 3. Moreover, the variation of velocity f ‘(0) with the 
dimensionless variable (η) for different values of the 
dynamic parameter (γ) and the curvature parameter (ρ) is 
shown in Fig. 2-4. The variation of temperature θ (η) 
with the dimensionless variable (η) for different values 
of the dynamic parameter (γ) the prandtl number (Pr) and 
the curvature parameter (ρ) is shown in Fig. 5-8. 

6. DISCUSSION 

This study presents the effect of unsteady motion of a 
stretching cylinder on the flow and heat transfer 
characteristics such as surface skin friction and heat flux. 
These characteristics have a direct effect on the quality 
of the final product of the fiber manufacturing and 
extrusion processes. 

Figure 2-4 show the velocity of the boundary layer 
over the cylinder with the variation of dynamic 
parameter γ and curvature parameter ρ. One can observe 
that the increasing of the dynamic parameter increase the 
velocity of the boundary layer and the increasing of 
curvature parameter increase the velocity to a certain 
value then have a reverse effect before decaying to zero.
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Fig. 2. Variation of the velocity f '(η) with the dimensionless variable (η)  for a various values of ρ = 0,0.5,1 when γ = 0 
 

 
 

Fig. 3. Variation of the velocity f ' (η) with the dimensionless variable (η) for a various values of   ρ = 0,0.5,1 when γ = 0.5 
 

 
 

Fig. 4. Variation of the velocity f '(η) with the dimensionless variable (η) for a various values of ρ = 0,0.5,1 when γ = 1 
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Fig. 5. Variation of temperature θ (η) with the dimensionless variable (η) at  γ = 0, pr = 0.7, ρ = 0,0.5,1 
 

 
 

Fig. 6. Variation of temperature θ (η) with the dimensionless variable (η) at γ = 0.1, pr = 0.7, ρ = 0,0.5,1 
 

 
 

Fig. 7. Variation of temperature θ (η) with the dimensionless variable (η) at γ = 0.2, pr = 0.7, ρ = 0,0.5,1 
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Fig. 8. Variation of temperature θ (η) with the dimensionless variable (η) at γ = 0, ρ = 1, pr = 0.7,1,3 
 
Table 1. Variation of f “(0) for a various values of (ρ) at 

various values of (γ) 
ρ γ = 0 γ = 0.5 γ = 1 
0.0 -1.00000 -1.17232 -1.32093 
0.5 -1.24337 -1.38098 -1.49819 
1.0 -1.37109 -1.47010 -1.55552 
1.5 -1.40151 -1.47251 -1.73128 
2.0 -1.57544 -1.66321 -1.74647 
2.5 -1.59145 -1.66296 -1.73169 
3.0 -1.58635 -1.64545 -1.70288 
3.5 -1.57082 -1.62046 -1.66911 
4.0 -1.55085 -1.59316 -1.63494 
4.5 -1.52957 -1.56596 -1.60247 
5.0 -1.50860 -1.54062 -1.57254 
 
Table 2. Variation of -θ’ (0) for a various values of ρ, Pr at (γ = 0) 
γ Pr ρ -θ’ (0) 
0 0.7 0.0 0.821030 
0 0.7 0.5 1.144430 
0 0.7 1.0 1.302190 
0 0.7 1.5 1.355360 
0 1.0 2.0 1.551810 
0 1.0 0.0 1.000000 
0 1.0 0.5 1.251980 
0 1.0 1.0 1.379360 
0 1.0 1.5 1.404660 
0 1.0 2.0 1.613150 
 
On the other hand, the effect of these parameters on the 
boundary layer temperature is shown in Fig. 5-7. By 
observing in these figures, on can observe that the 
increasing of both parameters increase the temperature of 
the boundary layer. Figure 8 shows the heat profile for 
various values of the prandtl number (pr), it is clear that 
the heat increase as the prandtl decreases. Finally Fig. 2-
8 show the satisfaction of initial boundary conditions 
which support the validity of the solution. 

Table 3. Variation of -θ’ (0) for a various values of ρ, Pr at 
(γ = 0.1) 

γ Pr ρ -θ’ (0) 
0.1 0.7 0.0 0.846139 
0.1 0.7 0.5 1.164680 
0.1 0.7 1.0 1.317460 
0.1 0.7 1.5 1.365960 
0.1 0.7 2.0 1.537970 
0.1 1.0 0.0 1.045480 
0.1 1.0 0.5 1.281580 
0.1 1.0 1.0 1.400240 
0.1 1.0 1.5 1.419240 
0.1 1.0 2.0 1.592250 
 

Moreover, Table 1 shows that the skin friction 
coefficient f “(0) for all values of ρ and γ is negative 
which means the surface exerts a drag force on the fluid. 
Since Equation (6) and (7) are un coupled, then the Prandtl 
number does not affect on f “(0). The absolute values of f 
“(0) for all non zero values of γ and ρ are greater than the 
values of f “(0) when ρ  = 0, which means the skin friction 
coefficient for the cylinder is greater than the plate. Also it 
is noticed that the skin friction f “(0) increases as the 
curvature parameter (ρ) increases for all values of the 
dynamic parameter (γ) and then the skin friction decreases 
as the curvature parameter (ρ) increases for all values of 
the dynamic parameter (γ). Table 2 and 3 show the 
surface heat transfer rate-θ’(0) increases as the curvature 
parameter (ρ) increases which means also that the heat 
transfer rate at the surface for cylinder is greater than the 
heat transfer rate at the surface for the plate.  

7. CONCLUSION 

Optimal Homotopy Analysis Method has been applied 
to study the effects of the dynamic parameter (γ), the 
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curvature parameter (ρ) and the prandtl number (pr) on the 
velocity and the heat transfer for a moving cylinder through 
the boundary layer in case of an unsteady flow.  

It is found: 
 
• Closed form solutions for (f) and (θ) are obtained 
• It is found that there are considerable effects for 

these parameters on the velocity and temperature 
• The heat increases as the curvature parameter 

increases for various values of the dynamic 
parameter (γ) 

• 4. The effect of the preceded parameters of an 
unsteady flow on a moving cylinder is studied for 
the first time. It is found that the unsteady motion 
has a negative effect on the surface skin friction and 
a positive effect on surface heat flux 
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