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Abstract: In this study, we have considered the proportional hazard 

version of the inverse Weibull distribution. It has been shown that the 

density and hazard rate functions are unimodal and the mean residual life 

function is bathtub shaped. For the considered model, many functions of 

the parameters, such as the mean, variance, coefficient of variation and the 

critical points of the density, hazard rate and mean residual life functions 

cannot be given in explicit form. As a result, the variances of the 

maximum likelihood estimators of such functions cannot be given in 

explicit form to construct the usual asymptotic confidence interval. In 

this study, we use the percentile bootstrap estimation method to estimate 

such variances to construct the asymptotic confidence intervals. The 

asymptotic confidence intervals are compared with the bootstrap 

confidence intervals. Simulation studies are carried out to examine the 

performance of the maximum likelihood and bootstrap estimators. An 

example is provided to illustrate the procedure. 

 

Keywords: Inverse Weibull Distribution, Moments, Probability Density 

Function, Hazard Rate Function, Mean Residual Life Function, Bootstrap 
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1. Introduction 

The proportional hazard model has been widely used 

to analyze survival data. More specifically, let Y be a 

random variable with survival function S1(y) and hazard 

rate function λ1(y). Then a random variable X with 

survival function S(x) = [S1(x)]
α
, α >0, has proportional 

hazard rate function λ(x) = αλ1(x). The parameter α is 

called a fraility parameter, see for example Marshall and 

Olkin (2007). 

The inverse Weibull (IW) distribution with survival 

function given by 

 

( )1 1 , 0, , 0.yS y e y
βλ β λ

−−= − > >  (1) 

 

can be used to model a variety of failure characteristics 

such as infant mortality, useful life and wear out periods. 

For the structural properties of the IW distribution, we 

refer the reader Khan et al. (2008a; 2008b). The 

maximum likelihood and the least square estimations of 

the inverse Weibull distribution have been studied by 

Calabria and Pulcini (1990). 

In various situations, it is more appropriate to employ 

the proportional hazard model than the original model. 

In this study, we are interested in the Proportional hazard 

Inverse Weibull (PHIW) distribution with survival 

function given by 

 

( ) ( )1 , 0, , , 0.xS x e x
β α

λ α β λ
−−= − > >  (2) 

 

Note that when α = 1, the PHIW distribution 

reduces to the IW distribution. Also, when β = 1, the 

PHIW distribution reduces to the Generalized Inverted 

Exponential (GIE) distribution studied by 

Abouammoh and Alshingiti (2009). 

It may be noted that analogues to the proportional 

hazard model, the proportional reversed hazard rate 

model has also been studied in the literature. In this 

case, the power of the distribution function is 

considered instead of the power of the survival 

function. For more information on the proportional 

reversed hazard rate model, we refer the reader to 

Gupta and Gupta (2007). 



Suja M. Aboukhamseen et al. / Journal of Mathematics and Statistics 2016, 12 (2): 86.98 

DOI: 10.3844/jmssp.2016.86.98 

 

87 

The main purpose of this paper is to study the 

bootstrap estimation of the parameters of the PHIW 

distribution and the associated functions including the 

mean, variance, coefficient of variation, the probability 

density, the hazard rate and mean residual life functions. 

The paper is organized as follows: In section 2, we 

consider the shape of the density, hazard rate and mean 

residual life functions. The moments (including the 

negative moments) and the associated measures are 

given in section 3. In section 4, we study the maximum 

likelihood and bootstrap estimation of functions of the 

parameters. Simulation studies are carried out in section 

5 to investigate the performance of the estimators of 

various functions of the parameters. An application is 

provided in section 6. Finally, some conclusion and 

comments are given. 

2. Probability Density, Hazard Rate and 

Mean Residual Life Functions 

2.1 Probability Density Function 

The Probability Density Function (PDF) of the PHIW 

distribution, with survival function (2), is given by: 

 

( ) ( )
1

11 , 0, , , 0.x xf x e x e x
β βα

λ β λαβλ α β λ
− −−

− − − −= − > >  (3) 

 

The following theorem investigates the shape of the 

PDF of the PHIW distribution. 

Theorem 1 

The PDF f(x) is unimodal for all α, β, λ > 0, with f(0) 

= f(∞) = 0. 

Proof. 

It is clear that f(0) = f(∞) = 0. The first derivative of 

f(x) can be written in the form 

 

( ) ( )
( )

( )
1 x

f x
f x x

x e
βλ

φ
−−

′ =
−

 

 

where, 

 

( ) ( ) ( )

( ) ( ) ( )

1

1 , .

y x
x y x e

y x y x x β

φ β αβ

β β λ

−

−

=  + −  

+ − + =
 

 

Note that 

 

( ) ( ) ( )x y x w xφ′ ′= −  

 

where 

( ) ( ) ( )
1 .

y x
w x x eαβ β αβ β−=  + + −  −   

 
In the following, we show that w(x) changes sign 

from negative to positive. Since 
 

( ) ( ) ( ) ( )
2 1

y x
w x y x y x eαβ β αβ −′ ′= −  + + −    

 
it follows that x0 = [αβλ/(2αβ +β +1)]

1/β
 is a unique 

critical point where w(x) has an absolute minimum, 

since 

 

( ) ( ) ( )0
2

0 0 0.
y x

w x y x eαβ
− ′′ ′= >   

 

Since w(0) = −β and w(∞) = αβ + 1, it follows that 

w(x) changes sign from negative to positive. This implies 

that ϕ′(x) also changes sign from negative to positive, 

since −y′(x) >0. Finally, since ϕ(0) = ∞ and ϕ(∞) = 0, 

ϕ(x) decreases from infinity to a negative value then 

increases to zero, i.e., ϕ(x) changes sign from positive to 

negative. That is, f′ (x) changes sign from positive to 

negative proving the unimodality of f(x). 

Remarks 

• The mode, xf, is the solution of the non-linear 

equation f′ (xf) = 0 or equivalently 

 

( ) ( ) ( )

( ) ( ) ( )
1

1 0, .

fy x

f f

f f f

x y x e

y x y x x β

φ β αβ

β β λ

−

−

 = + − 

+ − + = =
 (4) 

 

• For α = 1, β, λ>0, i.e., the IW distribution, the mode 

xf has an explicit closed form: xf = [βλ/(β + 1)]
1/β,

 see 

Jiang et al. (2001). 

• For α, β, λ > 0, since ϕ(0) = ∞ and 

 

( ) ( )( )

( ){ }

1/

1 / log 1

1
log 1 0

u
β

φ φ λ α

α β α α
α

 = + =  

− +  − +  < 

 

 

since log(α + 1) < α, for all α > 0, the search for the 

mode xf can be limited to the interval (0, u1). For 

example, see section 6, α = 16.391, β = 3.098, λ = 

44.632, u1 = 2.429 and xf = 2.321 ∈ (0, u1). 

 

Figure 1 shows the PDF of the PHIW distribution for 

selected values of the parameters. 

2.2 Hazard Rate Function 

The Hazard Rate Function (HRF) of the PHIW 

distribution, with survival function (2) and PDF (3), is 

given by 



Suja M. Aboukhamseen et al. / Journal of Mathematics and Statistics 2016, 12 (2): 86.98 

DOI: 10.3844/jmssp.2016.86.98 

 

88 

( ) ( )
( )

1

, 0, , , 0.
1

x

x

f x x e
h x x

S x e

β

β

β λ

λ

αβλ
α β λ

−

−

− − −

−
= = > >

−
 (5) 

 

The following theorem investigates the shape of the 

HRF of the PHIW distribution. 

Theorem 2 

The HRF h(x) is unimodal (upside-down bathtub 

shape) for all α, β, λ >0, with h(0) = h(∞) = 0. 

Proof. 

It is clear that h(0) = h(∞) = 0. Since h(x) = α h1(x) 

where 

 

( )
1

, 0, , 0,
1

x

i x

x e
h x x

e

β

β

β λ

λ

βλ
β λ

−

−

− − −

−
= > >

−
 

 

is the HRF of the IW distribution with PDF 

 

( ) 1

1 , 0, , 0,xf x x e x
ββ λβλ β λ

−− − −= > >  

 

and survival function S1(x). Clearly, the shape of h(x) is 

the same of h1(x). Now, we use Glaser (1980) eta 

function of f1(x): 

 

( ) ( )( ) ( ) 1 1

1log 1 ,x f x x x βη β βλ− − −′= − = + −  

 

to determine the shape of h1(x). Since 

 

( ) ( ) ( )21 ,x x xβ βη β βλ− −′ = + −  

 

it follows that u2 = (βλ)
1/β

 is the unique critical point 

which maximizes η(x), since 

 

( ) ( ) 2 3

2 21 0.u u βη β β λ − −′′ = − + <  

 

That is, η(x) is unimodal with η(0) = −∞ and η(∞) = 

0. Finally, since f1(0) = 0, it follows that h1(x) and hence 

h(x), is also unimodal. 

Remarks 

The critical point, xh, of h(x) is the unique solution of 

h′(xh) = 0, which is equivalent to solving the non-linear 

equation 

 

( ) ( ) ( ) ( )
( ) ( )

1

1 0,

hy x

h h

h h

x e y x

y x x β

ψ β β

β λ

−

−

= + +

− + = =
 (6) 

 

which is independent of α. 

 
 
Fig. 1. PDF of the PHIW distribution for (α, β, λ): 

(3,1,1)(solid), (2,2,1)(dashed) and (1,3,1) (dotted) 

 

 
 
Fig. 2. HRF of the PHIW distribution for (α, β, λ): 

(3,1,1)(solid), (2,2,1) (dashed) and (1,3,1) (dotted) 

 

It is clear that ψ(0) = ∞ and ψ(u2) = ψ[(βλ)
1/β

] = −β 

[1 − (1 + 1/β)e
−1/β

] < 0, since (1 + z)e
−z

 < 1, for all z > 0. 

This will be useful in finding the unique root xh of ψ(xh) 

by limiting the search on the interval (0, u2). For 

example, see section 6, α = 16.391, β = 3.098, λ = 

44.632, u2 = 4.909 and xh = 4.045 ∈ (0, u2). 

Figure 2 shows the HRF of the PHIW distribution for 

selected values of the parameters. 

2.3 Mean Residual Life Function 

Using the substitution y = λx
−β

, the mean of the 

PHIW distribution is given by 

 

( ) ( )
1/

1/ 1

0 0
1 .yS x dx y e dy

β
αβλ

µ
β

∞ ∞ − − −= = −∫ ∫  
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For 0 < αβ ≤ 1, using the inequality 1 − e
−y

 ≥ y e
−y

, 

for all y ≥ 0, we have 

 

( )
1/

1 1

0
.yy e dy

β
αβ β αλ

µ
β

∞ − − −≥ = ∞∫  

 

For αβ > 1, using the inequalities 1 − e
−y

 ≤ y and 1 − 

e
−y

 ≤ 1, for all y ≥ 0, respectively, we have 

 

( ) ( ){ }
( ){ }

1/
1

1/ 1 1/ 1

0 1

1/
1 1 / 1 1/ 1

0 1

1/

1 1

.
1

y yy e dy y e dy

y dy y dy

β
α αβ β

β
αβ β β

β

λ
µ

β

λ
β

αβλ
αβ

∞− − − − − −

∞− − − −

≥ − + −

≤ +

= < ∞
−

∫ ∫

∫ ∫  

 

For all x > 0, the Mean Residual Life Function 

(MRLF) of the PHIW distribution, with survival function 

(2) and PDF (3), is given by 

 

( ) ( )

( )
( )

( )
( )

1

|

1

1 .
1

x

y y

xx

x E X x X x

yf y dy x
S x

e y e dy x
e

α
λ β β λ β

αλ β

µ

αβλ

∞

−∞ − − − − −

− −

= − >

= −

= − −
−

∫

∫

 

 

Note that µ(0) = µ < ∞, provided αβ > 1 and µ(∞) = 

1/h(∞) = ∞. 

For α = 1, 2, 3, . . . and β > 1, using the substitution z 

= λy
−β

, we have 

 

( )
( )

( )

( )
( ) ( )

( )
( )

( )
( )( )

11/
1/

0

1/ 1
11/

0
0

1/ 1

1 1/
0

1
1

1
1

1

1 1
1 1/ , 1 .

11

x
z z

x

xi i z

x
i

i

x
i

x e z e dz x
e

z e dz x
ie

i x x
i ie

β

β

αβ λ β
αλ β

β α λ β
αλ β

β α

α βλ β

αλ
µ

ααλ

ααλ
γ β λ β

−

−

−
− − −

− −

−
− +−

− −
=

−

−− −
=

= − −
−

− 
= − − 

 −

− − 
= − + − − 

+ −

∫

∑ ∫

∑

 

 

where, ( ) 1

0
, , 0

t
a ua t u e du aγ − −= >∫ , is the lower incomplete 

gamma function for which γ(a, 0) = 0 and γ(a,∞) = Γ(a) 

is the gamma function. 

For the special case, α = 1, i.e., IW distribution, we 

have 

 

( )
( )1/ 1 1 / ,

, 1.
1

x
x x

e x

β β

β

λ γ β λ
µ β

λ

−

−

−
= − >

− −
 

 

Before we determine the shape of µ(x), we need the 

following lemma. 

 
 
Fig. 3. MRLF of the PHIW distribution for (α, β, λ): (3,1,1) 

(solid), (2,2,1)(dashed) and (1,3,1) (dotted) 

 

Lemma 1 

Gupta and Akman (1995) If h(x) is upside-down 

bathtub shape with a unique critical point xh and f(0)µ 

< 1, then µ(x) is bathtub shape with a unique critical 

point xm. The critical point xm is the solution of the 

non-linear equation 

 

( ) ( ) 1 0.m mh x xµ − =  (7) 

 

Moreover, xm < xh. 

Using the condition αβ > 1 and Lemma 1, we are now 

able to determine the shape of the MRLF of the PHIW 

distribution as follows. 

Theorem 3 

The MRLF µ(x) is upside-down bathtub shape with 

unique critical point xm for all α, β > 0 such that αβ > 1 

and λ > 0. 

Proof. 

Since αβ > 1 implies that µ < ∞ and f(0) = 0, we have 

f(0)µ = 0 < 1. Therefore, using Lemma 1, the MRLF is 

bathtub shaped. 

Figure 3 shows the MRLF of the PHIW distribution 

for selected values of the parameters. 

3. Moments and Associated Measures 

The kth raw moment of the PHIW distribution is 

given by 

 

( ) ( )
/

1 / 1

0 0
1 .

k
k k y

k

k
k x S x dx y e dy

β
αβλ

µ
β

∞ ∞− − − −′ = = −∫ ∫  
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By exactly the same steps as in subsection 2.3, 
k

µ′  

exists only when αβ > k. For positive real values α and β, 

the moments cannot be expressed in closed form 

expressions. However, for α = 1, 2, 3, . . ., we have 

 

( ) ( )
( )

1
/

1 /
0

1 1
1 / , .

1

i

k

k k
i

k k
i i

α
β

β

α
µ αλ β β

−

−
=

− − ′ = Γ − > 
+ 

∑  

 

For the special case, α = 1, i.e., IW distribution, we 

have: 

 

( )/ 1 / , .k

k k kβµ λ β β′ = Γ − >  

 

In this case, the mean, variance and coefficient of 

variation, respectively, are 

 

( )
( ) ( )

( ) ( )
( )

1/

2 2/ 2

2

1 1 / , 1,

1 2 / 1 1 / , 2,

1 2 / 1 1 /
, 2.

1 1 /
cv

β

β

µ λ β β

σ λ β β β

β β
β

β

= Γ − >

 = Γ − − Γ − > 

Γ − − Γ −
= >

Γ −

 

 

Note that if X ∼ PHIW(α, β, γ), then Z = 1/X has the 

exponentiated Weibull distribution (Mudholkar and 

Srivastava 1993) with cumulative distribution function 

 

( ) ( )1 , 0, , , 0.z

Z
F z e z

β α
λ α β γ−= − > >  

 

Now the negative moments of the PHIW distribution 

are given by 

 

( ) ( )

( ) ( )
( )

/

/ 1
0

1
/ 1

! 1

k k

k

k
i

E X E Z

k
i i

β
β

α
αλ β

−

∞
−

+
=

=

−
= Γ +

+
∑

 

 

where, for any real number c: 

 

( )
( ) ( )

1, 0

1 ... 1 , 1i

if i
c

c c c i if i

=
= 

+ + − ≥
 

 

is the Pochhammer symbol, for more details see 

Choudhury (2005). 

For α = 1, 2, . . . , we have: 

 

( ) ( )
( )
( )

1
/

/ 1
0

1
/ 1 .

! 1

k k i

k
i

E X k
i i

α
β

β

α
αλ β

−
− −

+
=

−
= Γ +

+
∑  

 

In particular, if α = 1, i.e., the IW distribution, we 

have 

( ) ( )/ / 1 .k kE X kβλ β− −= Γ +  

 

4. Maximum Likelihood Estimation 

Let x1, x2, ..., xn be a random sample of size n from 

the PHIW distribution with PDF (3). The log-likelihood 

function is given by 
 

( ) ( )

( )
( ) ( )

( ) ( )

1

1

log ,

1 log
log .

1 log 1 i

n

n i

i

n i

x
i

i

f x

x
n

x e
βλβ

θ

β
αβλ

λ α
−

=

−−
=

=

 + 
= −  

+ − − −  

∑

∑

ℓ

 

 

The maximum likelihood estimates (MLEs) ( )ˆ ˆˆ , ,α β λ  

of the parameters (α, β, λ) are the solution of the system 

of non-linear equations 
 

( ) ( )
1

log 1 0,i

n
xn

i

n
e

βλθ

α α

−−

=

∂
= + − =

∂ ∑
ℓ

 (8) 

 

( ) ( ) ( )
1

1
1 log 0,

1i

n
n i

i ix
i

xn
x x

e
β

β
β

λ

θ α λ
λ

β β −

−
−

=

 ∂ − 
= + − + = 

∂ −  
∑

ℓ
 (9) 

 

( ) ( ) ( )
1

1
1 log 0.

1i

n
n

ix
i

n
x

e
β

β

λ

θ α
λ λ −

−

=

∂  −  
= + − = 

∂  − 
∑

ℓ
 (10) 

 
Note that (8) implies that 

 

( ) ( )ˆˆ

1

ˆ ˆˆ , .
log 1 i

n x

i

n

e
βλ

α ξ β λ
−−

=

−
= =

−∑
 (11) 

 
Hence, the 3-dimensional maximization in (α, β, λ) is 

reduced to 2-dimensional maximization in (β, λ): 
 

( ) ( )
1

, 1
1 log 0,

1i

n
i

i ix
i

xn
x x

e
β

β
β

λ

ξ β λ λ
λ

β −

−
−

=

  −   − − + = 
−  

∑  (12) 

 

( )
1

, 1
1 0.

1i

n

ix
i

n
x

e
β

β

λ

ξ β λ
λ −

−

=

 −  
− − = 

 − 
∑  (13) 

 
The solutions of the last two nonlinear equations 

provide the MLEs β̂  and λ̂  of the parameters β and λ, 

from which the MLE ( )ˆ ˆˆ ,α ξ β λ=  of the parameter α is 

obtained. 

The observed information matrix is 
 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 12 13

2

12 22 23

12 23 33

n n n

n

n n n n

i j

n n n

I I I

I I I I

I I I

θ θ θ
θ

θ θ θ θ
θ θ

θ θ θ

 
 ∂  

= − =   ∂ ∂    
 

ℓ
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where 
 

( ) ( )

( ) ( )

( )
( )
( )

( )

( ) ( ) ( )
( )

( ) ( ) ( )

( )

2

11

2 2

2

22

2 2

2

2
1

2 2
33

22 2
1

2

12

1

2

13

,

1 1
1 1 log ,

1

1 ,

1

log
,

1

i

i

i

i

i

n

n

n

n

x
n

i

i i
xi

xn
n i

n
xi

n
i in

n x
i

n

n
I

n
I

x e
x x

e

n x e
I

e

x x
I

e

I

β

β

β

β

β

λβ
β

λ

λβ

λ

β

λ

θ
θ

α α
θ

θ
β β

λ
λ α

θ
θ α

λ λ

θ
θ λ

α β

θ

−

−

−

−

−

−

−

=

−

=

−

=

∂
= − =

∂
∂

= − =
∂

 
− −   + + −   

 −
 

∂
= − = − −

∂ −

∂
= − =

∂ ∂ −

∂
= −

∑

∑

∑

ℓ

ℓ

ℓ

ℓ

ℓ ( )

( ) ( )

( )
( )
( )

( )

1

2

23

2
1

,
1

1 1
1 1 log .

1

i

i

n
n i

x
i

n

n

x
n

i

i i

i
i

x

e

I

x e
x x

e x

β

β

β

λ

λβ
β

β

θ
α λ

θ
θ

β λ

λ
α

λ

−

−

−

=

−

−

−
=

= −
∂ ∂ −

∂
= − =

∂ ∂

 − − 
− + − 

−  

∑

∑

ℓ

 

 
Under fairly mild regularity conditions, see 

Lehmann and Casella (1998), pp. 461-463, we have the 

following result 
 

( )( )1

3
ˆ ˆ, ,

n
d N Iθ θ θ−

ɶ
 

 

where, d
ɶ

 means approximately distributed and N3(., .) 

denotes the trivariate normal distribution. 

For a real-valued function of the parameters τ (θ), 

we have 
 

( ) ( ) ( )( )ˆ ˆ, var .d Nτ θ τ θ τ θ 
 ɶ

 

 
The asymptotic 100(1-α)% confidence interval for τ 

(θ) is given by 
 

( ) � ( )/2
ˆ ˆvar .zατ θ τ θ ±

 
 

 
where, zα/2 is the upper α/2 percentile of the standard 

normal distribution. 

When the function τ (θ) has no explicit expression in 

the parameters, as the case in this study, then ( )ˆvar τ θ 
 

 

has also no explicit expression and is usually estimated 

using simulation-based methods such as percentile 

bootstrap, see for example Davison and Hinkley (1997), 

where B random samples are selected with replacement 

from the given data set. For the jth bootstrap sample, the 

*ˆ
jMLEθ  of θ and the ( )* *ˆˆ

j j
MLEτ τ θ=  of τ (θ) are 

calculated. The mean and variance of all bootstrap 

estimates * * *

1 2
ˆ ˆ ˆ, ,...,

B
τ τ τ , respectively, are given by 

 

( )

* *

1

2
*2 * *

1

1
ˆ ,

1
ˆ .

1

B

j

j

B

j

j

B

s
B

τ τ

τ τ

=

=

=

= −
−

∑

∑
 

 

Now, we can use *τ  and s
*2

 as estimates of τ (θ) and 

( )ˆvar τ θ 
 

, respectively. Moreover, in this case, the 

following confidence intervals can be constructed. 

The asymptotic 100(1-α)% confidence interval for τ 

(θ) is given by 

 

( ) *

/2
ˆ .z sατ θ ±  

 

The 100(1-α)% percentile bootstrap confidence 

interval for τ (θ) is given by 
 

( ) ( )( )* / 2 * 1 /2
ˆ ˆ,

α ατ τ −
 

 

where, ( )*
ˆ

pτ  is the pth percentile of the bootstrap 

estimates * * *

1 2
ˆ ˆ ˆ, ,...,

B
τ τ τ . 

5. Simulation Studies 

Simulation of an observation x from the PHIW 

distribution is obtained by solving the equation S(x) = 1-

u where u is an observation from the uniform 

distribution over (0,1). It follows that 
 

( )

1/

1/
.

log 1 1
x

u

β

α

λ
 

− 
=  

 − −   

 (14) 

 

Design of the Simulation Studies 

• Sample sizes: n = 50, 100 

• Population parameters: (α, β, λ) = (10, 5, 1), (5, 10, 

1). Table 1 shows the true values of the parameters 

used in the simulations 

• Number of bootstrap samples: B = 500 

• Number of simulation runs N = 500 
 

Computations 

• All computations in the simulation studies were 

done using the R package Version 3.1.2, see 

RDCT (2014) 

• Maximum likelihood estimates of the parameters 

were obtained using the R general purpose 
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optimization function optim which implements the 

Nelder-Mead technique 

• The bootstrap samples were obtained using the R 

package boot by Canty and Ripley (2015) 

 

Simulation Criteria 

Let ( )τ τ θ≡ ɶɶ  be the MLE or bootstrap estimate of τ ≡ 

τ (θ) and [ ] [ ]( )i i
τ τ θ≡ ɶɶ  be the estimate of τ in the i

th
 

simulation run, i = 1, 2, . . . , N. 

The following criteria are used to assess the 

performance of the MLEs/bootstrap estimates of τ ≡ τ (θ) 

and associated confidence intervals. 

• Bias: 

 

( ) [ ]( )
1

1 N

i
i

Bias
N

τ τ τ
=

= −∑ɶ ɶ  

 

• Mean-square error (MSE): 

( ) [ ]( )2

1

1 N

i
i

MSE
N

τ τ τ
=

= −∑ɶ ɶ  

 

• Coverage probability (CP): Percentage of the true 

value of the parameter which falls in a given 

confidence interval 

• Confidence interval width: The range of the 

confidence interval 

 

Analysis of the Simulation Studies 

• For the mean, variance and coefficient of variation 

(Table 2), both confidence intervals are performing 

almost the same in terms of the coverage probability 

as well as their width 

• In the case of the estimation of critical points of the 

PDF, HRF and MRLF (Table 3), the coverage 

probability of both confidence intervals is the same 

while the bootstrap intervals are outperforming the 

asymptotic intervals in terms of their width 

 
Table 1. True values of the functions of the parameters used in the simulations 

(α, β, λ) µ σ2 cv xf xh xm 

(5,10,1) 0.9657 0.0025 0.0539 0.9243 1.1784 1.1555 

(10,5,1) 0.8232 0.0047 0.0832 0.8130 1.2158 1.1888 

 
Table 2. Simulation results for the estimation of mean, variance and coefficient of variation 

(α, β, λ) n Method Bias MSE CP (%) C.I. width 

Mean 

(5, 10, 1) 50 Asymptotic 0.0001 0.0000 95.40 0.0275 

  Bootstrap 0.0001 0.0000 94.80 0.0277 

 100 Asymptotic -0.0001 0.0000 95.20 0.0196 

  Bootstrap -0.0001 0.0000 95.00 0.0198 

(10, 5, 1) 50 Asymptotic 0.0006 0.0001 93.40 0.0373 

  Bootstrap 0.0006 0.0001 92.80 0.0376 

 100 Asymptotic 0.0002 0.0000 95.80 0.0268 

  Bootstrap 0.0003 0.0000 95.80 0.0270 

Variance 

(5, 10, 1) 50 Asymptotic -0.0001 0.0000 88.40 0.0022 

  Bootstrap -0.0001 0.0000 89.20 0.0022 

 100 Asymptotic -0.0001 0.0000 92.20 0.0016 

  Bootstrap -0.0001 0.0000 92.40 0.0016 

(10, 5, 1) 50 Asymptotic -0.0001 0.0000 89.20 0.0040 

  Bootstrap -0.0001 0.0000 89.40 0.0040 

 100 Asymptotic 0.0000 0.0000 94.00 0.0028 

  Bootstrap 0.0000 0.0000 94.00 0.0028 

Coefficient of variation 

(5, 10, 1) 50 Asymptotic -0.0007 0.0000 91.00 0.0231 

  Bootstrap -0.0011 0.0000 89.40 0.0233 

 100 Asymptotic -0.0004 0.0000 92.80 0.0165 

  Bootstrap -0.0006 0.0000 92.80 0.0166 

(10, 5, 1) 50 Asymptotic -0.0013 0.0001 93.40 0.0340 

  Bootstrap -0.0020 0.0000 92.40 0.0351 

 100 Asymptotic -0.0002 0.0000 94.80 0.0242 

  Bootstrap -0.0006 0.0000 94.00 0.0244 
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Table 3. Simulation results for the estimation of critical points of PDF, HRF and MRLF 

(α, β, λ) n Method Bias MSE CP (%) C.I. width 

Critical point of PDF 

(5, 10, 1) 50 Asymptotic 0.0576 0.1949 96.20 2.0431 

  Bootstrap 0.1403 0.0517 97.20 1.6196 

 100 Asymptotic 0.0167 0.0662 96.20 1.0865 

  Bootstrap 0.0545 0.0174 95.40 0.6484 

(10, 5, 1) 50 Asymptotic 0.0097 0.0351 93.00 0.4479 

  Bootstrap 0.0137 0.0008 94.80 0.1729 

 100 Asymptotic 0.0005 0.0001 95.20 0.0971 

  Bootstrap 0.0020 0.0001 96.00 0.0536 

Critical point of HRF 

(5, 10, 1) 50 Asymptotic 0.1153 0.2108 95.60 2.2538 

  Bootstrap 0.2312 0.0731 96.00 2.2134 

 100 Asymptotic 0.0414 0.0724 99.00 1.5893 

  Bootstrap 0.1183 0.0264 97.20 1.2926 

(10, 5, 1) 50 Asymptotic 0.1325 0.1887 95.80 1.8136 

  Bootstrap 0.2718 0.1447 97.80 1.6402 

 100 Asymptotic 0.0562 0.0514 98.60 1.0586 

  Bootstrap 0.1104 0.0616 95.40 0.9683 

Critical point of MRLF 

(5, 10, 1) 50 Asymptotic 0.1518 0.3011 96.20 2.8704 

  Bootstrap 0.3851 0.2172 96.40 2.7247 

 100 Asymptotic 0.0642 0.1435 98.80 1.9561 

  Bootstrap 0.1859 0.0909 97.00 1.6775 

(10, 5, 1) 50 Asymptotic 0.0884 0.1622 97.20 2.0358 

  Bootstrap 0.2055 0.0920 98.00 1.9357 

 100 Asymptotic 0.0472 0.0440 99.20 1.0277 

  Bootstrap 0.0803 0.0365 96.40 0.8916 

 

Thus, overall, the simulation studies indicate that 

both kind of confidence intervals are performing 

similar in terms of the coverage probabilities as well 

as their width. 

Figure 4 shows approximately normal distribution 

for the sampling distribution of the MLEs of the 

mean, variance and coefficient of variation, indicating 

that the corresponding constructed asymptotic 

confidence intervals are appropriate. On the other 

hand, Figure 5 shows skewed sampling distribution of 

the MLEs of the critical point of the PDF, HRF and 

MRLF, indicating that the constructed asymptotic 

confidence intervals are inappropriate. 

6. Illustrative Example 

In this section, we present an illustrative example 

based on a real-life data set representing 98 

measurements of the annual maxima of river flows 

(m
3
s

−1
) from 1900 to 1997 at BSWN station in Shunde 

area, Pearl River basin, China (Shao et al., 2004): 

 

1.678, 2.285, 2.371, 2.255, 2.275, 2.14, 2.464, 

2.052, 2.542, 2.355, 1.957, 2.32, 2.487, 2.358, 

2.567, 3.123, 2.052, 2.464, 2.566, 2.438, 

2.438, 2.285, 2.409, 2.499, 2.595, 2.076, 

2.404, 2.261, 2.267, 2.189, 2.362, 2.675, 

2.435, 2.438, 2.261, 2.552, 2.438, 2.567, 2.07, 

2.288, 2.46, 2.303, 2.512, 2.33, 2.729, 2.736, 

2.381, 2.762, 2.249, 2.862, 2.376, 2.174, 1.89, 

1.93, 2.16, 1.92, 2.05, 2.03, 1.91, 2.62, 1.95, 

2.34, 2.67, 2.14, 2.24, 2.4, 2.63, 2.25, 2.8, 

2.26, 2.58, 2.22, 2.09, 2.46, 2.96, 2.47, 2.7, 

2.32, 2.76, 2.3, 1.95, 2.33, 2.13, 2.54, 2.01, 

2.06, 2.3, 1.98, 2.34, 2.43, 1.91, 2.44, 2.29, 

2.53, 3.21, 2.27, 2.46, 2.77. 

 

A summary of the basic descriptive sample statistics 

of this data set is given in Table 4. 

Table 5 shows the MLEs of the parameters, the 
estimated log-likelihood, Kolomogrov-Smirnov and 

Anderson-Darling goodness-of-fit tests of the fitted 
PHIW model. Both tests indicate that the fitted PHIW 
model is suitable for the given data set. This 
conclusion is also supported by the diagnostic plots 
presented in Fig. 6. 

Figure 7 shows the location of the percentile 

bootstrap estimates of the critical points of the PDF, 

HRF and MRLF of the fitted PHIW model. The 

histograms of the percentile bootstrap estimates of the 

mean, variance, coefficient of variation and the critical 

points of the PDF, HRF and MRLF are presented in Fig. 

8 which indicates that the histograms of the critical 

points are heavily skewed to the right. 
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Fig. 4. Histograms of the sampling distributions of the MLEs of the mean, variance and coefficient of variation 
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Fig. 5. Histograms of the sampling distributions of the MLEs of the critical point of PDF, HRF and MRLF 
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Table 4. Descriptive sample statistics 

Minimum 1.678 Mean 2.358 

Maximum 3.210 Variance 0.075 

Mode 2.438 CV 0.116 

 
Table 5. Parameters estimates, estimated log-likelihood, Kolmogrov-Smirnov and Anderson-Darling tests 

Estimated Parameters 

--------------------------------------------- Estimated 

α̂  β̂  λ̂  log-likelihood KS                          p-value AD                     p-value 

16.391 3.098 44.632 -10.425 0.082 0.531 0.385 0.863 

 
Table 6. Point and interval estimation for the mean, variance, coefficient of variation, critical points of PDF, HRF and MRLF 

Asymptotic    Percentile bootstrap 

---------------------------------------------------------------------------------- ------------------------------------------------------------------------ 

θ Estimate S.E. 95% C.I. C.I. width Estimate S.E. 95% C.I. C.I. width 

µ 2.358 0.028∗ (2.304, 2.412) 0.108 2.357 0.028 (2.302, 2.412) 0.110 

σ2 0.073 0.012∗ (0.049, 0.097) 0.048 0.073 0.012 (0.052, 0.099) 0.047 

cv 0.115 0.009∗ (0.096, 0.134) 0.038 0.114 0.009 (0.096, 0.132) 0.036 

xf 2.321 0.039∗ (2.244, 2.398) 0.154 2.322 0.039 (2.244, 2.395) 0.151 

xh 4.045 0.913∗ (2.255, 5.835) 3.580 4.258 0.913 (3.089, 6.650) 3.561 

xm 3.945 0.950∗ (2.083, 5.807) 3.724 4.160 0.950 (2.937, 6.621) 3.684 

*: bootstrap standard error 

 

 
 

 
 

Fig. 6. Diagnostic plots for the fitted PHIW model 

 

Finally, Table 6 compares the estimates of the 

considered functions of the parameters, their standard error 

and the corresponding confidence intervals based of 

asymptotic and percentile bootstrap estimation procedures. 
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Fig. 7. Location of the percentile bootstrap estimates of the critical points of the PDF, HRF and MRLF of the fitted PHIW model 
 

 
 

 
 
Fig. 8. Histograms of the percentile bootstrap estimates of the mean, variance, coefficient of variation (left column) and critical 

points of PDF, HRF and MRLF (right column) of fitted PHIW model 
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Conclusion and Comments 

In this study, we have studied the proportional hazard 

inverse Weibull distribution and the maximum 

likelihood/bootstrap estimation of various functions of 

its parameters. It has been shown that the density and 

hazard rate functions of the proposed model are 

unimodal for all values of the parameters and its mean 

residual life function is bathtub shaped under certain 

condition on two of its parameters. The simulation 

studies indicate that the asymptotic and bootstrap 

confidence intervals of various functions of the 

parameters perform similarly in terms of the coverage 

probabilities as well as the length of the confidence 

intervals. We hope that our investigation will provide an 

alternative way to analyze data which exhibit the 

characteristics similar to the proposed model. 
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