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Abstract: We propose formal estimation procedures for the parameters of 

the generalized, heavy-tailed three-parameter Linnik gL(α, µ, δ) and 

Mittag-Leffler gML(α, µ, δ) distributions. The paper also aims to provide 
guidance about the different inference procedures for the different two-
parameter Linnik and Mittag-Leffler distributions in the current literature. 
The estimators are derived from the moments of the log-transformed 
random variables and are shown to be asymptotically unbiased. The 
estimation algorithms are computationally efficient and the proposed 
procedures are tested using the daily S&P 500 and Dow Jones index data. 
The results show that the two-parameter Linnik and Mittag-Leffler models 
are not flexible enough to accurately model the current stock market data. 
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Introduction 

In recent years, the heavy-tailed two-parameter 

Linnik L(α,λ) distribution (see, e.g., Kotz and Ostrovskii 

(1996)) introduced in Linnik (1963), defined by 

thecharacteristic function: 

 

( ) ( )
1

1 | | ,t t
α

φ λ
−

= +  

 

where,λ>0 is the scale parameter, t∈R and 0<α≤2, has 

gained popularity inmany applications. For instance, it 

has been used to model discrete-time stationaryprocesses 

particularly in finance (e.g., S&P 500 index, see 

Kozubowski (1999; 2001)). In addition, extensive 

theoretical studies of the distribution has been carried out 

inDevroye (1990), Kozubowski (2001), Kotz and 

Ostrovskii (1996), Lin (1998), Pakes (1998), Cahoy 

(2012), Gunaratnam and Woyczyński (2015), Górska 

and Woyczyński (2015) and in the references cited 

therein. Recall that the L(α, λ) distribution is ageometric 

stable distribution (Klebanov et al., 1985; Halvarsson, 

2013), that is, it is invariant under random summation 

withthe random number of summands determined by the 

geometric distribution. 
The parameter estimation problem forα, when λ = 1, 

was addressed by Anderson (1992) using the methods of 
Leitch and Paulson (1975), Paulson et al. (1975) and 
Press (1972). Jacques et al. (1999) adopted Press 
(1972)'s technique to estimatethe parametersα and λ. 
Similarly, Kozubowski (2001) suggested the fractional 
moment estimators while Cahoy (2012) derived closed-
form expressions of the point andinterval estimators of 
the parametersα and λ. Note also that Cahoyet al. (2010) 
developed inference procedures for the two-parameter 
Mittag-Leffler distribution with Laplace transform φ(t) = 
(1+ (λt)α)−1. 

The main goal of this paper is to estimate the parameters 
of the heavy-tailedthree-parameter generalized Linnik 
family of one-dimensional distributions, gL(α,δ, µ), with 
the characteristic function: 
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with µ>0,δ>0 and 0<α≤2. Another objective of this paper is 
to estimate parameters of the heavy-tailed three-

parametergeneralized Mittag-Leffler distributiongML(α,δ, 

µ) (see, e.g., Laskin (2003)) with the Laplace transform: 
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with the corresponding density function: 
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is the generalized Mittag-Leffler function (see, e.g., 

Cahoy and Polito (2013)), with(η)r = η(η+1)... (η+r−1), 

η ≠ 0, representing the classical Pochhammer symbol. 

We emphasize that estimation procedure for gML(α,δ,µ 
= 1) was developed inCahoy (2013). 

Note that if α = 1 and the data support is +

R , we 

obtain the gamma distribution.When α = δ= 1 and data 

support is +

R , then we obtain the 
exponentialdistribution. It can be shown that 

gML(α,δ,µ) is a mixture of generalized gammadensities 

with the strictlyα+-stable density as the mixing 

distribution. With δ = 1,we have the usual Mittag-
Leffler distribution (see. e.g., Pillai (1990)) which can 
beinterpreted as a mixture of Weibull densities. 

Finally, we also compare the efficiency of the above 
three-parameter models withthe existing models (see 
e.g., Kozubowski (1999; 2001)) using stock market S&P 
500and Dow Jones index data. 

The paper is organized as follows: In section 2, we 

provide structural representations of the generalized 

Linnik gL(α,δ,µ) and the generalized Mittag-

LefflergML(α,δ,µ) random variables. In Section 3, we 

derive the method-of-moments estimators based on the 

log-transformed data. In section 4, we test the 

algorithmsusing synthetic data. Section 5 shows the 

analyses of the S&P 500 and Dow Jonesdata. We 

conclude in section 6 with a discussion of the key points 

of this work andpossible future extensions of our study. 

Mixture Representations and Moments 

In this section we provide representations for random 

variables with generalizedMittag-Leffler and Linnik 

distributions employing the standard Lévyα-stable random 

variables and review related results for completeness. 

Generalized Mittag-Leffler Distributions on the 

Positive Half-Line 

Theorem 1 

Let0<α<1, S be a strictly α
+
-stable random variable 

withthe Laplace transform exp(-t
α

), t > 0, U be an 

independent random variable withgamma distribution (with 

rate µ> 0 and shape parameter δ> 0) , i.e., with 

densityfunction: 
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Then the random variable 

 
1/

X U S
α

=  (2.2) 
 
has the gML(α,δ, µ) distribution. 

The proof is straightforward: 
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The proof can also be found, for example, in Pakes 

(1998). Recall that the α+-stable random variable can 
be conveniently generated using the classical 
Kanter(1975) formula: 
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where U is uniformly distributed in [0,π] andE is a 
standard exponential random variable (with rate/scale 
parameter one) independent of U. The q-th 
fractionalmoment of X can be easily derived from the 
above result and is given below. 

Remark 1 

As α→1 or S ≡ 1, the gML(α,δ, µ) converges (in 

distribution) tothe gamma distribution with rate 

parameter µ and shape parameter δ. 

Theorem 2 

Let0<α<1. Then 
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The proof follows directly from the standard moment 

formulas: 
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See also Cahoy and Polito (2013). 

Remark 2 

As α→1 or S ≡ 1, 
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Generalized Linnik Distributions on the Entire Real 

Line 

Theorem 3 

Let 0<α≤2 andS
α
 be a random variable with a 

symmetric α-stable distribution with characteristic 

function exp(-|t|
α

) and U be an independentgamma 

distributed random variable with density (2.1). Then the 

random variable: 
 

1/
Y U S

α

α
=  (2.5) 

 
has the gL(α,δ,µ) distribution. 

The proof follows from the proof of Theorem 1. Note 

that Devroye (1990) hadthe proof for δ = 1/δ',µ = 1. 

Apparently, the caseα = 1 is essentially different inboth 
families. 

The symmetric α-stable random variable S
α
 can be 

generated using the standard Chambers et al. (1976) 
formula: 
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 (2.6) 

 
where,U2 is uniformly distributed on [-π/2,π/2] and E is 
independent of U2 andexponentially distributed with 
parameter one. An expression for the q-th fractionalmoment 
of Y is derived below. 

Proposition 1 

Let 0<α≤2 and 
d

Y =  gL(α,δ,µ). Then 
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Proof 

Note that 
 

( )/
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α
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Using the q-th fractional moment of the symmetric 

stable random variable S
α (see, Bening et al., 2004): 
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we have: 
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An application of the reection formula for the gamma 

function, Γ(1-p)Γ(p) =π/sin(πp), completes the proof. 

Parameter Estimation Via the Logarithmic 

Moments 

Generalized 3-Parameter Mittag-Leffler 

Distributiong ML(α,δ,µ) 

Following Cahoy et al. (2010), we apply the log 
transformationto the random variable X given in (2.2) as 
 

1
,

d

X U S
α

′ ′ ′= +  (3.1) 

 
where, X′ = ln(X), U′ = ln(U) and S′ = ln(S). For 
reproducibility, we can recallthe first four log-moments 
of S from Zolotarev (1986) and Cahoy et al. (2010): 
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where C≈0.5772 is the Euler's constant.  

It is straightforward to show the probability density of 

U′ as: 
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Using the polygamma function of order k, 
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Using the above moments, the estimating equations 
are as follows (see, also Cahoy and Polito (2013) where 
they were mentioned without showing the elementary 
(although tedious) algebra of moments): 
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and: 
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where, ζ(⋅) is the Riemann Zeta function. 

Finally, using the estimators 
3

µ̂ and 2
ˆ
X
σ

′
, we can 

solve the above equations forthe variance and the third 
central moment, perhaps using a numerical software 

toobtain the estimators δ̂ and α̂ . Plugging α̂  and δ̂ into 

the mean equation above, weobtain the following 

estimator of the parameter µ: 
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Parameter Mittag-Leffler Distribution gML(α,1,µ) 

We start by emphasizing that this two-parameter version 
is different from what hadbeen studied in Cahoyet al. 

(2010), which is gML(α,1,µ= λ−α) in section 1 and from 

Cahoy (2013), which is gML(α,δ,µ= 1). If δ = 1 thenψ(1) = 

−C ,ψ(1)(1) = π2/6 and ψ(2)(1) = -2ζ(3). In addition: 
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From the first two moments we obtain the following 

closed-form expressions ofthe estimators ofα and µ: 
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Note that these estimators are always non-negative as 
required and are asymptotically unbiased as shown in 
Proposition 2 below. 

Proposition 2 

Let 
1 2
, ,...,

iid

n
X X X = gML(α, 1,µ). Then 

( )
( ) ( ) ( ) ( )( )4 2 2 4

2 2

ˆ

36 1 2 72 3
0, ,

36

d

n

N

α α

ψ α π ζ π

α µ

−

 + − −
 →
 
 

 (3.5) 

 
and 

 

( ) ( )2ˆˆ 0, , ,
d

n N n
µ

µ µ σ− → →∞  (3.6) 

 

where: 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

4 2 2 2 5

2

ˆ 2 4

22 42 4 2 2

2 4

6 2 144 ln 3

16

ln 2 36 1 72 1 3

.
16

b

µ

α α π α µ µ ζ
σ

µ π

µ α π ψ α π ζ

µ π

− − +

=

− − + + −

+

 (3.7) 

 

Proof 

The proof directly follows from the asymptotic 
normality of samplemoments and the multivariate delta 
method, where: 
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with the variance-covariance matrix: 
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( )2ˆ ˆ ˆ,
T

n X X
θ µ σ

′ ′
=  and ġ(⋅) = ∇ġ(θ)T is the gradient 

matrix. The above resultscan be used to approximate 

the (1-v)100% confidence intervals for α and µ. 

Generalized 3-Parameter Linnik Distribution 

gL(α,δ,µ) 

Applying the log transformation to the absolute value 
of the generalized Linnikrandom variable Y given in 
(2.5), we get an expression: 
 

1
,

d

Y U S
α

α

′ ′ ′= +  

 

where, S
α
′ = ln(|S|). The first four integer-order log-

moments of S
α
 (see, Cahoy(2012)) are as follows: 
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The moments above yield the same mean µY′ and the 

centered third order moment µ3 as in the previous 
subsection. The variance then can be calculated tobe: 
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Now the estimation approach employed in the 
previous subsection for the generalizedMittag-Leffler 

distribution gML(α,δ,µ) can also be applied in the 
present case. Theonly difference here lies in the formula 
for the variance being used in the minimizationprocess. 

2-Parameter Linnik Distribution gL(α,1,µ) 

We start by emphasizing that this two-parameter 
version is different from what hadbeen studied in Cahoy 

(2012), which is gL(α, 1, µ= λ−α) in the first un-

numberedequation in section 1. If δ = 1 then: 
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Moreover, we obtain the following closed-form 

expressions of the estimators of α and µ: 
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Proposition 3 

Let Y1, Y2,..., Yn ( )1 2
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Proof 

The proof directly follows from Proposition 2 above 
where: 
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and the components of the variance-covariance matrix Σ 
are given in the beginningof this subsection. The above 
results can be used to approximate the (1-

v)100%confidence intervals forα and µ. 

Testing Our Estimation Procedures on 

Simulated Data 

In this section we will test the performance of our 
estimators using simulated data.Furthermore, to quantify 
the performance errors we will calculate the mean bias: 
 

( )ˆ| | / ,MB Mean θ θ θ= −  
 
and the coefficient of variation: 
 

( ) ( )ˆ ˆ/CV StandardDevisyion Meanθ θ=  

 
for our estimators based on 1000 generated data samples 
for different parameter values. 
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Generalized Mittag-Leffler Distribution gML(α,δ,µ) 

For reproducibility, we used the optim function in R 

to minimize ( ) ( )
2 2

2 2

3 3
ˆ ˆ

X X
σ σ µ µ

′ ′
− + − with respect toαand δ 

using the initial value (0.1, 1). Note that expressionsfor 
2

X
σ

′
and µ3 are in Section 3.1. We emphasize that other 

built-in functions in Rlike the polygamma are used as 
well in the calculation process. However, the 
stablerandom variables are generated following Kanters 
formula (2.3) and C-M-S formula (2.6) due to their 
elegance. 

The point estimates of α̂ and δ̂ are then plugged in 

the point estimator µ̂ . FromTable 1, the bias of µ̂ is 

around 19% when n = 103 and is around 6% when n = 104. 
The CV fluctuates around 7.6% when n = 104. Generally, 
Table 1 indicated positiveresults for the proposed method. 

Generalized Linnik Distribution gL(α,δ,µ) 

In this subsection we are providing results from testing 
our estimation procedures for the parameters in the 
gL(α,δ,µ) family. The approach is similar to the one we 
used for the generalized Mittag-Leffler distributions. The 
initial value pair used is (α0, δ0) = (1, 1). We also 
calculated the same statistics for comparison. From 

Table 2, the bias went down to as little as 2.4% and 
went as high as 9.8% when n = 104. The CV ranges 
from 3.2% to 12.4%. Note that the results for n = 100 
suggest larger samples are needed or better 
optimization procedure (like the L-BFGS-B method in 
R). Also, the estimator for µ seems to get worse as the 
true α value approaches two. Overall, Table 2 provided 
favorable results for the proposed method especially for 
large samples. Note that in practice one can use 
bootstrap to quantify the variability of these estimators. 

Generalized Mittag-Leffler and Linnik 

Distributions in Modeling of Financial Data 

We applied the proposed models to the stock market 
data obtained from finance. yahoo.com. The Yahoo file 
contained the following variables about the daily index: 
Date, open, high, low, close, adj.close, volume, but we 
restricted our calculations to the daily high and adjusted 
closing indices to illustrate the proposed models. Of course, 
similar procedures can be applied to the rest of the dataset. 
The S&P 500 dataset covers the period from January 3, 
1950 to August 30, 2017, while Dow Jones contains the 
information from January 29, 1985 to August 30, 2017. Our 
analysis was thus based on 17, 025 daily S&P 500 data 
points and 8,215 Dow Jones Industrial Average indices. 

 

Table 1: The mean bias and CV of the proposed estimators for the gML(α,δ,µ) family using three different values of α, δ = 0.5 and 

µ = 1, for sample sizes n = 102, 103, 104 

  Bias   CV 

  ------------------------------------------------------ ---------------------------------------------------- 

α Est n = 102 103 104 n = 102 103 104 

0.5 α̂  0.177 0.067 0.021 0.286 0.105 0.027 

 δ̂  0.340 0.116 0.037 0.366 0.143 0.047 

 µ̂  0.607 0.193 0.063 0.558 0.231 0.080 

0.7 α̂  0.162 0.065 0.020 0.282 0.094 0.026 

 δ̂  0.323 0.113 0.037 0.378 0.140 0.045 

 µ̂  0.568 0.191 0.061 0.569 0.232 0.076 

0.95 α̂  0.143 0.059 0.018 0.260 0.090 0.024 

 δ̂  0.299 0.111 0.034 0.301 0.137 0.043 
 µ̂  0.536 0.190 0.058 0.474 0.229 0.073 

 

Table 2: The mean bias and CV of the proposed estimators for the gL(α,δ,µ) distribution using three different values of α, δ = 0.5 

and µ = 1, for sample sizes n = 102; 103; 104. 

  Bias    CV 

  ----------------------------------------------------------- ------------------------------------------------------- 

α Est n = 102 103 104 n = 102 103 104 

0.6 α̂  0.209 0.085 0.024 0.385 0.154 0.046 

 δ̂  0.360 0.129 0.039 0.393 0.160 0.052 

 µ̂  0.630 0.213 0.066 0.596 0.250 0.084 

1.2 α̂  0.278 0.077 0.025 0.575 0.144 0.032 

 δ̂  0.528 0.135 0.044 0.878 0.168 0.056 

 µ̂  0.936 0.232 0.076 1.240 0.281 0.095 

1.8 α̂  0.230 0.098 0.031 0.222 0.150 0.040 

 δ̂  1.507 0.009 0.056 1.377 0.220 0.071 

 µ̂  1.123 0.024 0.0981.507 0.372 0.124
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In the entire analyses, we generated 1000 bootstrap 

samples to calculate the point and the 95% interval 

estimates of the parameters. Wealso used the boundary 

corrected kernel density estimate of the evmix package 

of R to compare the fits of gML(α,δ,µ) and gML(α,1,µ) 

whenever possible. R scriptsare available from the 

authors upon request. 

Standard and Poor's (S&P) 500 Index 

It was originally called the "Composite Index" when 

it wasfirst introduced as astock market index in 1923. 
Three years later, the Composite Index expanded to90 

stocks and then in 1957 - to its current 500 and renamed 
S&P 500 Index. Itwas the first index to be published 

daily. It contains 500 of the largest stocks inthe United 
States. It is a benchmark for gauging the overall health of 

the largeAmerican companies and the U.S. stock market 
in general. More than $7.8 trillionis benchmarked to the 

index (Source: Investopedia). 

Comparison between gML(α,δ,µ) and gML(α,1,µ) 

Distributions 

We fitted the gML(α,δ,µ) to the absolute values of 

the negative adjusted closinglog returns (n = 9005) from 

the S&P 500 data. Table 3 clearly indicates that α 

isfavored to be less than one and δ to be larger than 

unity, which suggests that a two-parameter Mittag-

Leffler model is not adequate for this data. This 

observation isreinforced by the two-parameter estimates 

from the same table. In particular, ˆ 1α > despite the 

relatively large sample size. The estimates of µ are 

however similar. 
To examine the model fit, we simulated data (sample 

size 2n = 18, 010) fromthe estimated model above. 
Specifically, we superimposed the boundary corrected 
kernel density estimates of the simulated data on the 
histogram of the observeddata. Figure 1 shows the 
good fit of the proposed model to the daily 
negativeadjusted closing S&P 500 log returns. The 
graph demonstrates the advantage of flexibility of the 
three-parameter model as opposed to the two-parameter 

gML(α,1,µ) distribution in capturing the peak near the 

origin. With ˆ 1α > , plotting the fit of ˆ ˆ( ,1, )gML α µ is 

meaning less and computationally impossible. 

Comparison between gML(α,δ,µ) and gML(α,1,µ) 

Distributions 

We also analyzed the entire log adjusted closing 

returns (n = 17,025). From the estimates in Table 4, the 

estimates for δ favor values larger than one, which 

implies that the daily S&P 500 log returns (adjusted 

closing) are not adequately described by the two-

parameter Linnik distribution (δ = 1). Note that we are 

not able to get an interval estimate for δ as the optim 

function gives the same value as a root for every 

bootstrap sample. The table also indicates that is likely to 

be less than two and µ̂  is way larger than the estimate 

obtained in the preceding section. The two-parameter 

estimate of α exceeds two indicating a bad fit of the 

model to the data. But the estimates of µ from both two- 

and three-parameter models are comparable. 

Figure 2 confirms the good fit of the gL(α,δ,µ) family 

(using 2n = 33798 simulated observations) to the log 

adjusted closing returns. It also reveals that the 

flexibility of the proposed three-parameter gL(α,δ,µ) 

permits better capturing of the peak of the data at the 

origin. Note that the algorithm used in the calculation 

was not able to generate a comparable fit as α̂  is way 

larger than two (upper bound). 

Dow Jones Industrial Average Index 

The Dow Jones Industrial Average (DJIA) is a 
price-weighted average of 30 significant stocks traded 
on the New York Stock Exchange and the NASDAQ. 
The DJIA was invented by Charles Dow back in 1896. 
Often referred to as "the Dow," the DJIA is one of the 
oldest, single most-watched indices in the world and 
includes companies such as General Electric Company, 
the Walt Disney Company, Exxon Mobil Corporation 
and Microsoft Corporation. When the index was first 
launched, it included companies that were almost 
purely industrial in nature. The first components 
included railroads, cotton, gas, sugar, tobacco and oil 
companies. General Electric is the only one of the 
original Dow components that is still a part of the index 
in 2016. (Source: Investopedia). 

Comparison between gML(α,δ,µ) and gML(α,1,µ) 

Distributions 

The analysis here is similar to the one we carried out 

in the previous subsection and deals with the absolute 

values of the negative adjusted closing log returns (n = 4, 

359) from the Dow Jones index. The 95% CI for µ is 

between 154 and 173. The estimates of α strongly favor 

values less than unity. The point and interval estimates 

of δ indicate that δ>1, which implies superiority of the 

generalized gML(α,δ,µ) distribution for the absolute 

values of Dow daily Jones log returns over the 

gML(α,1,µ) distribution. Observe that the gML(α,1,µ) fit 

provides similar estimates for µ but not for α and that its 

kernel density estimate is missing as α̂ exceeds one. 

Again, as in the S&P 500 case discussed above, we 

constructed the graphs (using 2n = 8, 718 simulated 

observations) to investigate the model adequacy. The 

smoothed density of the gML(0.983, 1.211, 162.596) is in 

Figure 3. It basically confirms what we have already 

observed above, that is, the three-parameter model provides 
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more flexibility in capturing the peak of the 'cupping' near 

the origin than the two-parameter Mittag-Leffler 

distributions. 

Comparison between gL(α,δ,µ) and gL(α,1,µ) 

Distributions 

We also applied the generalized Linnik distribution to 
the whole adjusted closings of the daily Dow Jones log 

returns (n = 17, 025). Looking at the estimate of δ, , it is 
clear that the daily Dow Jones log returns (using the 

adjusted closing) cannot be adequately described by the 

two-parameter Linnik distribution (δ = 1). Moreover, the 

Table 6 shows α to be likely less than 1.9. 
Figure 4 shows the fits of the gL(α,δ,µ) and gL(α,1,µ) 

models. Notice that the algorithm was able to produce a 
comparable fit in this case even if α>2. Furthermore, it 
validates the previous observation that the two-parameter 
gL(α,δ = 1, µ) is not adequate for the description of the 
daily Dow Jones adjusted closing log returns especially in 
capturing the peak at the origin. 

 

 

 

Fig. 1: The histogram (using 150 bins) of the observed S&P 500 data and the kernel density plot (bandwidth = 0.001) of the 

simulated data using the obtained estimates 

 

 

 

 
Fig. 2: The histogram (using 150 bins) of the observed data and the kernel density plot (bandwidth = 0.001) of the simulated data 

using the obtained estimates superimposed on top 
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Fig. 3: The histogram (using 150 bins) of the observed data and the kernel density plot (bandwidth = 0.001) of the simulated data 

using the obtained estimates superimposed on top 

 

 
 
Fig. 4: The histogram (using 150 bins) of the observed data and the kernel density plots (bandwidth = 0.001) of the simulated data 

(red dashed for 2-parameter gL(α,δ = 1, µ) and solid blue for 3-parameter gL(α,δ, µ) using the obtained estimates 

 
Table 3: Parameter estimates for gML(α,δ,µ) and gML(α,1,µ) models applied to (S&P) 500 data 

Estimator Point 95% CI Point (δ = 1) 95% CI (δ = 1) 

α̂  0.993 (0.983, 1.003) 1.047 (1.038, 1.056) 

δ̂  1.163 (1.117, 1.212) 

µ̂  180.017 (170.500, 188.255) 183.470 (176.104, 191.190) 
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Table 4: Parameter estimates for gL(α,δ,µ) and gL(α,1,µ) models applied to (S&P) 500 data 

Estimator Point 95% CI Point (δ = 1) 95% CI (δ = 1) 

α̂  1.915 (1.881, 1.952) 2.445 (2.364, 2.529) 

δ̂  1.23 

µ̂  19115.36 (16255.82, 22675.40) 193059 (131357.3, 289028) 

 
Table 5: Parameter estimates for gML(α,δ,µ) model applied to Dow Jones data 

Estimator Point 95% CI Point (δ = 1) 95% CI (δ = 1) 

α̂  0.983 (0.974, 0.995) 1.050 (1.036, 1.061) 

δ̂  1.211 (1.153, 1.274) 

µ̂  162.596 (153.578, 173.375) 165.952 (157.062, 174.868) 

 
Table 6: Parameter estimates for gML(α,δ,µ) model applied to Dow Jones data 

Estimator Point estimate 95% CI Point (δ = 1) 95% CI (δ = 1) 

α̂  1.844 (1.803, 1.890) 2.258 (2.158, 2.366) 

δ̂  1.24 

µ̂  11762 (9685, 14605) 63024 (39507, 103585) 

 

Concluding Remarks 

The article proposes formal statistical inference 

procedures for the heavy-tailedthree-parameter 

generalized Linnik and three-parameter generalized 

Mittag-Lefflerfamilies of distributions. The models 

provide considerable flexibility in modelingstationary 

discrete-time processes. The consistency and 

unbiasedness of the pointestimators were 

computationally tested and seemed to be acceptable. 

Furthermore,the structural representations and the 

random number generation algorithms wereprovided 

for convenience. The paper provides guidance to how 

to distinguish different subcases of these models that 

exist in the literature. 

The heavy-tailed three-parameter generalized Linnik 

and generalized Mittag-Leffler models present evidence 

that the adjusted S&P 500 and Dow Jones log returns 

can obey these probabilistic laws. The comparison of the 

proposed three-parameter models with the two-parameter 

models clearly demonstrated inadequacy of the latter 

ones especially when one considers approximations 

around the origin in modeling daily log returns of stock 

market data (see also Kozubowski, 2001). 
Improvements of these procedures using robust, 

Bayesian approaches or moreefficient algorithms and the 
derivation of the trivariate or joint asymptotic 
distribution of the three point estimators would be worth 
exploring in the future. 
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