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Abstract: The conventional two-step implicit Obrechkoff method is a 

discrete scheme that requires additional starting values when implemented 

for the numerical solution of first order initial value problems. This paper 

therefore presents a two-step implicit Obrechkoff-type block method which 

is self-starting for solving first order initial value problems, hence 

bypassing the rigour of developing and implementing new starting values 

for the method. Numerical examples are considered to show the new 

method performing better when com-pared with previously existing 

methods in literature. 
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Introduction 

In a bid to model real-life problems in areas of 

engineering, biological sciences, physical sciences, 

electronics and many others, initial value problems are 

most times encountered (Shokri and Shokri, 2013). A 

sample first order initial value problem takes the form 

given below: 
 

( ) ( ), ,y f x f y a α′ = =  (1) 

 

However in most cases, these initial value problems 

cannot be solved analytically and hence the need for 

numerical methods. These numerical methods are 

adopted to obtain an approximate solution to the initial 

value problem under consideration (James et al., 2013). 

Numerous numerical approaches have been proposed by 

scholars for the numerical approximation of initial value 

problems. These methods range from discrete schemes 

(Lambert, 1973; Butcher, 2008; Fatunla, 1988), to 

predictor-corrector methods (Kayode and Adeyeye, 

2011; Adesanya et al., 2008; Awoyemi and Idowu, 

2005) and then block methods (Omar and Kuboye, 2015; 

Hasni et al., 2013; Areo and Adeniyi, 2013). 

One distinct family of methods for the numerical 

approximation of (1) above is the Obrechkoff methods. 

This family of methods is regarded to be distinct due to 

the presence of higher derivatives in the method. The 

general form of the k-step Obrechkoff method with l 

derivatives of y is given by Lambert (1973) as: 

( )

0 1 0

; 1
k l k

i i

j n j ij n j k

j i j

y h yα β α+ +
= = =

= = +∑ ∑ ∑  (2) 

 

with the implicit k = 2; l = 2 Adams-type method 

given as: 

 

( )

( )

(1) (1) (1)

2 1 2 1

2
(2) (2) (2)

2 1

101 128 11
240

13 40 3
240

n n n n n

n n n

h
y y y y y

h
y y y

+ + + +

+ +

− = + +

+ − + +

 (3) 

 

However, adopting the method presented in Equation 3 

above requires the introduction of additional one-step 

numerical methods such as Euler or Trapezoidal method. 

This approach most times does not provide optimal 

accuracy and hence the need to adopt block methods. 

Block methods have been found to give better 

approximation as seen in the studies by (Jator and Li, 

2012; Omar, 2004; Adesanya et al., 2014) amongst many 

others. Hence, this work presents a self-starting block 

method that will bypass the rigour of developing 

separate starting values and also with expected better 

accuracy when compared to previously existing 

methods in literature. 

The second section of this article will show how the 

block method is derived and also discuss some basic 

properties of the block method while the next section 

will present some numerical examples and results. The 

fourth section of this article concludes this work. 
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The Two-Step Implicit Obrechkoff-Type 

Block Method 

Consider an implicit k = 2; l = 2 Nyström-type form 

(Lambert, 1973) of Equation 2 above which can be 

written as: 
 

2
( )

2

0 1 0

k l k
i i

n j n j ij n j

j i j

y y h yα β
−

+ + +
= = =

= +∑ ∑ ∑  (4) 

 

Expanding each term in (4) above using Taylor series 

gives the following expression: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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′ ′′ ′′′+ + + + +
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 ′′ ′′′  + +

   ′′ ′′ ′′′+ + + + + + +      + +    

 (5) 

 

Where: 
 

( ) ( )

( ) ( ) ( ) ( ) ( )
2 3

...
2! 3!

n a n n

n n n

y y x ah y x

ah ah
ahy x y x y x

+ = + =

′ ′′ ′′′+ + + +
 

 
Rewriting this expression in matrix form, where the 

coefficients of h
i 
y

(i)
(xn) are equated gives: 
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with values of (α0, β10, β11, β12, β20, β21 and β22) obtained 

to be: 
 

0 10 11 12 20 21 22( , , , , , and )

7 16 7 1 1
1, , , , ,0,

15 15 15 15 15

T

T

α β β β β β β

 = − 
 

 (6) 

 

Substituting the values of α0, β10, β11, β12, β20, β21 and 

β22 obtained in Equation 6 above back in Equation 4 

gives the two-step implicit method: 

( ) ( )
2

(1) (1) (1) (2) (2)

2 1 2 27 16 7
15 15

n n n n n n n

h h
y y y y y y y+ + + += + + + + −  (7) 

 

However, to implement the method derived in 

Equation 7, an additional method is needed. 

This method is obtained by considering the following 

two-step method given as: 

 
2

( )

1

0 1 0

k l k
i i

n j n j ij n j

j i j

y y h yα β
−

+ + +
= = =

= +∑ ∑ ∑  (8) 

 

Following the same steps adopted for deriving the 

implicit k = 2; l = 2 Nyström-type method given in 

Equation 7, the additional method is derived to give: 

 

( )

( )

(1) (1) (1)

1 1 2

2
(2) (2) (2)

1 2

101 128 11
240

13 40 3
240

n n n n n

n n n

h
y y y y y

h
y y y

+ + +

+ +

− = + +

+ − + +

  (9) 

 

Hence, Equation 7 and 9 present the desired block 

method for the solution of (1). 

However, to check for the order and the convergence 

of this block method, the following theorem and 

definitions are adopted. 

Theorem 2.1 (Fatunla, 1988) 

A linear multistep method is convergent iff it is 

consistent and zero-stable. 

Definition 2.1 (Jator and Li, 2012) 

A linear multistep method is consistent if it has 

order p≥1. 
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Definition 2.2 (Butcher, 2008) 

The linear operator associated with Equation 2 is 
defined as: 
 

( ) ( )

0 1 0

;
k l k

i i

j n j ij n j

j i j

L y x h y h yα β+ +
= = =

  = −  ∑ ∑ ∑  (10) 

 

Expanding yn+j and ( )i

n jy + using Taylor series to obtain: 

 

( ) ( ) ( ) ( )
( ) ( )

2

0 1 2

1 1

1

;

...

y n n n

q q q q

q n q n

L y x h C x C hy x C h y x

C h y x C h y x+ +
+

′ ′′  = + + 

+ + +
 

 

The method is said to be of order q if C0 = C1 =... = 

Cq = 0, Cq+1≠ = 0 and Cq+1 is the error constant. 

The order of the block method in Equations 7 and 9 is 

gotten from: 

[ ]
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[ ] [ ]

[ ] [ ]
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This implies that the block method has order p = 6 

with error constant
7

1 1
,

4725 9450

T

C
 =  
 

. 

Hence, the block method is consistent. 

Definition 2.3 (Jator and Li, 2012) 

A block method is said to be zero-stable if after 
normalizing and writing the block method in the 
following matrix difference equation form: 
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0 0 0 1 1 1

1 1

m mA Y A Y h B F B F h Cµ µ µ µ µ
−

+ + = + + + ∆   (11) 

 

where, Yµ+1 = (yn+1,...,yn+k)
T
, Yµ = (yn-(k-1),...,yn)

T
, Fµ+1 = 

(fn+1,...,fn+k)
T
, Fµ = (fn-(k-1),...,fn), ∆µ = (δn-(k-1),...,δn)

T
, µ = 0, 

1,..., the first characteristic polynomial takes the form: 

 

( ) ( )0 1detR RA Aρ = −  (12) 

 

and the roots of ρ(R) = 0 satisfy |Rj| ≤ 1, j = 1,..., k. 

Adopting this approach to the block methods to test 

for zero stability, the block method is normalized to give 

the first characteristic polynomial as: 

 

( ) ( ) ( )0 1det 1R RA A R Rρ = − = −  

 

The roots of ρ(R) = 0 satisfy |Rj| ≤ 1, j = 1, 2. Hence, 

the block is said to be zero-stable. 

Therefore, since the block method is consistent and 

zero-stable, it is likewise convergent. 

The region of absolute stability is determined by 

obtaining the stability polynomial from: 

 

2

0 0 0

det ,
k k k

i k i i k i i k i

i i i

A q z B q z C q z hλ− − −

= = =

 
+ + = 

 
∑ ∑ ∑  (13) 

 

Hence, the stability polynomial for the block method 

is gotten as: 

 

( )
3 4 3 3 3 2

4 3 2
3 3

13

90 10 30

90 10 30

q z q z q z
R q

qz qz qz
q z q qz q

= − +

− + − − − − −

 

 

Plotting the roots of the stability polynomial in 

boundary locus approach displays the region of absolute 

stability as shown Fig. 1. 

 

 

 
Fig. 1. Region of absolute stability for the two-step implicit Obrechkoff-Type block 
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Numerical Examples 

This section presents some numerical examples and 
corresponding results of the new two-Step Obrechkoff-
Type block method in comparison to the two-step 
method in Equation 3 and other existing methods in 
recent literature. 

The following notations are used in the tables of 
results: 
 
• 2SEM: Two-Step Implicit Obrechkoff method in 

Equation 3 
• 2SBM: New Two-Step Obrechkoff-Type Block 

Method 
• Error: |Computed Solution-Exact Solution| 

Tested Problem 3.1 (Mixture Model) 

In an oil refinery, a storage tank contains 2000 gal of 

gasoline that initially has 100 lb of an additive dissolved 

in it. In the preparation for winter weather, gasoline 

containing 2 lb of additive per gallon is pumped into the 

tank at a rate of 40 gal min
−1

. The well-mixed solution is 

pumped out at a rate of 45 gal min
−1

. Using a numerical 

integrator, how much of the additive is in the tank 0.1, 

0.5 and 1 min after the pumping process begins? 
Let y be the amount (in pounds) of additive in the tank 

at time t. We know that y = 100 when t = 0. Thus, the Initial 
Value Problem (IVP) modeling the mixture process is: 
 

( )
45

80 , (0) 100, 0.1
2000 5

y
y y h

t
′ = − = =

−
 

with theoretical solution: 

 

( ) ( )
( )

( )9

9

3900
2 2000 5 2000 5

2000
y t t t= − − −  

 

Source: Sunday et al. (2013). 

The numerical result is shown in Table 1a and 1b. 

Tested Problem 3.2 (SIR Model) 

The SIR model is an epidemiological model that 

computes the theoretical number of people infected with 

a contagious illness in a closed population over time. 

The name of this class of models derives from the fact 

that they involve coupled equations relating the number 

of susceptible people S(t), number of people infected I(t) 

and the number of people who have recovered R(t). This 

is a good and simple model for many infectious diseases 

including measles, mumps and rubella. It is given by the 

following three coupled equations: 
 

( )1
dS

S IS
dt

µ β= − −  (14) 

 

dI
I I IS

dt
µ γ β= − − +  (15) 

 

dR
R I

dt
µ γ= − +  (16) 

 
Table 1a. Comparison of computed results for solving tested problem 3.1 

  Computed solution  Computed solution   Computed solution  

T Exact solution (2SEM) (Sunday et al., 2013) (2SBM) 

0.1 107.7662301168309486 107.76623267141251405 107.76623011683095 107.76623011683094855 

0.2 115.5149409193028512 115.51494346840455900 115.51494091930284 115.51494091930285113 

0.3 123.2461630508845221 123.24616814117862409 123.24616305088452 123.24616305088452198 

0.4 130.9599271090910725 130.95993218819786255 130.95992710909107 130.95992710909107252 

0.5 138.6562636455413535 138.65627125250773431 138.65626364554134 138.65626364554135350 

0.6 146.3352031660153396 146.33521075612409816 146.33520316601533 146.33520316601533957 

0.7 153.9967761305114566 153.99678623520317743 153.99677613051145 153.99677613051145660 

0.8 161.6410129533038516 161.64102303550463010 161.64101295330383 161.64101295330385157 

0.9 169.2679440029996051 169.26795658656269977 169.26794400299960 169.26794400299960502 

1.0 176.8775996025958863 176.87761215807155490 176.87759960259586 176.87759960259588643 
 
Table 1b. Comparison of error for solving tested problem 3.1 

  Error 

T  Error (2SEM)  (Sunday et al., 2013)  Error (2SBM) 

0.1  2.554000E-06  2.700062E-13  5.000000E-17 
0.2  2.549000E-06  1.278977E-13  7.000000E-17 
0.3  5.090000E-06  1.421085E-13  1.200000E-16 
0.4  5.079000E-06  4.263256E-13  2.000000E-17 
0.5  7.607000E-06  1.136868E-13  0.000000E+00 
0.6  7.590000E-06  1.705303E-13  3.000000E-17 
0.7  1.010000E-05  8.526513E-14  0.000000E+00 
0.8  1.008000E-05  8.526513E-14  3.000000E-17 
0.9  1.258000E-05  8.526513E-14  8.000000E-17 

1.0  1.256000E-05  2.273737E-13  1.300000E-16 
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Table 2a. Comparison of computed results for solving tested problem 3.2 

  Computed solution Computed solution Computed solution 

T Exact solution (2SEM) (Sunday et al., 2013) (2SBM) 

0.1 0.52438528774964299546 0.52439024390243902439 0.5243852877552174 0.52438528774960472804 

0.2 0.54758129098202021342 0.54758601695347485034 0.5475812909859664 0.54758129098194536511 

0.3 0.56964601178747109638 0.56965499173623217471 0.5696460117956543 0.56964601178736527269 

0.4 0.59063462346100907066 0.59064317588795690893 0.5906346234953703 0.59063462346087361956 

0.5 0.61059960846429756588 0.61061180145439803533 0.6105996086572718 0.61059960846413739010 

0.6 0.62959088965914106696 0.62960249743238951881 0.6295908898470451 0.62959088965895722513 

0.7 0.64765595514064328282 0.64767066828934612765 0.6476559553183269 0.64765595514044005788 

0.8 0.66483997698218034963 0.66485398110580363236 0.6648399771546479 0.66483997698195855368 

0.9 0.68118592418911335343 0.68120256739332540639 0.6811859243738679 0.68118592418887672320 

1.0 0.69673467014368328820 0.69675050937978129410 0.6967346704442603 0.69673467014343242661 

 

Table 2b. Comparison of error for solving tested problem 3.2 

  Error 

T Error (2SEM) (Sunday et al., 2013) Error (2SBM) 

0.1 4.956150E-06 5.574430E-12 3.826740E-14 

0.2 4.725970E-06 3.946177E-12 7.484830E-14 

0.3 8.979940E-06 8.183232E-12 1.058240E-13 

0.4 8.552430E-06 3.436118E-11 1.354510E-13 

0.5 1.219300E-05 1.929473E-10 1.601760E-13 

0.6 1.160780E-05 1.879040E-10 1.838420E-13 

0.7 1.471310E-05 1.776835E-10 2.032250E-13 

0.8 1.400410E-05 1.724676E-10 2.217960E-13 

0.9 1.664320E-05 1.847545E-10 2.366300E-13 

1.0 1.583920E-05 3.005770E-10 2.508620E-13 

 

Table 3a. Comparison of computed results for solving tested problem 3.3 

  Computed solution Computed solution Computed solution 

X Exact solution (2SEM) (Badmus et al., 2015) (2SBM) 

0.1 0.90483741803595957316 0.90476190476190476190 0.904837417881202 0.90483741804503260091 

0.2 0.81873075307798185867 0.81866206899176567085 0.818730752939751 0.81873075309534995788 

0.3 0.74081822068171786607 0.74069425289731179744 0.740818220548903 0.74081822070486153894 

0.4 0.67032004603563930074 0.67020758320587849512 0.670320045918305 0.67032004606407889464 

0.5 0.60653065971263342360 0.60637828956722340034 0.606530659599218 0.60653065974444846468 

0.6 0.54881163609402643263 0.54867352672129543193 0.548811635994641 0.54881163612895298782 

0.7 0.49658530379140951470 0.49641890512879110507 0.496585303694640 0.49658530382799175192 

0.8 0.44932896411722159143 0.44917820458666454624 0.449328964033219 0.44932896415534885121 

0.9 0.40656965974059911188 0.40639932795936316088 0.406569659658082 0.40656965977917485733 

1.0 0.36787944117144232160 0.36772515831292540605 0.367879441100594 0.36787944121046227174 

 

Table 3b. Comparison of error for solving tested problem 3.3 

X Error (2SEM) Error (Badmus et al., 2015) Error (2SBM) 

0.1 7.5513E-05 1.5476E-10 9.0730E-12 

0.2 6.8684E-05 1.3823E-10 1.1768E-11 

0.3 1.2397E-04 1.3282E-10 2.3144E-11 

0.4 1.1246E-04 1.1733E-10 2.8440E-11 

0.5 1.5237E-04 1.1342E-10 3.1815E-11 

0.6 1.3811E-04 9.9385E-11 3.4927E-11 

0.7 1.6640E-04 9.6770E-11 3.6582E-11 

0.8 1.5076E-04 8.4003E-11 3.8127E-11 

0.9 1.7033E-04 8.2517E-11 3.8576E-11 

1.0 1.5428E-04 7.0848E-11 3.9020E-11 

 

where, µ, γ and β are positive parameters. Define y to 

be: 

 

y S I R= + +  

and adding Equations 13-15, we obtain the following 

evolution equation for y: 
 

( )1y yµ′ = −  
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Taking µ = 0.5 and attaching an initial condition y(0) 

= 0.5 (for a particular closed population), we obtain: 

 

( ) ( ) ( )0.5 1 , 0 0.5, 0.1y t y y h′ = = − = =  

 

with exact solution: 

 

( ) 0.51 0.5 ty t e−= −  

 

Source: Sunday et al. (2013). 

The numerical result is shown in Table 2a and 2b. 

Tested Problem 3.3 
 

( ), 0 1, 0.1y y y h′ = − = =  

 

( ) xy x e−=  

 

Source: Badmus et al. (2015). 

The numerical result is shown in Table 3a and 3b. 

Conclusion 

The work presents a two-step implicit Obrechkoff-

type block method which does not require the use of 

starting values in its implementation. The method was 

used to solve some numerical examples and the results 

were compared with the already existing two-step 

Obrechkoff method which required starting values for its 

implementation. The results gotten in the tables above 

showed the new block method having a far better 

accuracy when compared to the exact solution. Also, the 

block method was compared to some recent literature 

and the block method also showed better accuracy 

although this article only considered the solution of first 

order initial value problems with analytical solution 

because the aim of the article is to show how close the 

numerical solution obtained (by adopting the new block 

method) is to the exact solution. It is worth taking note 

of that the methods used in comparison are also methods 

with equal order (order 6). Hence, the basis of 

comparison is fair and this new method is proposed for 

adoption when solving first order initial value problems. 
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