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Abstract: In this paper we formalize some fundamental concepts of 

probability theory such as the axiomatic definition of probability 

space, random variables and their characteristics, in the Calculus of 

Inductive Constructions, which is a variant of type theory and the 

foundation for the proof assistant COQ. In a type theory every term 

and proposition should have a type, so in our formalizations we 

assign an appropriate type to each object in order to create a 

framework where further development of formalized probability 

theory will be possible. Our formalizations are based on mathematical 

results developed in the COQ standard library; we use mainly the 

parts with logic and formalized real analysis. In the future we aim to 

create COQ coding for our formalizations of probability concepts and 

theorems. In this paper the definitions and some proofs are presented 

as flag-style derivations while other proofs are more informal. 
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1. Introduction 

Formalizing mathematics in an axiomatic theory 

makes mathematical results and applications more reliable 

and provides assurance of their validity. In recent years 

several parts of mathematics were formalized in type 

theories. One of the books on types theories is 

(Nederpelt and Geuvers, 2014); it describes formal 

theories from λ-calculus to the calculus of 

constructions and contains examples of formalizing 

mathematics in such theories. Type theories underlie proof 

assistants, so formalizing mathematics in a type theory 

enables the use of computers for checking the correctness 

of mathematical proofs. There exist several proof 

assistants. Here we consider the proof assistant COQ 

(named after its creator Thierry Coquand) and the formal 

type theory Calculus of Inductive Constructions (COIC), 

which is the foundation of COQ. COQ and COIC are 

described in the book (Bertot and Casteran, 2014) and 

the COQ website (Coq Development Team). The 

website contains, among other things, a reference manual 

and the COQ standard library (which we will further call 

just the Library). The Library contains formalizations of 

a significant part of mathematics in COQ, including 

logic, natural numbers, integers, real numbers, limits, 

series, Riemann integral, algebraic structures etc. 

Probability theory has not been developed in COIC 

except some fragments such as finite probability 

distributions in (Moreira, 2012). In this paper we 

formalize the general axiomatic approach to probability 

developed by Kolmogorov (1950); a more recent 

presentation of this approach can be found, for example, 

in (Rosenthal, 2006). 

Formalizing mathematical topics in COQ starts with 

formalizing them in the underlying theory COIC; then 

computer coding follows. In this paper we formalize in 

COIC some fundamental probability concepts; coding 

the results in COQ is a task for the future. The 

developments in this paper are based on the concepts and 

theorems that are already formalized in COIC/COQ and 

presented in the Library. Logical connectives and the 

constant False are defined in COIC/COQ; we denote ⊥ = 

False. In particular, ¬P denotes (P→⊥) and we have: 

 

                      _ : : , .False ind P Prop P∀ ⊥→   (1) 

 

One of the main ideas in type theories is that every 

object has a type. In this paper we endeavour to assign 

appropriate types to fundamental probability concepts in 

order to create a framework where further development 

of formalized probability theory will be possible. 

In Section 2 we axiomatically define a probability 

space, in Section 3 we give formal definitions of 



Farida Kachapova / Journal of Mathematics and Statistics 2018, Volume 14: 209.218 

DOI: 10.3844/jmssp.2018.209.218 

 

210 

random variables and related concepts. In Section 4 

we formalize concepts related to discrete random 

variables, including their numerical characteristics. In 

Section 5 we study random vectors and their 

numerical characteristics and in Section 6 we look at 

continuous random variables. All this is done within 

the theory COIC. For better readability our 

presentation of results is not strictly formal. In 

definitions and some proofs we use the flag-style 

derivation described in (Nederpelt and Geuvers, 

2014), while other proofs are more informal. Often we 

use implicit variables as is done in COIC/COQ and in 

(Nederpelt and Geuvers, 2014). 

2. Probability Space 

2.1. Some Facts about Sets 

We fix a non-empty universal set U that denotes the 

sample space (the set of all outcomes): 

 

 
 

The variable ω will be used for objects of type U 

(outcomes). 

The Library introduces subsets of U as objects of 

type U→ Prop, that is predicates on U. 

 

 
 

Here T denotes ⊥→⊥. This flag-style diagram 

defines the power set P_set(U) of U, a complement A
c

 

of a set A, the empty set ∅ and the full set Ω. In a type 

theory every object should have a type. So when we 

introduce a variable or a constant we indicate its type 

immediately after its name (the type is separated from 

the name by a colon). 

The Library has definitions of set operations such as 

Union(B C), Intersection(B C) and Setminus(B C), which 

we denote B∪C, B∩C and B\C, respectively. 

As usual, B⊆C means ∀ω: U, (ω∈B → ω∈C), that is 

∀ω: U, (Bω→Cω). The Extensionality axiom from 

COIC/COQ can be written as: 

       ( ): : _ , .ext B C P set U B C C B B C∀ ⊆ ∧ ⊆ → =  (2) 

 

As in the book (Nederpelt and Geuvers, 2014) we 

will use the notation {x: S | Ax} for λx: S.Ax, where A is 

a predicate. 

Lemma 2.1 

1) Ω
c

 = ∅. 

2) ∀B: P_set(U), (B
c

)
c

 = B. 

Proof 

1) In the first part of the following flag-style 

derivation we use the rule (1) for False elimination and 

in the second part the Extensionality axiom (2). 

 

 
 

In the second to last step we used the rule for 

conjunction introduction. 

2) Clearly, this statement does not hold in a 

constructive theory. So in the second part of the 

following derivation we use a classical logic. 
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In the line with a4 we are using the classical axiom for 

elimination of double negation, dne: ∀A: Prop, ¬¬ A→A. 

In the last line we are using the Extensionality axiom (2).  ■ 

Lemma 2.2 

1) ∅
c

 = Ω. 

2) ∀B: P_set(U), B∪B
c

 = Ω. 

3) ∀B: P_set(U), B∩B
c

 = ∅. 

4) ∀B C: P_set(U), (B∪C)
c

 = B
c

∩C
c

. 

5) ∀B C: P_set(U), (B∩C)
c

 = B
c

∪C
c

. 

 

Proof 

Similarly to the previous lemma, the proofs are 

derived by using definitions and lemmas from the 

Ensembles sub-library of the Library.   ■ 

Next we define a countable intersection
n∈

∩
N

 An and a 

countable union
n∈

∪
N

 An: 

 
 

Thus, 
n∈

∪
N

 An is defined as ( )( )
c

c

n

An
∈

∩
N

, which means 

we are using a classical logic. 

Lemma 2.3 

1) ( ) ( )( ): .

c

c

n n

An n nat Anλ
∈ ∈

=∩ ∪
N N

. 

2) ( ) ( )( ): .

c

c

n n

An n nat Anλ
∈ ∈

=∪ ∩
N N

. 

Proof 

Follows from the definitions.   ■ 

We will use the expression "An are disjoint" as an 

abbreviation for (∀i j: nat, i ≠ j → Ai ∩ Aj = ∅). 

2.1. Definition of Probability Space 

In the Kolmogorov's axiomatics a probability 

space is defined as a triple (U, F, P), where U is a 

sample space, F is a sigma-field of subsets of U and P 

is a probability measure on (U, F). So first we define 

a sigma-field F as a collection of subsets of U 

satisfying three given conditions: 
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Theorem 2.4. Properties of a Sigma-Field. 

Suppose F is a sigma-field on U. Then the 

following hold. 

1) ∅∈F. 

2) ∀B C: P_set(U), B∈F ∧ C∈F → B∩C∈F. 

3) ∀B C: P_set(U), B∈F ∧C∈F→B\C∈F. 

4) ∀A: nat → P_set(U), (∀n: nat, An∈F)→ 
n∈

∪
N

An ∈ F. 

5) ∀B C: P_set(U), B∈F∧C∈F→B∪C∈F. 

Proof 

1) Follows from the sigma_1 and sigma_2 conditions 

and Lemma 2.1.1). 

2) Suppose B∈F ∧ C∈F. Denote A0 = B and An = C 

for n ≥ 1. Then (∀n: nat, An ∈ F) and by the sigma_3 

condition 
n∈

∩
N

An∈F, that is B∩C∈F. 

3) Follows from the sigma_2 condition and part 2), 

since B\C = B∩C
c

. 

4) This is proven using the sigma_2 and sigma_3 

conditions, since ( )( )
c

c

n n

An An
∈ ∈

=∪ ∩
N N

. 

5) Suppose B∈F ∧ C∈F. Then B
c

∈F and C
c

∈F. By 

part 2) and Lemma 2.2.4), (B∪C)
c

 ∈ F, so ((B∪C)
c

)
c

∈F 

and by Lemma 2.1.2), B∪C ∈ F.    ■ 

 

In the following diagram we define a probability 

measure on (U, F) and a probability space (U, F, P) 

following the Kolmogorov's axiomatic definition. 

 

 

Theorem 2.5. Properties of a Probability Measure. 

Suppose (U, F, P) is a probability space. Then the 

following hold: 
 

1) P(∅) = 1. 
 
2) ∀B C: P_set(U); (B∈F ∧ C∈F ∧ B∩C = ∅)  

→ P(B∪C) = P(B) + P(C). 

3) ∀B1,..., Bn
: P_set(U),  ( )

1 1 1

n n n

i i j
i i j

j i

B F B B
= = =

≠

 
 Λ ∈ ∧ Λ Λ ∩ =∅
 
 

 

      → P(B1∪... ∪B
n
) = P(B1) + ... + P(B

n
). 

 

4) ∀B: P_set(U), B∈F→ P(B
c

) = 1 - P(B). 
 

5) ∀B C: P_set(U), B∈F ∧ C∈F  

       → P(B∪C) = P(B) + P(C) - P(B∩C). 
 

6) ∀A: nat → P_set(U), (∀n: nat, An∈F) ∧  

    (∀n: nat, A(n + 1) ⊆ An) → ( ) ( )lim
Nn

P An P AN
→∞∈

=∩
N

. 

Proof 

1) Denote A0 = Ω and An = ∅ for n ≥ 1. Then  

(∀n: nat, An∈F) and An are disjoint. We have: 

 

n

An
∈

Ω = ∪
N

 

 
and by the prob_1 and prob_3 conditions: 
 

( ) ( ) ( ) ( )

( )

0 1

1

1 ,

1 1 .

n n

n

P P An P P so

P

∞ ∞

= =

∞

=

= Ω = = Ω + ∅

= + ∅

∑ ∑

∑

 

 

Since P(∅) ≥ 0, we get P(∅) = 0. 

2) Denote A0 = B, A1 = C and An = ∅ for n > 1. Then 

An are disjoint and (∀n: nat, An ∈ F). We have: 

 

,

n

B C An

∈

∪ = ∪
N

 

 

so by the prob_3 condition: 

 

( ) ( ) ( ) ( ) ( ) ( )
0

0 ,
n

P B C P An P B P C P B P C

∞

=

∪ = = + + = +∑  

 

since P(∅) = 0 by part 1). 

3) This is proven by an external induction on n using 

part 2). 

4) By Lemma 2.2.2), 3), B∪B
c

 = Ω and B∩B
c

 = ∅. 

By part 2), 

 

( ) ( ) ( ) ( ) ( )1, 1 .
c c

P B P B P soP B P B+ = Ω = = −  
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5) C = (B∩C)∪(C\B) and (B∩C)∩(C\B) = ∅. By part 

2), P(C) = P(B∩C) + P(C\B) and 
 

                    ( ) ( ) ( )\ .P C B P C P B C= − ∩      (3) 

 

B∪C = B∪(C\B) and B∩(C\B) = ∅. So by part 2) and 

(3), 
 

( ) ( ) ( ) ( ) ( ) ( )\ .P B C P B P C B P B P C P B C∪ = + = + − ∩  

 

6) Denote B = λn: nat.(An)
c

 and C = λn: nat.(Bn\B(n-

1)) with C0 = B0. Then Cn are disjoint and 

 

                   ( ) ,

c

c

n n n n

Cn Bn An An

∈ ∈ ∈ ∈

 
= = =  

 
∪ ∪ ∪ ∩

N N N N

  

 

   .

c

n n

Cn An

∈ ∈

 
=  
 

∪ ∩
N N

  (4) 

 

Similarly, 

 

                           ( )
0 0

,

c
N N

c

n n

Cn An AN

= =

 
= = 
 

∪ ∩  (5) 

 

since each A(n + 1) ⊆ An. 

 

By (4), (5), parts 3), 4), and the definition of 

probability measure, 

 

( )

( ) ( )( )

( )

0

0 0

1

lim lim lim

1 lim .

c

nn n n

NN
c

N N N
n n

N

P An P An P Cn P Cn

P Cn P Cn P AN

P AN

∞

=∈ ∈ ∈

→∞ →∞ →∞

= =

→∞

      
 − = = =            

 
= = = 

 

= −

∑

∑

∩ ∩ ∪

∪

N N N

 

 

So 

( ) ( )1 1 lim lim .
N N

n n

P An P AN and P An P AN
→∞ →∞

∈ ∈

   
− = − =   

   
∩ ∩

N N

    ■ 

The following diagram defines independence of two 

events in a probability space. 

 

 

3. Random Variables 

As in the rigorous probability theory, we define a 

random variable X in the following diagram as a real-

valued function of outcomes such that each set of the 

form {ω : U | Xω ≤ x} is an event (an element of the 

sigma-field F). 

 

 
 

As was mentioned in subsection 2.1, {ω : U | Xω ≤ 

x} is the notation for the predicate (λω :U. Xω ≤ x) of 

type U→ Prop. 

Theorem 3.1. Properties of a Random Variable. 

Suppose F is a sigma-field on U, X is a random 

variable and x∈R . Then the following hold: 

 

1) {ω : U  |  Xω > x}∈F. 

2) {ω : U  |  Xω ≥ x}∈F. 

3) {ω : U  |  Xω < x}∈F. 

4) {ω : U  |  Xω = x}∈F. 

 

Proof 

1) This is proven by applying the sigma_2 condition, 

since 
 

{ } { }: | : | .
c

U X x U X xω ω ω ω> = ≤  

 
2) Follows from the sigma_3 condition and part 1), since 
 

{ }
1

: | : | .
1

n

U X x U X x
n

ω ω ω ω

∈

 
≥ = > − 

+ 
∩

N

 

 

3) Follows from the sigma_2 condition and part 2), since 

 

{ } { }: | : | .
c

U X x U X xω ω ω ω< = ≥  

 

4) Follows from part 2) and Theorem 2.4.2) because 

 

{ } { } { }: | : | : | .U X x U X x U X xω ω ω ω ω ω= = ≤ ∩ ≥   ■ 

 

In the following diagram we formally define the 

(cumulative) distribution function FX of a random 

variable X. 
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Theorem 3.2. Properties of a Distribution Function. 

Suppose (U, F, P) is a probability space and X is a 

random variable. Then the following hold. 

 

1) ∀x: R , 0 ≤ FX (x) ≤ 1. 

2) ∀x y: R , x < y → FX (x) ≤ FX (y), that is the 

function FX is non-decreasing. 

3) lim
x→−∞

FX (x) = 0. 

4)  lim
x→∞

FX (x) = 1. 

5) ∀x: R , lim
t x→ +

FX (t) = FX (x), that is the function FX is 

right-continuous. 

6) ∀x: R , P({ω : U | Xω < x}) = lim
t x→ −

FX (t). 

7) ∀x y: R , x < y → P({ω : U | x < Xω ≤ y})  

= FX (y) − FX (x). 

8) ∀x: R , P({ω : U | Xω = x}) = FX (x) − lim
t x→ −

FX (t). 

9) ∀x: R , P({ω : U | Xω > x}) = 1 − FX (x). 

Proof 

The theorem is proven using the definitions, 

Theorem 3.1 and the theory of real numbers 

developed in the Library. ■ 

4. Discrete Random Variables 

4.1. Definition of a Discrete Random Variable 

A random variable X is discrete if its set of values is 

finite or countable. This is formally expressed in the 

diagram below: 

 

 

This definition says: a random variable X is discrete 

if there exist a function g: U → nat and an injective 

function f: nat → R such that X = f○g. In other words, 

the set of values of X is {fi | i∈ image(g)}, which is a 

finite set or a countable set, depending on the 

cardinality of the subset image(g) of N . The function 

mX is called the mass function of the discrete random 

variable X. Clearly, if x is not a value of X, then  
 

{ω : U | Xω = x} = ∅ and mX(x) = 0. 
 

Theorem 4.1. Properties of a Discrete Random 

Variable. 

Suppose Discr_var (X, f, g) as in the previous 

definition. Then the following hold. 
 

1) ∀x: R , 0 ≤ mX (x) ≤ 1. 

2) ( )
0 0

X

n n

m fn P
∞ ∞

= =

=∑ ∑ ({ω : U | Xω = fn}) = 1. 

3) ∀x: R , FX (x) = 
0n

P
∞

=

∑ ({ω : U | Xω = fn ∧ fn ≤ x}). 

 

Proof 

1) Follows from Theorem 3.1.4) and the prob_1 

condition, since 

 

( ) { }( ): | .
X

m x P U X xω ω= =  

 

2) Denote A = λn: nat.{ω : U | Xω = fn}. Since f is 

injective, An are disjoint. For any ω : U, Xω = fn for n = 

gω, so we have 
n

An

∈

Ω = ∪
N

 and by the prob_3 condition: 

 

( ) ( ) { }( ) ( )
0 0 0

1 : | .
X

n n n

P P An P U X fn m fnω ω

∞ ∞ ∞

= = =

= Ω = = = =∑ ∑ ∑  

 

3) Denote B = {ω : U | Xω ≤ x}. Clearly, 

{ }: |
n

U X fnω ω

∈

Ω = =∪
N

 and 

 

{ }( ): | ,
n n

B B B U X fn Cnω ω

∈ ∈

= ∩Ω = ∩ = =∪ ∪
N N

 

 

where Cn = {ω : U | Xω = fn∧ fn ≤ x}. Since Cn are disjoint,  

( ) ( ) ( ) { }( )
0 0

: | .
X

n n

F x P B P Cn P U X fn fn xω ω

∞ ∞

= =

= = = = ∧ ≤∑ ∑

   ■ 

4.2. Numerical Characteristics of Discrete Random 

Variables 

In the following diagram we define the expectation, 

variance and standard deviation of a discrete random 

variable X. 
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The notations ExpD(X, y), VarD(X, z) and 

St_devD(X, s) mean: y is the expectation, z is the 

variance and s is the standard deviation of the discrete 

random variable X, respectively. 

Theorem 4.2. Expectation Property of a Discrete 

Variable. 

Suppose (U, F, P) is a probability space and 

Discr_var (X, f, g). Then 
 

( )

( )

( )
0

: ,[ _ , ,

: ,( ,

({ : | }))].

D

n

h Discr var h X h f g

z Exp h X z

z h fn P U X fnω ω

∞

=

∀ → →

∀ →

= ⋅ =∑

� �

�

R R

R  

 

Proof 

Follows from the definitions.   ■ 

Theorem 4.3. Properties of Expectation. 

Suppose (U, F, P) is a probability space and X is a 

discrete random variable. Then the following hold. 
 

1) ∀y c: R , ExpD (X, y)→ ExpD (λω : U.(c⋅Xω), c⋅y). 

In ordinary mathematical notations: E(cX) = cE(X). 
 

2) ∀c: R , ExpD (λω : U.c, c). 

In ordinary mathematical notations: E(c) = c. 
 

3) ∀x y: R , ExpD (X, x) ∧ ExpD (Y, y)  

→ ExpD (X + Y, x + y). 

In ordinary mathematical notations: E(X +Y) = E(X)  

+ E(Y). 
 

4) ∀y: R , ExpD (X, y) ∧ (∀ω : U, Xω ≥ 0) → y ≥ 0. 

In ordinary mathematical notations: X ≥ 0 → E(X) ≥ 0. 
 

5) ∀x y: R , ExpD (X, x) ∧ ExpD (Y, y)  

∧ (∀ω : U, Xω ≤ Yω) → x ≤ y. 

In ordinary mathematical notations: X ≤ Y→E(X) ≤ E(Y). 

Proof 

Follows from the definitions and properties of sums 

and series of real numbers.   ■ 

Theorem 4.4. Properties of Variance. 

Suppose (U, F, P) is a probability space and X is a 

discrete random variable. Then the following hold. 
 

1) ∀y: R , VarD (X, y) → y ≥ 0. 

In ordinary mathematical notations: Var (X) ≥ 0. 
 

2) ∀c: R , VarD (λω : U.c, 0). 

In ordinary mathematical notations: Var(c) = 0. 
 

3) ∀y c: R , VarD (X, y) → VarD (λω : U.(Xω + c), y). 

In ordinary mathematical notations: Var(X + c) = Var(X). 
 

4) ∀y c: R , VarD (X, y) → VarD (λω : U.(c⋅Xω), c
2
⋅y). 

In ordinary mathematical notations: Var(cX) = c
2
Var(X). 

 
5) ∀y z: R , ExpD (X, y) ∧ ExpD (λω : U. (Xω)

2
, z)  

→ VarD (X, z - y
2
). 

 
In ordinary mathematical notations: Var(X) = E(X

 2
) - 

(E(X)
2
). 

Proof 

Follows from the definition of variance and 

Theorem 4.3.   ■ 

Theorem 4.5. Properties of Standard Deviation. 

Suppose (U, F, P) is a probability space and X is a 

discrete random variable. Then the following hold. 
 

1) ∀s: R , St_devD (X, s) → s ≥ 0. 

In ordinary mathematical notations: σ(X) ≥ 0. 
 

2) ∀c: R , St_devD (λω : U.c, 0). 

In ordinary mathematical notations: σ(c) = 0. 
 

3) ∀s c: R , St_devD (X, s)  

→ St_devD (λω : U.(Xω + c), s). 
 
In ordinary mathematical notations: σ(X + c) = σ(X). 
 

4) ∀s c: R , St_devD (X, s)  

→ St_devD (λω : U.(c⋅Xω), |c|⋅s). 
 
In ordinary mathematical notations: σ(cX) = |c|σ(X). 
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Proof 

Follows from the definition and previous theorem.   ■ 

Theorem 4.6. Markov Inequality.  

Suppose (U, F, P) is a probability space and X is a 

discrete random variable. Then 

 

( ) ( )

{ }( )

: , [ 0 , : , 0

: | ].

D
y c c Exp X y U X

y
P U X c

c

ω ω

ω ω

∀ > ∧ ∧ ∀ ≥

→ ≥ ≤

R

 

Proof 

Assume all the hypotheses. Then 

 

{ }( )
0

: | ,
n

y fn P U X fn soω ω

∞

=

= ⋅ =∑  

               

{ }( )

{ }( )

{ }( )

0

0

0

0

0

: |

: |

: | .

n
fn c

n
fn c

n
fn

y fn P U X fn

fn P U X fn

fn P U X fn

ω ω

ω ω

ω ω

∞

=

≥

∞

=

≤ <

∞

=

<

= ⋅ =

+ ⋅ =

+ ⋅ =

∑

∑

∑

 (6) 

 

We have  (∀ω : U, Xω ≥ 0), so for any  fn < 0,  

{ω : U | Xω = fn} = ∅ and all probabilities in the last 

sum in (6) equal 0. Clearly, 

 

{ }( )
0

0

: | 0.
n

fn c

fn P U X fnω ω

∞

=

≤ <

⋅ = ≥∑  

 

Since f is injective by the definition of a discrete random 

variable, the events {ω : U | Xω = fn} are disjoint and as in 

Theorem 4.1.3), we have for the first sum in (6): 

 

{ }( ) { }( )

{ }( ) { }( )

0 0

0

: | : |

: | : | .

n n
fn c fn c

n

fn P U X fn c P U X fn

c P U X fn fn c cP U X c

ω ω ω ω

ω ω ω ω

∞ ∞

= =

≥ ≥

∞

=

⋅ = ≥ =

= = ∧ ≥ = ≥

∑ ∑

∑

 

 

Therefore y ≥ cP ({ω : U | Xω ≥ c})  and P({ω : U | 

Xω ≥ c}) ≤ 
y

c
.   ■ 

Theorem 4.7. Chebychev Inequality. 

Suppose (U, F, P) is a probability space and X is a 

discrete random variable. Then: 

( ) ( )

{ }( )
2

: ,[ 0 , ,

: | | | ].

D D
y z a a Exp X y Var X z

z
P U X y a

a
ω ω

∀ > ∧ ∧

→ − ≥ ≤

R

 

Proof 

Assume all the hypotheses.  

Denote Y = λω : U.(Xω - y)
2
. Then Y is also a discrete 

random variable and by the definition of variance, we 

have ExpD (Y, z). Applying the Markov inequality 

(Theorem 4.6) to Y and a
2
 we get: 

 

                    { }( )2

2
: | .

z
P U Y a

a
ω ω ≥ ≤   (7) 

 

The inequality Yω ≥ a
2
 is equivalent to (Xω - y)

2
 ≥ a

2
 

and to |Xω - y| ≥ a, so 
 

{ }( ) { }2
: | : | | |P U Y a P U X y aω ω ω ω≥ = − ≥  

 
and from (7): 
 

{ }( )
2

: | | | .
z

P U X y a
a

ω ω − ≥ ≤    ■ 

 

5. Random Vectors 

5.1. Joint Distribution 

In the following diagram we define the joint 

distribution function FXY of two random variables X 

and Y; in the same diagram we define the 

independence of X and Y. 
 

 
 

The joint distribution function of n random variables 

X1, X2, ..., Xn can be defined similarly. 

Theorem 5.1. Properties of a Joint Distribution 

Function. 

Suppose (U, F, P) is a probability space, X and Y are 

random variables. Then the following hold. 
 

1) ∀x y: R , 0≤ FXY (x, y) ≤ 1. 

2) ∀y: , lim
x→−∞

R� FXY (x, y) = 0. 
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3) ∀x: , lim
y→−∞

R� FXY (x, y) = 0. 

4) ∀y: , lim
x→∞

R� FXY (x, y) = FY (y). 

5) ∀x: , lim
y→∞

R� FXY (x, y) = FX (x). 

Proof 

The theorem is proven using the definitions and the 

theory of real numbers developed in the Library.   ■ 

5.2. Covariance and Correlation Coefficient 

In the following diagram we define the covariance 

and correlation coefficient of two discrete random 

variables. 

 

 
 

Theorem 5.2. Properties of Covariance 

Suppose (U, F, P) is a probability space, X, Y and Z 

are random variables. Then the following hold. 
 

1) ∀y: R , CovD (X, Y, z) → CovD (Y, X, z). 

In ordinary mathematical notations:  

Cov(X, Y) = Cov(Y, X). 
 

2) ∀z: R ,CovD (X, X, z) ↔ VarD (X, z). 

In ordinary mathematical notations: Cov(X, X) = Var(X). 
 

3) ∀z c: R , CovD (X, λω : U.c, z)→ z = 0. 

In ordinary mathematical notations: Cov(X, c) = 0. 
 

4) ∀z c: R , CovD (X, Y, z)→CovD (X, λω:U.(Yω + c), z). 

In ordinary mathematical notations: Cov(X, Y + c) = 

Cov(X, Y). 
 

5) ∀z c: R , CovD (X, Y, z) → CovD (X, λω: U.(c⋅Yω), 

c⋅z). 

In ordinary mathematical notations: Cov(X, cY) = 

cCov(X, Y). 

6) ∀y z: R , CovD (X, Y, y) ∧ CovD (X, Z, z)  

→ CovD (X, Y + Z, y + z). 

In ordinary mathematical notations: Cov(X, Y + Z)  

= Cov(X, Y) + Cov(X, Z). 
 

7) ∀x y z: R , St_devD (X, x) ∧ St_devD (Y, y)  

∧ CovD (X, Y, z) → |z| ≤ x⋅y. 

In ordinary mathematical notations: |Cov(X, Y)|  

≤ σ(X)⋅σ(Y). 
 

8) ∀x y z: R , VarD(X, x) ∧ VarD (Y, y) ∧ CovD (X, Y, 

z) → VarD (X + Y, x + y + 2z). 

 In ordinary mathematical notations: Var(X + Y)  

= Var(X) + Var(Y) + 2Cov(X, Y). 
 

9) Indep_var(X, Y) → ∀z: R , (CovD (X, Y, z) → z = 

0) ∧∀x y: R , [VarD (X, x) ∧ VarD (Y, y)  

→ VarD (X + Y, x + y)]. 
 
In ordinary mathematical notations: for independent X 
and Y, Cov(X, Y) = 0 and Var(X + Y) = Var(X) + Var(Y). 
 

10) ∀x y z: R , ExpD (X, x) ∧ ExpD (Y, y) ∧ ExpD(X⋅Y, 

z) → CovD (X, Y, z − x⋅y). 
 

In ordinary mathematical notations: Cov(X, Y) = E(X⋅Y) 

− E(X)⋅E(Y). 

Proof 

Follows from the definitions and previous theorems 

about variance and standard deviation.   ■ 

Theorem 5.3. Properties of Correlation Coefficient. 

Suppose (U, F, P) is a probability space, X and Y are 

random variables. Then the following hold. 
 

1) ∀r: R , Cor_ctD (X, Y, r) → Cor_ctD (Y, X, r). 

In ordinary mathematical notations: ρ (X, Y) = ρ (Y, X). 
 

2) ∀y: R , VarD (X, y) ∧ y > 0 → Cor_ctD (X, X, 1). 

In ordinary mathematical notations: ρ (X, X) = 1. 
 

3) ∀r: R , Cor_ctD (X, Y, r) → −1 ≤ r ≤ 1. 

In ordinary mathematical notations: −1 ≤ ρ (X, Y) ≤ 1. 
 

4) Indep_var(X, Y)→∀r: R , [Cor_ctD (X, Y, r)→ r = 0]. 

In ordinary mathematical notations: for independent X 

and Y, ρ (X, Y) = 0. 

Proof 

Follows from the previous theorem.   ■ 

6. Continuous Random Variables 

6.1. Definition of a Continuous Random Variable 

A random variable X is continuous if it has a density 

function. This is formally expressed in the following 

diagram. 
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6.2. Numerical Characteristics of Continuous 

Random Variables 

In the following diagram we define the expectation 

ExpC (X) of a continuous random variable X. 
 

 
 

Other numerical characteristics can be given the same 

definitions as for discrete random variables and vectors. 

The numerical characteristics of continuous random 

variables and vectors should have the same properties as 

in the discrete case, including the Markov and Chebychev 

inequalities (and excluding Theorem 4.2). But the proofs 

need more work. A better approach would be to use 

Lebesgue integral to define an expectation of an arbitrary 

random variable. However, the definition and theory of 

Lebesgue integral are not developed in COIC/COQ yet, as 

far as we know. It is a task for the future. When Lebesgue 

integral is adequately introduced we will be able to have a 

universal approach to random variables, instead of 

considering only discrete and continuous variables and 

using different techniques in defining their expectations. 

7. Conclusion 

In this paper we follow the Kolmogorov's axiomatic 

approach and formalize in the COIC some fundamental 

concepts of probability theory. First we give a formal 

definition of a probability space as a triple of a sample 

space of outcomes, a sigma-field of events and a 

probability measure on these events. We derive usual 

basic properties of a probability space. Next we 

formalize the concepts of a random variable and its 

distribution function and also the concepts of a discrete 

random variable and a continuous random variable. We 

formally introduce the expectation of a random variable, 

separately for the discrete and continuous cases. We also 

give formal definitions of other numerical characteristics: 

variance, standard deviation, covariance and correlation 

coefficient. We study their properties in detail for the 

discrete case but not for the continuous case (though most 

properties should be the same in both cases). We 

formalize the Markov and Chebychev inequalities.  

The definitions and initial proofs are presented in the 

form of flag-style derivations, as in (Nederpelt and 

Geuvers, 2014). The rest of the proofs, for readability, 

are made more informal and brief.  

In the future we are planning to use a universal 

approach and formally define the expectation of an 

arbitrary random variable (not necessarily discrete or 

continuous) using a Lebesgue integral, when the Lebesgue 

integral is formalized in the COQ library. Other possible 

directions of future research are producing COQ codes for 

our formalizations and developing other parts of 

probability theory within COIC. 
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