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Introduction 

Gröbner bases were first introduced in 1965, together 
with an algorithm to compute them (Buchberger 
Algorithm), by Bruno Buchberger in his Ph.D. thesis. He 
named them after his advisor Wolfgang Gröbner. In 
2007, Buchberger received the Association for 
Computing Machinery Paris Kanellakis Theory and 
Practice Award for this work. Accordingly, Buchberger 
and Kauers (2010) Gröbner bases methodology has been 
applied. In Mathematics, more specifically in computer 
algebra Gröbner basis is treated as a generating set of 
an ideal of a polynomial ring both in single variable 
and multivariable polynomial ring. Since Gröbner basis 
is treated as generators we can think of them as the 
greatest common divisors in a polynomial ring containing 
only one indeterminate. This is because ideals generated 
by two polynomials are equal to the ideal generated by the 
greatest common divisors of them. 

For multivariable polynomials, if a polynomial 
ring is Noetherian then ideals of this ring are finitely 
generated. In these settings, the idea of greatest 
common divisors as the principal generators of the 
polynomial ideals in one variable corresponds to the 
concept of reduced Gröbner basis. To understand the 
concept of Gröbner basis we provide some theorems 
associated with it. After all of these we concentrate on 
the main objective of this paper that is to propose an 

algorithm that can solve both linear and non linear 
equations with finite number of solutions with the 
help of Gröbner basis. However, many other authors 
like Lazard (1983), Mörtberg (2010), Nicholson (2012), 
Östlin (2014), Trott (2006) and Ufuktepe and Bacak 
(2005) discussed on Gröbner-Bases, Gaussian 
elimination and resolution of systems of algebraic 
equations and its  applications of graph coloring.  

Finally we conclude this paper with coloring the 
vertex of a graph with Gröbner basis methods. Proper 
coloring of a graph is to assign colors either to vertices 
of the graph or to the edges in such a way that adjacent 
vertices or edges are colored with different colors. In this 
study we colored the vertices instead of coloring the 
edges. We also provide an example that illustrate the 
algorithm to show how vertices of a graph can be 
colored. At the end we also provide some future 
directions to the reader. 

Properties and Basic Definitions 

In this section we present some preliminary 
concepts that will help the reader to understand the 
subsequent topics. 

Definition 1 

The set of all polynomials in an indeterminate x 
denoted by R[x] with coefficients from the ring R is 
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called a polynomial ring. The ring R is defined with 
its usual binary operations addition and multiplication 
and it is a subset of the polynomial ring i.e., R⊂R[x]. 
The notion of single variable polynomials can be 
extended to multivariable polynomials and thus gives 
rise to polynomial ring with more than one 
indeterminate. The ring of polynomials containing 
more than one indeterminate is denoted by R[x1, x2,...., 
xn] (Fraleigh, 2003). 

Proposition 1 

Let {f1, f2,..., fn} be a subset of a ring R. Then the set 

1

:

n

i i i

i

I q f q R
=

 
= ∈ 
 
∑ is an ideal. Here this ideal I is called 

the ideal generated by {f1, f2,..., fn} and denoted by I = 
<f1, f2,..., fn> (Maya, 2009). 

Theorem 2 

If R is a commutative Noetherian ring with identity 
then the polynomial ring R[x] is also Noetherian 
(Paley and Weichsel, 1966). 

Lemma 3 

A polynomial ring with finite number of variables is 
a Noetherian ring. 

Definition 2 

Let {f1, f2,..., ft} be polynomials in k[x1, x2,..., xn]. 
Then we define V(f) to be the solution set of the equation 
f = 0. Mathematically: 
 

( ) ( ) ( ){ }1 2 3 1 2 3
, , ,..., | , , ,..., 0

n

n n
V f m m m m k f m m m m= ∈ =  

 
Here we call V(f) to be the variety defined by f. 

Theorem 4 

For a set of polynomial {f1, f2,..., ft} and I = <f1, f2,..., 
ft> (Maya, 2009): 
 

( ) ( )1 2
, ,...,

t
V I V f f f=  

 
Proof 

Let (m1, m2, m3,..., mn)∈V(I) and since fi ∈I and f(m1, 
m2, m3,..., mn) implies that V(I)⊂V(f1, f2,..., ft). It is 
enough to show that V(f1, f2,..., ft) ⊂V(I): 

Let f∈I, so 
1

t

i i

i

f h f
=

=∑ for some hi∈k[x1,...,xn], we get: 
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=

=
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So V(f1, f2,..., ft)⊂V(I). Hence we can write V(f1, f2,..., 
ft) = V(I). 

Theorem 5 

Let k be an algebraically closed field and let I ⊂k(x1, 
x2,..., xn). Then the variety, V(I) would be empty if and 
only if I = k[x1, x2,..., xn], this theorem is also known as 
Weak Nullstellensatz theorem. 

The importance of this theorem is that it tells us that 
every proper ideal has a solution in an algebraically 
closed field. The proof of this theorem is beyond this 
paper. But this theorem motivates the next lemma. 

Lemma 6 

If V (I) be empty then 1∈I (Adams et al., 1994). 

Proof 

For k to be a field and I = k [x1,.., xn] alternatively 
implies 1∈I. 

For the converse case if 1∈I then for any arbitrary 
element h in k[x1, x2,..., xn], by the definition of an ideal 
1.h∈I or h∈I. So every element of k[x1, x2,..., xn] is also 
an element of I. Hence I = k[x1, x2,..., xn] and by weak 
Nullstellensatz, we can say the variety would be empty. 

Theorem 7 

For k k= an ideal I ≠ [x1,..., xn] that satisfies one of 
the following three conditions is called a zero 
dimensional ideal (Adams et al., 1994): 
 
• The variety ( )

k
V I  is finite 

• For each i = 1,2,...,n there exists j∈{1,2,...,t} such 

that ( ) v

i i
LP g x=  for some v∈N 

• The dimension of a k vector space k[x1,..., xn]/I is finite 
 

It is to be noted that the above three conditions are 
equivalent to each other i.e., if one condition is satisfied 
then the other two conditions will be satisfied 
automatically. 

Definition 3 

A set of non-zero polynomials G = {f1, f2,..., ft} in 
an ideal I, will be called Gröbner basis for the ideal if 
and only if for every f in the ideal, there exists 
i∈{1,2,...,t} such that LP(fi) divides LP(f). In other 
words if G is the Gröbner basis for the ideal I, then 
there are no non zero polynomials in I reduced with 
respect to G (Adams et al., 1994). 

A Gröbner basis is a set of polynomials enjoying 
certain properties that allow algorithmic solutions for 
many fundamental problems in mathematics. 
Throughout this paper we are going to use the following 
algorithm proposed by Buchberger to find the Gröbner 
basis for an ideal of a polynomial ring. 
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Buchberger’s Algorithm (Adams et al., 1994) 

Input: F = {f1, f2,..., fs} ⊆ k[x1, x2,..., xn] 
Output: G = {g1, g2,..., gt} a Gröbner basis for <f1, f2,..., fs> 
Initialization: 
G: F, Λ: {{fi, fj}| fi ≠ fj∈G} 
While Λ ≠ Φ Do 

Choose any {f, g}∈Λ, Λ = Λ-{f, g} ( ),

G
S f g h+→  

Where h is reduced with respect to G. 
If h ≠ 0 Then 

{ }{ }

{ }

, |

:

u h u G

G G h

Λ = Λ∪ ∈

= ∪

 

 
Minimal and Reduced Gröbner Basis (Adams et al., 

1994; Buchberger and Winkler, 1998; Maya, 2009) 

In the last Section we saw how to compute Gröbner 
basis. However, the Gröbner basis obtained from 
Buchberger’s algorithm may not be unique. In this 
section we show by putting certain conditions on 
polynomials in the Gröbner basis, to obtain uniqueness. 

Definition 4 

If G = {g1, g2,..., gs} be a Gröbner basis and if LC(gi) 
for all i, i ≠ j, LP(gj) is not divisible by LP(gi), then G is 
called the minimal Gröbner basis (Adams et al., 1994). 

Corollary 8 

Let I be the ideal and G = {g1,g2,..., gs} be its Gröbner 
basis. To get a minimal Gröbner basis find all gi such 
that LP(gj) divides LP(gi) and eliminate them and divide 
each remaining gi by LC(gi) (Adams et al., 1994). 

Definition 5 

A Gröbner basis G = {g1, g2,..., gs} will be called 
reduce if, LC(gi) for all i and gi is reduce with respect to 
G-{gi}. 

Corollary 9 

If G = {g1, g2,..., gs} be the minimal Gröbner basis, 
then consider the following reductions: 
 

1

2

1

2

.....

.....

s

R

s

R

s

R

s s

g r

g r

g r

+

+

+

→

→
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Where: 
r1 = Reduced with respect to R1 and R1{g2,..., gs} 
r2 = Reduced with respect to R2 and R2{g3,..., gs} 
rs = Reduced with respect to Rs and {r1, r2,......,rs-1} 

Then R = {r1, r2,......,rs-1} is called the reduced 
Gröbner basis for the ideal I. 

Corollary 10 

Let I be a zero dimensional ideal and G be the 
reduced Gröbner basis for I with respect to lex term 
order with x1<x2<x3<....<xn. 

Then we can order g1, g2,..., gt in such a way that g1 
contains only the variable x1, g2 contains only the 
variable x1 and x2 and LP(g2) is a power of x2, g3 contains 

only the variable x1, x2 and x3 and LP(g3) is a power of x3 
and so forth until g. The detailed proof can be found in 
(Adams et al., 1994). 

Thus in order to solve system of equations by a zero 
dimensional ideal I, it suffices to have an algorithm to 
find the roots of polynomial in one variable as the 

Gröbner basis for a zero dimensional ideal I forms a 
triangular form. That is we first solve the equation for 
one variable as g1 = 1, for each solution α of g1 = 1, we 

solve the equation g2(α,x2) = 0. We continue this manner 
all the way till we get, gn = 0. 

Main Results 

The results of this work are depending on algorithms. 
In this section we introduce the following algorithm for 
solving system of linear and nonlinear equations with a 
finite number of solutions. 

Algorithm for Solving System of Linear and 

Nonlinear Equations 

Step 1: Define functions, {f1, f2,..., fm} in n variables, (x1, 
x2,..., xn), where m≥n. 

Step 2: Generate I = <f1, f2,...,fm> ⊆ k[x1, x2,..., xn] 
Step 3: Compute the reduced Gröbner basis G for I = 

<f1, f2,...,fm>, if G = {1} then the system has no 
solution and stop, otherwise go to next step. 

Step 4: Compute the intersection process to eliminate 
variables, namely: 

 

( )

1 2 1

1 2 2

1 2

1

, ,...,

, ,...,

............................

............................ *

............................
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n
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Step 5: Take back substitution into equation (*). Firstly, 
solve for G∩k[x1] and it gives x1 and substitute 
x1 to in G∩k[x1, x2] to get x2. Continue this 
process to find x3,..., xn-1. After getting {x1, x2,..., 
xn-1} seek for xn into G. 

Step 6: Common solution, (x1, x2,..., xn) of the system 
{f1, f2,..., fn}. 

Stability Analysis 

To state the stability analysis we should study the 
quotient ring Q[x]/I. As it is guaranteed from theorem 7 that 
if a system of equation has m roots then the quotient ring is 
an m dimensional linear space; i.e., dimension of the ring 
states the number of solutions of the system. By quotient 
ring we mean to replace an element of Q[x] by an element 
of Q[x]/I and it is uniquely defined by the monomial 
ordering imposed on the ideal generated by the polynomials 
in the system. So to find a solution of a system of equations 
we need to set up a basis for the polynomials and for 
elements outside the basis we need to worry a little. But if 
the basis for I is a Gröbner basis then the possibility of 
unexpected solutions is rulled out. So we can certainly say 
that solutions in this way is stable since we use Gröbner 
basis as a standard basis. For comparison we also provide 
some built-in codes to show the accuracy of our algorithm. 

Illustrative and Numerical Examples 

We now illustrate our algorithm in case of system of 
linear equations first then for the system of nonlinear 
equations by examples (Anton, 2010). 

Example 1 

For the following set of linear equations: 
 

1 2 3

1 2 3 4

1 2 3 4

1 2 3 4

2 2 0

4 4 7

3 7 9 4

2 4 6 6

x x x

x x x x

x x x x

x x x x

+ + =

+ + + =

+ + + =

+ + + = −

 

 
Solution 

Step 1: Define the stated linear equations in the 
following way: 

 

1 1 2 3

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

: 2 2

: 4 4 7

: 3 7 9 4

: 2 4 6 6

f x x x

f x x x x

f x x x x

f x x x x

= + +

= + + + −

= + + + −

= + + + +

 

 
Step 2: Form an ideal generated by the above 

polynomials i.e., I = <f1, f2, f3, f4> 
Step 3: The reduced Gröbner basis is: 

{ }4 3 2 1
58 5 , 7 5 , 36 5 ,79 5x x x x+ − + − + +  

 
 We can see that the reduced Gröbner basis G ≠ 

{1}. So proceed to step 4. 
Step 4: In this step we get: 
 

{ }

{ }

{ }

1 2 3 3 2 1

1 2 2 1

1 1

, , 7 5 , 36 5 ,79 5

, 36 5 ,79 5

79 5

G k x x x x x x

G k x x x x

G k x x

  = − + − + + 

  = − + + 

  = + 

∩

∩

∩

 

 
Step 5: We know solve for G ∩ k[x1] = {79+5x1} and 

hence get 
1

79

5
x = − . 

 

Substituting 
1

79

5
x = − into G∩k[x1, x2] = {36+5x2, 

79+5x1} gives us 2

36

5
x =  next substitute (x1, x2) into 

G∩k[x1, x2, x3] = {-7+5x3, -36+5x2, 79+5x1} to get 

3

7

5
x = . 

Finally we seek for x4 into G and thereby get: 
 

( )1 2 3 4

79 36 7 58
, , , , , ,

5 5 5 5
x x x x

 
= − − 
 

 

 
We confirm the whole process by Mathematica 9.0.1 

as follows: 
 

{ } { }

{ } { } { }

{ } { } { }

1 1 2 3 2 1 2 3 4

3 1 2 3 4 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 1 2 3 4 4

1 2 1 2 3 4 4 3

: 2 ; : 4 4 7;

: 3 7 9 4; : 2 4 6 6;

, , , , , , , ;

, , , , , ;

, , , , , ,

f x x x f x x x x

f x x x x f x x x x

G GroebnerBasic f f f f x x x x

Gx x x GroebnerBasis G x x x x x

Gx x GroebnerBasis G x x x x x x

= + + = + + + −

= + + + − = + + + +

 =  

 =  

=

{ } { } { }

[ ]

1 1 2 3 4 4 3 2

1 2 3 1 2 3

1 2 1 2

1 1

;

, , , , , , , ;

Pr int " :",

Pr int " , , ",

Pr int " , ",

Pr int " ",

58
:

Gx GroebnerBasis G x x x x x x x

ThereducedGrobner Basis is G

G K x x x Gx x x

G K x x Gx x

G K x Gx

ThereducedGrobner Basis is


 

 =  

   =  

   =  

   =  

+

∩

∩

∩

{ }

{ }

{ }

4 3

2 1

1 2 3 3 2 1

1 2 2 1

1 1

5 , 7 5 ,

36 5 ,79 5

, , 7 5 , 36 5 ,79 5

, 36 5 ,79 5

79 5

x x

x x

G K x x x x x x

G K x x x x

G K x x

 − + 
 
− + +  

  = − + − + + 

  = − + + 

  = + 

∩

∩

∩
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Verification 
 
In[1]:= f1:= x1+2x2+x3; f2:= x1+4x2+4x3+x4-7; 
 f3:= 3x1+7x2+9x3+x4-4; f4:= 2x1+2x2+6x3+x4+6; 
 Solve [{f1 == 0, f2 == 0, f3 == 0, f4 == 0}, {x1, x2, 

x3, x4}] 

Out[3]= 
1 2 3 4

79 36 7 58
, , ,

5 5 5 5
x x x x

  
→ − → − → − → − 

  
 

 
Example 2 

Suppose we want to find the common solutions for 
the following nonlinear equations: 
 

2

2

2

2

2 2 2 2

1

1

1

1

1

x y z w

x y z w

x y z w

x y z w

x y z w

+ + + =

+ + + =

+ + + =

+ + + =

+ + + =

 

 
Solution 

Step 1: Define the stated nonlinear equations in the 
following way: 

 
2

1

2

2

2

3

2

4

2 2 2 2

5

: 1,

: 1

: 1,

: 1

: 1

f x y z w

f x y z w

f x y z w

f x y z w

f x y z w

= + + + −

= + + + −

= + + + −

= + + + −

= + + + −

 

 
Step 2: Form an ideal generated by the above 

polynomials i.e., I = <f1, f2, f3, f4, f5>. 
Step 3: The reduced Gröbner basis is: 
 

{ }2 2 2
, , , , , 1w w z z wy yz y y w x y z− + − + − + − + + + +  

 
 We can see that the reduced Gröbner basis G ≠ 

{1}. So proceed to step 4. 
Step 4: In this step we get: 
 

[ ] { }

[ ] { }

[ ] { }

2 2 2

2 2

2

, , , , , , ,

, , ,

G k x y z z z yz y y xy xz x x

G k x y y y xy x x

G k x x x

= − + − + − +

= − + − +

= − +

∩

∩

∩

 

 
Step 5: We now seek to solve for G∩k[x] = {-x + x2} 

and hence get x = 0, 1. 
 

Substituting x = 0 into G∩k[x, y] = {-y + y2, xy, -x + 
x

2} gives us y = 0, 1 and then x = 1 into G∩k[x, y] = {-y 
+ y2, xy, -x + x2} gives us -y + y2 = 0 and y = 0. 

Therefore y = 0 is the only solution. So all the way to 
now we have (0,0), (0,1), (1,0) Again putting all of these in: 
 

[ ] { }2 2 2
, , , , , , ,G k x y z z z yz y y xy xz x x= − + − + − +∩  

 
At (x, y) = (0,0) we get z = 0,1. 
At (x, y) = (0,1), we get –z + z2 = 0, z = 0. Therefore z 

= 0 is the only solution. Similarly (x, y) = (1,0) we get –z 
+ z2 = 0, z = 0. Therefore z = 0 is the only solution. Thus, 
so far we have (0,0,0), (0,0,1), (0,1,0), (1,0,0). 

Finally, we seek for winto G  and thereby get 
(0,0,0,1), (0,0,1,0), (0,1,0,0), (0,1,0,0). 

Verification 
 
In[1]:= f1:= x

2 + y + z +w-1; 
 f2:= x + y

2 + z + w-1; 
 f3:= x

 + y + z2 + w-1; 
 f4:= x

 + y + z + w2-1; 
 f5:= x

2+ y2 + z2 +w2-1; 
 Solve [{f1 == 0, f2 == 0, f3 == 0, f4 == 0, f5 == 

0}, {x, y, z, w}] 
Out[6] = {{x→0, y→0, z→0, w→1}, { x→0, y→0, z→1, 

w→0}, 
 {x→0, y→1, z→0, w→0}, {x→1, y→0, z→0, 

w→0}} 
 
Example 3 

In this example we are going to show that equations 
that are not solvable produce a reduced Gröbner basis 
containing only 1. Let us solve the following system: 
 

2 2
0, 1 0, 2 0x y y x y+ = − = − =  

 
Solution 

Step 1: Define the stated nonlinear equations in the 
following way: 

 
2 2

1 2 3
: , : 1, : 2f x y f y f x y= + = − = −  

 
Step 2: Form an ideal generated by the above 

polynomials i.e., I = <f1, f2, f3>. 
Step 3: Since the reduced Gröbner basis{1}, it is 

confirmed by our algorithm that the above 
system of equations have no solution. 

Verification 

 
In[7]:= f1:= x + y; 
 f2:= y

2-1; 
 f5:= x

2-2y; 
 Solve [{f1 == 0, f2 == 0, f3 == 0}, {x, y}] 
Out[10]= {} 
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Applications 

In this section we show graph Coloring by using 
Gröbner Basis. If X represent the vertices and E 
represents the edges then the pair G(X,E) is called a 
graph and each vertices will be connected by associated 
edges (Gallinger, 2013). In this section we want to deal 
with vertex coloring of a graph G(X,E) with strictly 
maintaining the fact that two distinct vertices connected 
by an edge have different colors. By vertex coloring we 
mean that if a given graph has n vertexes then we want 
to color those vertices in such a way that no two adjacent 
vertexes share the same color. The first question that 
arises is that whether a graph is colorable or not? We are 
going to answer this question by using Gröbner basis. 
For this we first need to express this problem as a 
Gröbner basis problem, i.e., we must represent the graph 
as polynomials. Taking this into account, we introduce 
here a general algorithm for the vertexes to be colored 
and we then illustrate our algorithm for assigning three 
(3) different colors for n vertices. 

Graph coloring can be used in many different ways. 
To understand graph coloring we need to determine how 
to express a graph in terms of polynomials and the next 
question is whether a graph is colorable or not? So 
before getting started we need to study some theorems 
relevant to vertex coloring of a graph G(X,E). 

Theorem 11 

For 3 3 3

1 1 2 2
, ,....,

n n
I x x x x x x=< − − − >  in Z3[x1,..., xn] 

makes sure that the vertices xi∈G(X,E) to have any of the 
three {-1,0,1} (Gallinger, 2013). 

Proof 

Let V represents the variety of the ideal I and for f∈I 
we have V(I) = {(x1, x2,..., xn)|f(x1, x2,..., xn) = 0} and 
since f∈I we can write the variety as V(I) = {(x1, x2,..., 
xn)| 

3
0

i i
x x− = . Now if the vertices be any of the three {-1, 

0, 1} then we have f(xi) = 0. x So each of them can be 
colored any of the three {-1,0,1}. 

That is in this way we have a polynomial 
representation for our vertices. We now need another 
polynomial representation such that no two adjacent 
vertices have same color. The polynomial f(xi, xj) = 

2 2
1

i i j j
x x x x+ + − will suffice this problem and we will 

prove this now in the next theorem. 

Theorem 12 

For the two vertices xi, xj in G(X,E), will not share the 
same color if and only if f(xi, xj) = 0 (Gallinger, 2013). 

Proof 

First we consider the vertices to be different and think 
of them as {(-1,0),(-1,1),(0,-1),(0,1),(1,0),(1,-1)} and since 

f(xi, xj) = 
2 2

1
i i j j
x x x x+ + − is symmetric for any of the three 

we get f(xi, xj) = 0. This means that if the vertices are 
colored in a different way we will always get f(xi, xj) = 0. 

For the converse case let f(xi, xj) = 0 then we need to 
show that two vertices are colored in a different way. 
Now suppose we have a contradiction as f(xi, xj) ≠ 0 and 
the vertices are same. This gives vertices to be {(-1,-
1),(0,0),(1,1)}. Now if we substitute these into f(xi, xj) = 
0 then f(xi, xj) ≠ 0 and hence we have a contradiction. So 
two adjacent vertices will be colored in a different way if 
and only if f(xi, xj) = 0. 

Thus so far we know we can color two vertices of an 
edge by two different colors. Now we treat this 
polynomial and the previous polynomials as a generator 
of the ideal I, so 3 3 2 2

,

i i i i j j
I X X X X X X=< − + + > , 1≤ i ≤ 

n, i ≠ j. It is now easy to see that the Gröbner basis for 
this ideal I would determine polynomials for the 
coloring. Now it is time to answer the question that 
whether a graph G(X,E) is colorable or not. 

Theorem 13 

A graph G(X,E) is colorable if and only if V (I) is not 
empty. 

Algorithm for the Vertex Coloring of a Graph 

In this section we introduce a general algorithm to 
color n distinct vertices with r different colors. We also 
keep track of the fact that no two adjacent vertices share 
the same color. 

Algorithm for Vertex Coloring 

Step 1: Consider a graph, G(X,E) and need to assign r 
different colors to n distinct vertices. 

Step 2: If a graph, G(X,E) has n vertices and it has to be 
colored in r different colors then we form 
polynomials from the graph as follows: 

 
1 2 2

0, ... 1 0,

1 ,

r r r r r

i i i i j i j j
X X X X X X X X

i n i j

− −

− = + + + + − =

≤ ≤ ≠

 

 
 Here Xi and Xj must be connected by an edge. 
Step 3: Generate an ideal I by the polynomials in Step 2. 
Step 4: To determine whether graph, G(X,E) is colorable 

or not. In order to do this we compute the variety 
of the ideal generated by I. If V (I) = Φ, coloring 
is possible and proceed to Step 5. 

Step 5: Compute the reduced Gröbner basis, Gr for the 
ideal I of the polynomials in step 2. 

Step 6: Solve reduced Gröbner basis, Gr and assign 
different colors to vertices connected by edges. 
To assign this color solutions that possess same 
value will be colored with a single color and 
solutions that possess different values will be 
colored with different colors. 



Haridas Kumar Das and Nasim Reza / Journal of Mathematics and Statistics 2018, Volume 14: 175.182 

DOI: 10.3844/jmssp.2018.175.182 

 

181 

It is to be noticed here that graph coloring in not 
unique in the sense we can have a graph colored in many 
different ways. Next we elaborate these steps in three 
and four coloring of a graph, G(X,E). 

Illustration of Graph Coloring 

In this section we are going to illustrate our algorithm 
with an example to specifically show how three coloring 
of a graph can be viewed according to our algorithm. 

Example 4 

Suppose we want to color the vertices of the following 
graph with three different colors (Adams et al., 1994). 

Solution 

We first use the lexicographical ordering and then we 
create from the above figure the polynomials that will 
determine the coloring. So the polynomials are: 
 

3 3 3 3

1 1 2 2 3 3 4 4

3 3 3 3

5 5 6 6 7 7 8 8

, , , ,

, , ,

x x x x x x x x

x x x x x x x x

− − − −

− − − −

 

 
And the following polynomials generated from edges: 

 
2 2

1 1 1 2 2

2 2

2 1 1 5 5

2 2

3 1 1 6 6

2 2

4 2 1 3 3

2 2

5 2 2 4 4

2 2

6 2 2 8 8

2 2

7 3 3 4 4

2 2

8 3 3 8 8

2 2

9 4 4 5 5

2 2

10 4 4 7 7

2 2

11 5 5 6 6

1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

f x x x x

f x x x x

f x x x x

f x x x x

f x x x x

f x x x x

f x x x x

f x x x x

f x x x x

f x x x x

f x x x x

= + + −

= + + −

= + + −

= + + −

= + + −

= + + −

= + + −

= + + −

= + + −

= + + −

= + + −

2 2

12 5 5 7 7

2 2

13 6 6 7 7

2 2

14 7 7 8 8

1,

1,

1

f x x x x

f x x x x

f x x x x

= + + −

= + + −

= + + −

 

 
And since we want to deal with Gröbner basis we use 

these polynomials as generators of the ideal I. For a 
better generator of the ideal I we compute the reduced 
Gröbner basis for the ideal I as follows: 
 

3 2 2

8 8 7 7 8 8 6 8 5 7 8

4 8 3 7 2 7 8 1 7

, 1 , , ,

, , ,

x x x x x x x x x x x
G

x x x x x x x x x

 − + − + + + − + + 
=  

− − + + −  
 

 
Next we solve this to obtain our color combinations 

and the solutions are as follows: 
 

1 2 3 4

5 6 7 8

0, 1, 0, 1,

1, 1, 0, 1

x x x x

x x x x

 = = = = − 
 

= = − = = −  
 

We see that the sets {x1, x3, x7}, {x2, x5}, {x4, x6, x8} 
share the same color. 

Now let us determine the colors from the Gröbner 
basis: 
• x1, x3, x7 are colored green as they posses 0. 

(Arbitrary Colors) 
• x4, x6, x8 are colored red as they posses -1 
• x2, x5 are colored blue as they posses 1 So the graph 

would look like 

 
The Fig. 1 shows a graph with eight vertices and the 

Fig. 2 shows the same vertices with three different colors 
using our algorithm. 
 

 
 

Fig. 1: Graph of coloring 

 

 
 

Fig. 2: Graph of 3 coloring 
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Conclusion 

We discussed about how we can use Gröbner basis 
on ideals of a polynomial rings. Throughout this paper 
we tried to give Mathematica 9.0.1 codes to calculate 
the arithmetic on polynomial ideals by Gröbner basis. 
We also presented the idea of a zero dimensional ideal 
and use of this ideal to solve system of polynomial 
equations. Here we can easily understand which of the 
problems are solvable by Gröbner basis and which are 
not. We then introduced an algorithm for solving 
system of polynomial equations in the light of 
polynomial ideals and their intersections. Although 
the system of polynomial equations having infinite 
number of solutions, it cannot be solved with the 
algorithm discussed in this study. Finally, we 
introduced how we can use Gröbner basis to color 
vertices of a given graph. 
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